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Abstract

support the induction of CrNA.

vaccines.

Broadly reactive neutralizing antibodies

Background: Current HIV-1 envelope glycoprotein (Env) vaccines are unable to induce cross-reactive neutralizing
antibodies. However, such antibodies are elicited in 10-30% of HIV-1 infected individuals, but it is unknown why
these antibodies are induced in some individuals and not in others. We hypothesized that the Envs of early HIV-1
variants in individuals who develop cross-reactive neutralizing activity (CrNA) might have unique characteristics that

Results: We retrospectively generated and analyzed env sequences of early HIV-1 clonal variants from 31 individuals
with diverse levels of CrNA 2—-4 years post-seroconversion. These sequences revealed a number of Env signatures
that coincided with CrNA development. These included a statistically shorter variable region 1 and a lower
probability of glycosylation as implied by a high ratio of NXS versus NXT glycosylation motifs. Furthermore, lower
probability of glycosylation at position 332, which is involved in the epitopes of many broadly reactive neutralizing
antibodies, was associated with the induction of CrNA. Finally, Sequence Harmony identified a number of amino
acid changes associated with the development of CrNA. These residues mapped to various Env subdomains, but in
particular to the first and fourth variable region as well as the underlying a2 helix of the third constant region.

Conclusions: These findings imply that the development of CrNA might depend on specific characteristics of early
Env. Env signatures that correlate with the induction of CrNA might be relevant for the design of effective HIV-1
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Background

The identification of the human immunodeficiency virus
type-1 (HIV-1), as the causative agent of the acquired
immunodeficiency syndrome (AIDS), initiated a long-
term but as of yet unsuccessful search for an effective
and safe HIV-1 vaccine. Ideally a vaccine should elicit both
humoral and cellular immunity [1]. In particular the in-
duction of cross-reactive neutralizing activity (CtNA) that
is capable of neutralizing HIV-1 variants from different
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subtypes is appealing. Unfortunately, this has shown to be
a difficult hurdle, and none of the vaccine candidates
tested to date have been able to induce this type of
humoral immunity [2-4]. The moderate efficacy against
acquisition of infection in the RV144 vaccine trial [5], in
which V1V2 IgG antibodies correlated inversely with the
rate of infection [6], has lead to optimism in the HIV-1
vaccine field. In this trial, only very low titer, tier 1 neutral-
izing antibodies (NAbs) were detected and efficacy may
improve with a vaccine that is capable of eliciting a cross-
reactive neutralizing humoral immune response.

The HIV-1 envelope glycoprotein complex (Env) me-
diates entry into host cells and is the sole target for
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NAbs [7,8]. A functional Env consists of heterotrimers
of three gp120 subunits, non-covalently linked to three
gp41 molecules that anchor the Env spike in the viral
membrane. Gp120 has five conserved (C1-C5) and five
variable regions (V1-V5) [9,10]. The conserved regions
form the core of the protein and are crucial for binding
to the CD4-receptor on target cells [11-13]. The variable
regions are highly diverse in sequence as a consequence
of high replication rates, recombination, deletions, inser-
tions and mutations [14]. Gp120 and gp41 contain 20-35
and 3-5 potential N-linked glycosylation sites (PNGS),
respectively. N-linked glycans compose approximately half
of the molecular mass of gp120 [15] and are required for
correct protein folding, binding to lectin receptors on
immune cells, as well as for immune evasion [16-20].

Within weeks to months after primary infection, HIV-1
Env specific antibodies appear [21] that are generally
limited in their neutralizing activity and restricted to
early autologous viruses [22-25]. The first antibodies are
directed against gp41, predominantly to the immunodo-
minant epitope, followed by non-NAbs against gp120,
which in clade B-infected individuals often target the
V3 region [26]. Subsequently, weakly neutralizing V3
antibodies capable of neutralizing heterologous tier 1
HIV-1 isolates appear [27] followed by NAbs with other
epitope specificities from which the virus rapidly escapes
through sequence changes in the variable loops and an
increasing number of PNGS. Specifically, an increase in
length and number of PNGS of the V1V2 region plays a
role in HIV-1 resistance to NAbs [22,28-32].

Within 2—4 years post-seroconversion (post-SC), 10-30%
of the HIV-1 infected individuals develop CrNA [33-40],
which is directed against conserved epitopes such as the
CD4-binding site (CD4BS), the membrane proximal region
(MPER) in gp41 and glycan dependent epitopes that often
include the glycans at positions 160 or 332 [41,42]. Over
the years, a number of broadly reactive neutralizing
monoclonal antibodies (bNAbs) have been isolated from
HIV-infected individuals with CrNA. These antibodies
show broad and potent activity against different HIV-1
subtypes. As HIV-1 can rapidly escape from autologous
humoral immunity with high levels of CrNA [25,34], this
immune response is not associated with prolonged
asymptomatic survival of the individuals that make
them [8,21,25,36,43,44]. Nonetheless, bNAbs can pro-
tect non-human primates against viral challenge in
passive immunization studies [45-49], which supports
the idea that an HIV-1 vaccine that elicits CrNA could
be effective against HIV-1 acquisition in humans.

BNAbs delineate sites of vulnerability on the Env
spike. These sites can be divided into four bNAD epitope
clusters located at different positions on the Env trimer
[50-53]. Three epitope clusters are located on gp120,
and one on gp41. The first epitope cluster is the CD4BS,
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which is the epitope for multiple bNAbs such as b12,
VRCO01, VRC-PG04, NIH45-46 and 3BNC117 [54-58].
The more recently discovered PGT121-130 and PGT135
bNAbs, as well as 2G12, target the outer domain on
gpl20 and are N332 glycan dependent [52,59-63].
BNAbs PG9, PG16, PGT145 and CHO1-CHO4 target
conserved epitopes within V1V2 that are expressed on
trimeric Env [52,53,64-66]. Preferential binding of PG9
to the quaternary structure of trimeric Env could be
explained by its binding to an epitope at the apex of the
trimer that constitutes elements from two protomers [67].
PGY, PG16 and PGT145 neutralization is dependent on
the presence of glycans, especially at position N160
[64,68]. One epitope cluster is located in the MPER of
gp41, which contains the binding sites for 2F5, 4E10 and
10E8 [69-72].

The extensive glycosylation of gpl20, amounting to
~50% of its molecular weight, was long thought to con-
tribute to an immunologically “silent face” and serve as a
“glycan shield” [8,73]. The recent identification of many
glycan-dependent bNAbs shows that the silent face may
not be so immunologically silent after all, and that this
shield can be penetrated and/or used by bNAbs. The
epitope cluster on gp120 which is targeted by the bNAbs
PGT121-130, PGT135 and 2G12 [60-62,67,74], requires
a specific glycan at position 332, although there is a
difference in how the different bNAbs approach this
glycan. In addition, neutralization activity in serum of
infected humans and macaques, which developed CrNA,
is dependent on recognition of the epitope involving this
glycan at position 332 [36,75,76]. Interestingly, Moore et al.
recently showed that the 332 glycan was absent on the Env
of early viruses from two clade C infected individuals but
emerged as a means of escape from autologous neutralizing
responses, thereby creating 332 glycan-dependent bNAb
epitopes [77]. For these reasons it seems that the glycosyla-
tion at position 332 plays a substantial role in the develop-
ment of CrNA.

Although the existence of bNAbs in natural infection
is testimony that the native Env spike can elicit bNAbs,
it remains unknown why this occurs in only 10-30% of
HIV-1 infected individuals. Here, we hypothesized that
specific properties of early Envs could contribute to the
development of CrNA. Information on such properties
would obviously be valuable for vaccine design aimed at
generating similar CrNA [78]. To test our hypothesis,
we retrospectively examined env sequences from early
HIV-1 clonal variants in clade B infected individuals
that developed diverse levels of CrNA later on during
infection. We found that CrNA development correlated
with early HIV-1 variants with shorter V1 regions, lower
probability of glycosylation, and specific amino acid
usage. These properties might open up avenues for
vaccine design.
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Results

Short V1 sequences correlate with the development of
cross-reactive neutralizing activity

To study Env determinants that may influence the in-
duction of CrNA, we retrospectively generated env
sequences from early HIV-1 variants in 31 individuals
who at 2—4 years post-SC had diverse levels of CrNA in
their serum (Figure 1) [35,79]. We chose this experi-
mental setup because contemporaneous viruses usually
already have escaped from CrNA [25,34] and early
viruses are proposed to be a major determinant for the
induction of CrNA [80]. The individuals were matched
for time between SC and CrNA measurement, time
between SC and clonal virus isolation, CD4" T cells/ul
blood at set-point and viral load at set-point (Additional
file 1: Figure S1). Data on HIV-1 neutralizing activity in
serum were available from previous studies (n = 292)
[35,40,79]. In short; sera were tested by Monogram
Biosciences [81] for cross-reactive neutralizing activity
in a pseudovirus assay involving six tier two viruses with
Envs from primary isolates of HIV-1 subtypes A
(94UG103), B (92BR020 and JRCSF), C (93IN905 and
MGRM-C-026) and CRFO1_AE (92THO021). This six viral
panel covered 93% of the variation in neutralization of a
larger pseudovirus panel (n = 15) [39]. It has been shown
that classification of CrNA in sera, as determined on this
six virus panel, was highly correlated with CrNA deter-
mination on a larger 23 virus panel [35]. The geometric
mean ICs, titers in the sera of the selected individuals
against a panel of 6 HIV-1 variants varied from 20 to 297;
with an average of 98 (see Table 1 for details). Phylogenetic
analysis of all sequences, using either neighbour-joining
or maximum-likelihood methods, revealed clustering of

Sampling period
clonal viral
variants

Sampling period
serum

0 10 20 30 40 50
Months post-SC

Figure 1 Sampling of viruses and sera. Time bars showing the
period in which viruses were isolated and the period in which sera
were obtained for assessment of neutralizing activity. The white, grey
and dark grey bars represent the individuals with non-CrNA (n=9),
intermediate CrNA (n=10) and CrNA (n=12), respectively. The x-axis
represents the months post-SC. The box-plots represent the sampling
periods with minimum and maximum time points indicated by
whiskers. The median time points of virus and sera sampling for the 31
individuals are indicated by solid vertical lines in the boxes.
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sequences per individual, excluding contamination, but,
clustering of HIV-1 Env sequences from individuals
with similar geometric mean ICs, titer was not observed
(Additional file 2: Figure S2). We observed that the geo-
metric mean ICjy titer in serum correlated weakly with
the mean length of V1 ((Figure 2B, r = -0.36; p = 0.049)
but not with overall mean gp160 length (Figure 2A), nor
with the total length of either the variable or the con-
served regions (data not shown, r = -0.21; p = 0.25 and
r = -0.052; p = 0.80, respectively).

Lower probability of overall glycosylation correlates with
the induction of cross-reactive neutralizing activity

We did not observe a correlation between the geometric
mean ICs titer in serum, and the mean total number of
PNGS in gpl60 (Figure 2C) or the mean number of
PNGS in the individuals variable or constant regions
(data not shown). It has been shown that NXT motifs
have a two to three times higher probability of becoming
glycosylated than NXS motifs [82,83]. The total number
of PNGS may therefore not entirely reflect the actual ex-
tent of glycosylation of a given Env molecule. Interest-
ingly, the mean number of NXS acceptor motifs relative
to the mean total number of PNGS correlated positively
with the geometric mean ICs titer in serum (Figure 2D,
r = 0.41; p = 0.037), while the opposite was true for the
mean number of NXT acceptor motifs relative to the
mean total number of PNGS. Thus, a higher relative
number of NXS over NXT motifs, i.e. less probability of
glycosylation was associated with the development of
CrNA. However, we note that we cannot make state-
ments on the actual glycosylation of individual NXS and
NXT motifs.

Lower probability of glycosylation at position 332
correlates with the induction of cross-reactive

neutralizing activity

We noted that the glycosylation motif at position 332,
which is important for a number of bNAb epitopes
[52,59-62,74], is always of the NXS type, and may thus
not always be occupied by a glycan. In particular when
the acceptor motif is NXS, the amino acid at position X
is also important for determining the probability of gly-
cosylation [84]. In all our sequences, the second position
was occupied by either a leucine or an isoleucine. We
found that individuals who developed CrNA had signifi-
cantly more often an NLS motif at position 332, while
individuals who did not develop CrNA had more fre-
quently an NIS motif (Figure 3A, p = 0.032). Studies
with rabies virus glycoprotein showed that an NLS motif
has a two times lower probability of becoming
glycosylated compared to an NIS motif [84], which
might imply that a lower probability of N-glycan attach-
ment to N332 is associated with the development of
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Table 1 Individual’s data summary
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Individual Geometric Number of Date of Months from CD4 count Viral load (log) Env Neutralization SH
mean ICsq viruses Nes SC to cvI¢ at SP® at SPf sequences assay analysis
titer® neutralized® obtained? performed”  performed'

ACH19829 297 6 26-jan-86 105 440 3.9 gp160 + +
ACH18969 275 5 29-Oct-87 18 520 43 gp160 + +
ACH19308 231 5 14-jul-91 33 380 44 gp160 + +
ACH18814 230 6 27-ul-87 32 500 5.1 gp160 + +
ACH18818 205 4 26-jan-86 82 510 54 gp160 + +
ACH19885 180 5 28-dec-94 29 580 33 gp160 + +
ACH11668 169 5 28-jun-86 79 380 45 gp160 + +
ACH19463 164 5 14-jul-86 2.1 350 48 gp160 + +
ACH19507 140 6 23-apr-88 79 400 5.0 gp160 + +
ACH19474 126 5 27-jul-87 12.7 410 30 gp160 + +
ACH19999 m 4 26-aug-85 43 1060 4.6 gp160 + +
ACH19793 93 4 28un-86 123 1000 45 gp160 + +
ACH19588 91 4 20-nov-85 13.8 600 53 gp160 - -

ACH19566 78 5 11-Mar-85 132 610 35 C1-V5 - -

ACH19768 64 5 6-apr-86 22 370 3.7 gp160 - -

ACH18860 64 2 25-aug-86 26 550 49 C1-V5 - -

ACH18839 64 3 17-Oct-86 33 330 38 C1-V5 - -

ACH19542 45 3 23-jun-85 45 310 39 gp160 - -

ACH18766 43 1 15-jul-88 5.1 760 43 gp160 - -

ACH19861 43 3 24-feb-89 30 470 43 gp160 + +
ACH19453 39 3 23-dec-85 70 810 30 gp160 - -

ACH18829 38 3 2-feb-87 4.0 770 26 C1-V5 - -

ACH19792 34 2 8-nov-85 6.9 450 49 gp160 + +
ACH19961 31 0 14-sep-87 24 530 4.5 gp160 + +
ACH19329 31 1 28-dec-94 43 780 39 gp160 + +
ACH19974 29 2 26-jan-86 88 550 35 gp160 + +
ACH19489 29 0 30-sep-85 74 550 3.1 gp160 + +
ACH18887 29 1 7-dec-89 88 670 46 gp160 + +
ACH19342 28 2 14-jul-86 3.0 700 39 C1-V5 - -

ACH19576 23 1 2-feb-88 70 500 45 gp160 + +
ACH18880 20 0 28-jun-86 104 860 48 gp160 + +

“Neutralization titers are expressed as the geometric mean of the reciprocal plasma dilution that inhibited virus infection by 50% for the panel of 6

heterologous viruses.

"The number of viruses neutralized, at least 3-fold higher than the IC5, of the same serum with MLV, from the panel of 6 heterologous viruses from

different subtypes.

“Date of seroconversion (SC).

9Months post SC to time of clonal virus isolation (CVI).
€CD4* T-cell (CD4*) count at setpoint (SP).

fLog viral load at setpoint (SP).

9Env fragment sequenced.

PIndividuals from which viruses were used in the neutralization sensitivity assay with MAbs and polyclonal HIVIg pools are indicated with +.
Individuals from which viral sequences were used in the Sequence Harmony model are indicated with +.

CrNA. There is no straightforward way to directly assess
glycan occupancy of position 332 on virus isolates, but we
can study this indirectly by investigating the neutralization
sensitivity to bNAbs that are dependent on the presence
of a glycan at position 332, such as 2G12 and PGT126.

Thus, we tested the sensitivity of the viruses from our
infected individuals against 2G12 and PGT126, and di-
vided them into two groups, for the presence of NLS or
NIS at position 332. For 2G12 we excluded viruses that
lacked one or more of the essential 2G12 glycans 295, 332,
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Figure 2 Short V1 sequences and lower probability of overall glycosylation correlate with the development of cross-reactive
neutralizing activity. Scatter plots of individual's geometric mean ICs titer across the 6 virus panel (x-axis) versus sequence characteristics of the
gp160s from clonal virus isolates on the y-axis. (A) length of gp160 in amino acids (AA); (B) length of variable region 1 (V1) in amino acids (AA);
(C) total number of PNGS in gp160; (D) number of NXS motifs relative to the total number of PNGS.

386 or 392 [61,62,85] (i.e. the selected viruses should in
theory all be sensitive to 2G12). We defined resistance as
>50% infectivity at the highest concentration of bNAb
(25 pg/ml and 5 pg/ml for 2G12 and PGT126, respect-
ively; Figure 3B&C). We found that 7 out of 21 viruses
(33%) with an NLS motif were resistant to 2G12, while
only 2 of 14 viruses (14%) with an NIS motif were resist-
ant (Figure 3B). Furthermore, we found that 4 out of 30
viruses (13%) with an NLS motif were resistant to
PGT126, while none of the viruses with an NIS motif
were resistant (Figure 3C). All NLS containing viruses
that were resistant to PGT126 were also resistant to
2G12. Although these differences did not reach statistical
significance they are consistent with a lower probability
of glycosylation of NLS motifs, of which the presence is
associated with the development with CrNA.

Sequence Harmony identifies specific amino acids that
correlate with the induction of cross-reactive neutralizing
activity

The Sequence Harmony (SH) method ([86] and www.ibi.
vu.nl/programs/segharmwww) was used to identify amino
acid differences in Env between individuals who developed
CrNA and who did not (Table 2). Low SH-scores indicate
positions where the amino acid composition is different
between the two groups; a score of 0 indicates that the

amino acids at a given position are completely different
between both groups, while the maximum score of 1 in-
dicates that the amino acid compositions are indistin-
guishable. In addition, an empirical Z-score is calculated,
reflecting the significance of the SH score obtained based
on 100 random shuffling events of the sequences between
the two groups. The SH analysis yielded 39 sites with a SH
score below the defined cut-off values, indicating differ-
ences in amino-acids present at these sites between the
CrNA and non-CrNA groups, all with high (negative)
Z-scores indicating high significance (Table 2). A phylo-
genetic analysis showed the absence of sequence group
clustering (Additional file 2: Figure S2), excluding spuri-
ous findings based on phylogeny. Individual sequences
were weighted in the calculation of the SH-scores, such
that each individual had equal weight (see Methods for
details). For comparison, we repeated the analysis with
a single consensus sequence per individual. This yielded
essentially identical scores (the correlation between SH-
scores and Z-scores is both r = 0.98, and p < 0.0001),
but less detailed information on the specific amino acid
changes (Additional file 3: Table S1 and Additional file 4:
Figure S3). For the variable domains we used a cutoff of
SH <0.7 and for the conserved domains a more relaxed
cutoff of SH <0.85. This extended (higher) cut-off is neces-
sary to find small differences within the conserved regions
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Figure 3 Lower probability of glycosylation at position 332 correlates with the induction of cross-reactive neutralizing activity. (A) Pie
charts representing the distribution of NLS and NIS PNGS motifs at position 332 between 12 individuals who developed and 9 individuals who
did not develop CrNA. Red and green represent NLS and NIS motifs, respectively. (B) Residual virus infectivity in the presence of high
concentrations of 2G12 (25 pg/ml), excluding viruses lacking one or more of the essential 2G12 glycans 295, 332, 386 or 392 [61,62,85], for virus
clones that have NLS or NIS motif. (C) Residual virus infectivity in the presence of high concentrations of PGT126 (5 pug/ml), for virus clones that
have NLS or NIS motifs. Values in the gray area are considered sensitive, while values in the white area are considered resistant.

PNGS motif at position 332

that have an overall higher sequence similarity. 22 sites
were located in the variable regions, including 1 distinct
site with the maximal score of 0.0 located in the V1 region
which also contains 10 other sites scoring below 0.7 (z-
scores ranging from -8 to —69). In the multiple sequence
alignment, 6 insertions occur within the V1 region be-
tween positions 140 and 141 and are in agreement with
the observed longer V1 region in individuals who did not
develop CrNA (Figure 2B). One site is located in the V3
region (position 322), 8 sites in V4 (396, 399, 403—407 and
412) and 2 sites in V5 (461 and 464) all with z-scores ran-
ging from -9 to -35. As conserved regions show inher-
ently higher sequence conservation than the variable
regions, a less strict cut-off of SH <0.85 was used. This
resulted in the selection of 17 sites: 6 in the C1 region (32,
33, 85, 87, 97 and 130), 3 in C2 (268, 271 and 275), 6 in C3
(333, 336, 337, 343, 346 and 347), and 1 site in C4 (S440)
(z-scores ranging from -3 to -16). The change at position
333 in C3 corresponds to the second position of the N332
glycosylation motif (see above). One additional relevant site
was identified in the ectodomain of gp41 (621).

Structural mapping of the Sequence Harmony results
reveals clustering of amino acids that are associated with
the induction of CrNA

To better understand the impact of the results gained with
SH, we mapped the positions that differed significantly on

the three-dimensional structure of Env (Figure 4). A num-
ber of gpl20 crystal structures were combined, as de-
scribed in detail in the Methods section, to generate a
structure of the Env spike that contains all gp120 residues
(Figure 4A and B). Gp41 was not included as it contains
only one position that was identified by SH (at position
621). Although this model may not be an accurate repre-
sentation of the Env spike with correct positions and con-
formations of the variable domains, it is useful to visualize
the residues identified by the SH analysis. The carbon
trace is indicated in red, while the residues selected by the
SH analysis are shown in yellow space filling. Mapping of
the residues identified by SH on the 3D structure of Env
reveals that the residues that differ between the Envs,
which are derived from individuals that did develop and
those that did not develop CrNA, cluster together in
specific domains. First, a number of residues cluster in the
V1 (Figure 4C and D). Second, a large cluster includes a
major portion of the V4 as well as part of the underlying
C3. Looking into these positions in more detail it is evi-
dent that a number of C3-residues located on the side of
the o2 helix that faces the V4 are different between the
two sequence groups and those residues that differ in the
V4 are all close to the a2 helix (Figure 4E and F). A third
cluster of residues can be observed in the gp41-interactive
domain, including residues in C1 and C2, although these
residues are more scattered throughout the domain,
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Table 2 Sequence Harmony results

Consensus stringd

Region Amino acid position® SH-scores® Z-scores® High CrNA® Low CrNAf Cluster?
al E32 0.825 -55 Egd Edkng 1
C1 K33 0.765 -6.7 KQn_e QNdek 1
@ V85 0.792 —48 Vkaei Ver 2
al V87 0.843 -49 Ekg Eadg 2
1 K97 0.840 =5.1 Kint Knr 3
al K130 0.843 -85 Ne Nd 4
V1 L134 0620 -114 Lf VL_aim 5
V1 K135 0.346 -17.0 RKeqg -hknwg 5
V1 N136 0.698 -129 Nt N-t 5
V1 T138 0.585 —-144 Tn_ -gast 6
V1 N139 0.650 =125 N_t -nist 6
V1 T140 0.531 =120 Tiks_n -alns 6
V1 41 0.522 -132 T-spgn SR-egk 6
V1 141 0.368 -383 -tn N 6
V1 141 0.223 -244 -sktni TAeiv 6
V1 141 0.000 —69.1 -h T 6
V1 141 0.000 -456 - Nads 6
V1 141 0.664 -16.1 -ts Tnsa_ 6
V1 N141 0418 =217 NTs N-tip 6
V1 S142 0.697 =12.1 Ns Nt_i 6
V1 145 0518 -17.3 W-g Snw_
V1 146 0.507 -158 -m Llvg
V1 K151 0.696 -83 E-GRtak GK-gte 6
2 E268 0814 —46 Ekag Edgr 7
Q2 V271 0719 -153 Vi Va 8
(@] V275 0.587 -9.0 Eknvad Esngk 3
V3 K322 0611 =174 DE Eaqg 9
3 1333 0.804 -155 Li Il 10
a3 A336 0.684 =91 TAgvel Aekv 10
a3 K337 0.686 -10.1 EQKntd Kng 10
3 K343 0667 -84 Kasg EQKgnh 1M
a3 A346 0.809 =159 AV \ 11
a3 S347 0.837 =31 TIndesk NKEITr 1
V4 F396 0.578 -164 NT-wf -NG 11
V4 T399 0.604 =109 -vt RT-ans 11
V4 403 0.686 -16.1 -t N-s
V4 A04 0.537 -11.7 -ksr KT-epn
V4 S405 0.661 -154 -Sdl -evs 10
V4 N406 0377 -349 N_t -n 10
V4 N407 0277 -189 N_srk -thn 10
V4 412 0.574 =135 -S N-wde
V4 412 0.689 -116 - -snt
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Table 2 Sequence Harmony results (Continued)

c4 5440 0729 -638 Raks KReg 12

V5 S461 0.650 -14.0 DE-sn -n

V5 A64 0.692 -94 NEK- -rk 13

V5 464 0.557 =152 -nda -Nti 13

gp41 Q621 0.540 -94 Kestardq EMYQNK

#Amino acid numbering based on the HXB2 reference sequence.

bSequence Harmony scores (SH-scores): SH-scores below a cut-off of <0.7 for variable regions and a cut-off of <0.85 for conserved regions are shown.
“The z-scores display the accuracy of a given result; the more negative the z-score the less likely it is that the results was found by chance.
%The ‘consensus string’ shows the residues found in each group on that specific site ordered by frequency were a lower case letter is present less than half the

amount of the most abundant residue (upper case).

€Individuals who developed CrNA.

findividuals who did not develop CrNA.

9Numbers represent the subclusters as defined in Additional file 5: Table S2.

compared to those in the first two clusters. It is also obvi-
ous that some large regions in the protein do not contain
any changes, most notably the CD4BS and the V2. Only
one change is present in the bridging sheet, and also only
one in the V3. The residues identified by SH can be fur-
ther subdivided into thirteen subclusters based on their
proximity to each other (<9 A; Additional file 5: Table S2).

The induction of cross-reactive neutralizing activity does
not correlate with sensitivity to bNAbs

We tested whether the early HIV-1 variants from indi-
viduals who developed CrNA were more sensitive to
neutralization by bNAbs covering all known epitope
clusters (gp120 outer domain: 447-52D, 2G12, PGT121
and PGT126; CD4BS: bl2 and VRCO1; quaternary
epitopes: PG9, PG16 and PGT145; MPER: 4E10 and
2F5). We did not observe that the viral variants of indi-
viduals who developed CrNA were more sensitive to
neutralization by different bNAbs compared to viruses
from individuals who did not develop CrNA (Figure 5).
We also analyzed the neutralization data for each bNAb
per individual and we observed that the neutralization pat-
tern was not dependent on the level of CrNA (Additional
file 6: Table S3). We next tested the sensitivity of these
viruses to three different polyclonal HIVIg pools in which
multiple epitope specificities should be present. Interest-
ingly, early HIV-1 variants of individuals who developed
CrNA showed a trend towards being more sensitive to
neutralization by polyclonal HIVIg compared to early
viruses from individuals who did not develop CrNA
(Figure 5), which could be consistent with them displaying
a more open Env structure. However, this was only statis-
tically significant for one of the three HIVIg pools
(p=0.037).

Discussion

In the Amsterdam Cohort Studies on HIV infection and
AIDS (ACS) of men who have sex with men (MSM)
infected with HIV-1 subtype B, the prevalence of CrNA
at 2—4 years post-SC is around 33% [40,79]. This roughly

corresponds to what has been found in other cohorts
[33,37-39]. In this study we aimed to identify differences
in the properties of early Env proteins in 31 HIV-1
infected individuals in regard to the development of
CrNA. We observed that a short V1 region and a lower
probability of N-linked glycosylation at PNGS correlated
with the development of CrNA later in infection. More
specifically, a lower probability of glycosylation at pos-
ition 332 was associated with the development of CrNA.
However, we note that the studies on the glycosylation
efficiency of NXS/T motifs have been performed with a
non-HIV protein [84] and the probability of glycosylation
is likely to be context dependent. We can, therefore, not
make definitive statements on the actual glycosylation of
individual viruses or groups. Although some of the ob-
served associations were marginally significant, and re-
quire confirmation in independent studies, they are in line
with the hypothesis that HIV-1 Envs from individuals who
develop CrNA have a more open structure, which allows
for increased accessibility of bNAb epitopes, and possibly
more efficient induction of bNAbs. To confirm this
hypothesis we conducted a neutralization assay with early
HIV-1 clonal variants from only the individuals who did
or did not develop CrNA and found that early viruses of
individuals who developed CrNA were indeed more sensi-
tive to neutralization by one polyclonal HIVIg sample (but
not by two other HIVIg samples), although we were not
able to map this to specific bNAb epitopes. We next used
SH for a more detailed analysis of amino acid differences
at specific positions in Env and their role in the induction
of CrNA. This resulted in the identification of 39 Env resi-
dues which differed significantly between the two groups,
based on defined SH-scores and z-scores. These residues
showed a remarkable clustering in V1, C3-V4, and some-
what more diffusely in C1-C2. In addition, a few individual
changes were observed: one in V3, one in C4, three in the
V5, and one in the gp41 ectodomain. Strikingly, we did
not find any residues in the V2 domain, in the CD4BS, or
in the triple layered structure that translates CD4 induced
conformational changes to gp41l [88]. We note that the
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Figure 4 Three dimensional clustering of amino acid positions that differ between individuals that induce CrNA and those that do not.
Side (A) and top (B) views of the Env spike. The structures of three gp120 protomers, including the entire gp120 sequence and modeled as
described in the Methods section, were fitted into the cry-EM density of the virus-associated Env spike [87]. A backbone trace of one protomer is
colored in red and the positions revealed by SH are indicated in yellow space filling in the same protomer. (C, D). Model of gp120 with the same
color-code as in A and B. Various Env subdomains are indicated in black font. Residues identified by SH are labeled in blue. The views are from
the approach of CD4 (C) or rotated by 90° over the y-axis (D). The viral membrane would be at the top and the target membrane at the bottom.

(E, F). Details of the V4 domain and its association with the a2 helix of the C3 domain. The residues identified by SH are indicated in sticks.

differences we found might be specific for individuals
who are infected with HIV-1 subtype B, and should be
reproduced in other non-subtype B cohorts.

Our data revealed an inverse correlation between V1-
length and the development of CrNA. Two previous
studies have looked for Env signatures associated with
the presence of CrNA, but these studies used contem-
poraneous samples for Env analysis and assessment of
neutralization breadth and potency, and it is not likely

that the contemporaneous Envs represent the Envs that
induced the CrNA [89,90]. Nevertheless, in the first
study, involving clade C infected individuals, short V1V2
domains correlated with the presence of CrNA, but the
V1 and V2 were not studied separately [90]. In the sec-
ond study, involving individuals infected with different
clades, short V2 and short V5 regions correlated with
the presence of CrNA in the sera [89]. Again, the caveat
in these studies is that the Env sequences and sera were
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Figure 5 Sensitivity to bNAbs does not correlate with the induction of cross-reactive neutralizing activity. Sensitivity to neutralization by
b12, VRCO1, 447-52D, 2G12, PGT121, PGT126, PGY, PG16, PGT145, 2F5 and 4E10 and polyclonal HIVIg (three different sera pools) of viral variants
obtained from 12 individuals who developed CrNA (grey bars) and 9 individuals who did not develop CrNA (white bars). Median ICs, values per
individual per bNAb or HIVIg as determined by linear regression are used and differences were considered statistically significant when P values
were < 0.05, represented by an asterix. The bNAbs are ordered from left to right according to their epitope cluster.
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derived from the same time point during chronic infection;
therefore it cannot be excluded that the Env characteristics
observed were a consequence rather than a cause of the
CrNA in serum, due to viral escape from the CrNA. In
contrast, we studied the Envs of early viruses (median 5
months post-SC), before the presence of CrNA, and re-
lated the characteristics to the development of CrNA later
in infection. It is arguably more likely that the observed
Env signatures we identified indeed contributed to the
shaping of the CrNA. Although other choices could have
been made in the timing of our sampling, Moore et al.
showed that transmitted/founder viruses raise autologous
neutralization, which triggers the evolution of escape vari-
ants around month 6 (roughly around the same time as
our sampling of env sequences), which in turn induce
CrNA [77].

The SH-analysis confirmed a role for V1, but in addition
to the deletions/insertions (at positions 141, 145 and 146)
identified a number of other amino acid changes in V1
that were associated with the development of CrNA (at
positions 134—140, 142 and 151). It has long been known
that V1 and V2 are not absolutely required for function
[10,91], but that they play an important role in resistance
to antibody neutralization [28,31,92-96]. On a population
level the continuous neutralizing antibody-driven evolu-
tion of V1V2 during the pandemic appears to have
resulted in the elongation and increased glycosylation of
the V1V2 domains [97]. It may therefore not come as a
surprise that short V1 domains, with a specific amino
acid composition, might affect the induction of CrNA.

We note, however, that we found no residues in V2 that
differed between the two groups. This could suggest
that V1 length and composition are more important deter-
mining factors in the induction of CrNA than V2 length
and composition, at least in our study population.

Previous studies indicated that the Envs from transmitted/
founder HIV-1 variants contain fewer PNGS compared to
Envs from viruses in chronic infection [98]. The increase in
number of PNGS coincides with a decreasing sensitivity to
autologous neutralization and is proposed to be driven by
the pressure of neutralizing antibodies [8,22,29,30,32,99].
Furthermore, a reduced prevalence of CrNA in recently
infected individuals compared to historic serum samples
was associated with an increased number of PNGS in early
Env sequences [97], suggesting that an increase in Env
glycosylation over the course of the epidemic results in de-
creased induction of CrNA. Thus, an increased number of
PNGS and a higher level of N-linked glycosylation could
interfere with the induction of bNAbs, as these glycans
may interfere with the binding of the B cell receptor to
protein epitopes on Env. We did not observe a correlation
with the absolute number of PNGS and the later presence
of CrNA. However, we did observe that a lower probability
of glycosylation at the PNGS in early HIV-1 variants was
associated with CrNA presence later in infection. In previ-
ous Env sequence analyses, NXS and NXT PNGS motifs
have always been treated equally, but NXS motifs are two
to three times less likely to be glycosylated than NXT
sequons [82,83,100]. Furthermore, when an NXS motif is
present, the amino acid at the second position (the X)



van den Kerkhof et al. Retrovirology 2013, 10:102
http://www.retrovirology.com/content/10/1/102

becomes highly relevant to determining the probability of
glycosylation [84].

Zooming in on the NXS motif at position 332, the
glycan which is critical for the binding of many known
bNAbs [52,59-62,74] and which was associated with
neutralization escape from early strain-specific anti-
bodies and induction of CrNA [77], we observed a cor-
relation between the amino acid at the second position
and the presence of CrNA in serum later in infection.
Thus, individuals who developed CrNA had significantly
more often an NLS motif at position 332 compared to the
individuals who did not develop CrNA who usually had
an NIS motif. An NLS motif is two to three times less
likely to be glycosylated compared to an NIS motif [84],
implying that a lower chance of glycosylation at position
332 is associated with the development of CrNA. The
probability of glycosylation and how HIV-1 might use this
is unchartered territory and should be considered in
other studies on the role of Env glycosylation in the co-
evolution of the virus and the human immune system.

The association of a lower probability of glycosylation
at position 332 with the induction of CrNA is counterintu-
itive when taking into account that many known bNAbs
target this glycan [52,59-62,74]. There are two possible ex-
planations for this paradox. First, this glycan is not often
targeted in our study population and its absence increases
the accessibility of other bNAD epitopes. Second, it is not
the presence of this glycan per se that facilitates the induc-
tion of bNADs to this site, but the emergence of this site
during infection, possibly by means of escape from Abs
that targeted the surrounding region in the absence of the
glycan. This later scenario was indeed observed in individ-
uals infected with clade C Env [77]. The situation in our
cohort was slightly different because the NXS motif at
position 332 was present in all sequences, only the 2™
position changed over time. Furthermore the absence of
the PNGS at position 332 in transmitted subtype C was
accompanied by the presence of a PNGS at position 334
[77], while we never observed a PNGS motif at position
334 in our sequences. The impact of the PNGS at one of
these two positions, and its relation with subtype specific
transmission and antibody escape and induction, requires
further study in different cohorts.

The SH analysis identified multiple amino acid posi-
tions in the C3 and V4 region that differed significantly
between individuals that did or did not develop CrNA.
Inspection of a quaternary model of the Env spike showed
that many of these positions form two subclusters on the
a2-helix in the C3 region (HXB2 numbering 335-352)
and the V4 loop (Figure 4). One cluster contains 6 resi-
dues: 333 (which may modulate glycosylation at position
332; see above), 336 and 337 from C3, and 405-407 from
V4. The second subcluster involves 5 residues: 343, 346
and 347 from C3, and 396 and 399 from V4. The C3 a2-
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helix interacts intimately with V4 and several of the differ-
ences found between individuals that did or did not
develop CrNA might impact the interaction between the
two subdomains. For example, it has been reported that
interactions between residues 335 and 412, and 337 and
412 play an important role in the interaction of these two
regions through electrostatic interactions [101]. In our SH
analyses, the Env sequences of individuals who developed
CrNA, position 337 is often occupied by a negatively
charged amino acid (E), whereas this position is mostly
positively charged (K) in individuals that did not develop
CrNA. A similar charge reversal is observed for position
343 which interacts with a number of V4 residues. Thus,
changes in electrostatic interactions may influence the
interaction between C3 and V4. Moreover, Kirchherr et al.
identified three amino acid substitutions in the V4 region
(393G, 397G, and 413N) that were associated with greater
neutralization potency and breadth [102]. Positions 393
and 397 are not observed in our SH-analysis but the
neighboring residues, 396, 399 and 400, are. Position 413
is observed in our analysis and is part of a PNGS. Envs as-
sociated with CrNA more frequently had an Asparagine
(N) at position 413. Gnanakaran et al. noted that the C3
a2-helix in clade B viruses is more hydrophobic and
shielded from solvent by the V4 loop and glycosylation,
while this domain is less hydrophobic, more exposed and
more immunogenic in clade C viruses [101,103]. Collect-
ively these findings imply that the way in which the V4
folds over and covers the a2-helix of C3 might affect the
induction of bNAbs [77].

The impact of other residues highlighted by the SH-
analysis is somewhat unclear. Several hits were found in
C1 and C2, including the B-sandwich domain which is
known to interact with gp41 [104]. The two sites identified
by the SH-analysis at positions 461 and 463/464 in V5 are
in close proximity to the CD4BS and might impact its ac-
cessibility. Two other sites which were significantly differ-
ent between the two groups were at position 322 (V3) and
440 (C4). Position 322 is important for coreceptor usage, a
conversion of a negatively charged residue to a positively
charged residue is sufficient to switch a CCR5-using to a
CXCR4-using virus [105,106]. All the sequences we used
were derived from CCR5-using viruses (data not shown),
ruling out any bias caused by differences in coreceptor
usage. Interestingly Rosen et al. showed a very strong co-
variation between residues 322 and 440 that is influenced
by charge [107], pointing at a potential functional electro-
static interaction between these two residues. If and how
these changes contribute to the development of CrNA
remains to be further studied.

We had hypothesized that early HIV-1 variants from
individuals who later developed CrNA might have an in-
creased sensitivity to bNAbs. We used multiple bNAbs
covering four well known target epitopes, namely CD4BS



van den Kerkhof et al. Retrovirology 2013, 10:102
http://www.retrovirology.com/content/10/1/102

(b12 and VRCO1), gp120 outer domain (447-52D, 2G12,
PGT121 and PGT126), quaternary V1V2 (PG9, PG16 and
PGT145) and MPER (2F5 and 4E10). However, we did not
observe a significantly increased sensitivity to neutraliza-
tion by these bNAbs. One could argue that this lack of
correlation is due to the fact that individuals with CrNA
are analyzed as a group without considering the epitope
specificity of their CrNA. Each individual might have
developed different specificities, blurring the results for
individual bNAbs. Sera of 14 of our individuals were
previously analyzed for binding to a panel of gp120 core
proteins and their corresponding CD4BS knockout
mutants and showed the presence of CD4BS directing
Abs [92], but we could not find a correlation between
the binding of CD4BS Abs and neutralization sensitivity
of early clonal virus variants to VRCO01. Another explan-
ation could be that the specificities responsible for
CrNA in our individuals may be different from those of
the monoclonal bNAbs we tested. We did observe dif-
ferences in sensitivity to the polyclonal HIVIg: clonal
viral variants from individuals who developed CrNA
showed a trend towards being more sensitive to HIVIg
might be consistent with a more exposed Env structure.
In summary, we cannot conclude which bNAb epitopes
were immunogenic in our study population.

In a previous study we showed that the kinetics of
CrNA development coincided with the kinetics of the
induction of autologous neutralizing response, which
was directed against viruses isolated early after SC [34].
This suggests that the development of CrNA is driven
by epitopes that are exposed on early viruses [80]. Alter-
natively, CrNA may be induced by early (or slightly
later) HIV-1 variants that have already escaped from the
initial autologous neutralizing response [77]. The latter
observation is consistent with the hypothesis that HIV-1
escape variants selected by autologous NAbs, in turn,
may elicit new NAbs with altered specificities that allow
for broad reactivity [52]. We studied early Env variants
from a relatively wide time span (2 to 14 months after
SC), therefore we cannot rule out or support one of the
above hypotheses.

Currently known bNAbs take years to develop and
show accumulation of many somatic mutations,
suggesting that their development is driven by years of
antigen exposure and possibly reflecting the continuous
co-evolution of HIV-1 and the immune response di-
rected to it [51,52,80,108,109]. This would suggest a
more prominent role for viral evolution and diversity in
the development of bNAbs. Consistent with this,
greater Env diversity early in infection was associated
with greater NAb breadth later in infection in a cohort
of antiretroviral therapy naive Kenyan women that were
mostly infected with subtype A [110]. In our present
study, involving therapy naive, subtype B infected MSM
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from the ACS; we did not observe a correlation between
early Env diversity and the development of CrNA in
serum (data not shown).

Conclusions

In summary, our current results show that sequence and
structural characteristics of Env from early subtype B
HIV-1 viruses may be associated with the development
of CrNA in serum during infection. We observed that
the presence of a short V1 and lower probability of glyco-
sylation, specifically at position 332, were associated with
the induction of CrNA. In addition, a number of amino
acid changes that mostly clustered in V1 and C3-V4 corre-
lated with the development of CrNA. Additional studies
are needed to further clarify the role of these amino acids
in the induction of CrNA, but the determinants for CrNA
induction described here might facilitate the design of
vaccines aimed at inducing bNAbs.

Methods

Individuals and viruses

Samples studied here were derived from participants of
the ACS of MSM who were infected with HIV-1 subtype B.
From all ACS participants, 292 were previously tested for
the presence of CrNA in their sera at 2—4 years post-SC
[79]. Sera were tested for CrNA on a panel of 6 heterol-
ogous viruses from different subtypes [39] and ranked
based on their geometric mean ICs titer and on the num-
ber of viruses from the panel that were neutralized. For the
present study we selected cohort participants for whom the
date of seroconversion was known, who had a follow-up of
at least 4 years, and were therapy naive at the time of
screening for CrNA. Moreover, clonal HIV-1 variants had
to be available. These criteria were fulfilled by 32 individ-
uals who seroconverted between 1984 and 1996 [35,40,79].
One of these individuals was defined as elite neutralizer,
according to the definition of Simek et al. [39] with a geo-
metric mean ICs titer of 782. We excluded this individual
from our study as it is the subject of other follow-up
studies, leaving us with 31 individuals fulfilling our
criteria (Table 1).

Clonal virus variants were previously obtained from co-
cultures of peripheral blood mononuclear cells (PBMCs)
from HIV-1 infected individuals and 3-day phytohem-
agglutinin (PHA) stimulated PBMCs from healthy donors
[111,112]. As virus isolation by coculturing PBMCs from
infected individuals with stimulated healthy donor PBMCs
can result in selection of a variants that are more fit for
replication in PBMCs in vitro, we used a protocol in which
limiting numbers of PBMCs from infected individuals and
stimulated healthy donor PBMCs were mixed in multiple
parallel cultures. This allows for the isolation of multiple
replication competent clonal variants, avoiding the out-
growth and loss of slowly replicating variants [111,112].
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Moreover, to prevent sequence changes during in vitro
culture, the number of passages in PBMCs was kept to a
minimum. This method yields in clonal sequences that are
very similar to sequences derived from single genome
amplification [113]. The ACS are conducted in accordance
with the ethical principles set out in the declaration of
Helsinki, and written consent was obtained prior to data
collection. The study was approved by the Academic
Medical Center Institutional Medical Ethics Committee.

Gp160 sequence analysis

The HIV env genes from proviral-DNA isolated from
PBMCs, that were infected in vitro with a single clonal
HIV-1 variant, were PCR amplified and subsequently
sequenced as described previously [114-116]. Complete
gpl60 sequences could be analyzed for 26 individuals,
whereas only CI1-V5 env sequences could be analyzed
for individuals ACH19566, 19342, 18860, 18839 and
18829 (Table 1). Nucleotide sequences were aligned
using ClustalW in the software package of BioEdit [117],
and edited manually. The reference sequence HXB2 was
included in the alignment to number each aligned resi-
due according to the corresponding position in this ref-
erence. Genetic analyses were performed on gpl60
sequences starting at nucleotide position 91, thereby ex-
cluding the Env signal peptide. The total length of the
gpl60 sequences and the separate regions were calcu-
lated by counting the number of amino acids. The num-
ber of PNGS and number of NXT or NXS motifs were
identified using N-Glycosite [118] at the Los Alamos
HIV database website (http://www.hiv.lanl.gov/content/
sequence/GLYCOSITE/glycosite.html). Sequences with
double PNGS were counted by N-Glycosite as followed:
NNSS as +1 NXS motif, NNTT as +1 NXT sequon, and
NNJTS][ST] as +1 NXT motif. A proline at the second
position (site pattern NP[ST]) is strongly disfavored for
glycosylation and therefore excluded as a PNGS. Net
electrostatic charges of gp160 were calculated by counting
all charged amino acid residues per sequence, where
residues R and K counted as +1, H as +0.293, and D and E
as —1. Intra-individual genetic diversity of the complete
Env sequences generated from the earliest time point were
analyzed for 23 individuals, using the Kimura-2 parameter
model of evolution in the MEGA 4.1 software package
(http://www.megasoftware.net).

Phylogenetic analyses

A Maximum Likelihood (ML) tree was constructed with
complete HIV-1 env gpl60 sequences from 26 individ-
uals with diverse levels of CrNA. The best-fit nucleotide
substitution model (GTR+1+G), selected by hierarchical
likelihood ratio test (hLTRs, Model Test 3.7 [119] was
implemented in the heuristic search for the best ML tree
applying TBR branch-swapping algorithm using PAUP*4.0
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[120], starting with a Neighbor-Joining (NJ) tree construc-
ted under the Hasegawa-Kishino-Yano (HKY85) model
of evolution [121]. The robustness of the NJ phylogeny
was assessed by bootstrap analysis with 1,000 rounds of
replication.

Neutralization assay

Neutralization sensitivity to known bNAbs and poly-
clonal HIVIg pools was tested in a PBMC based assay,
for a minimum of one and a maximum of five clonal
virus variants per individual. PBMCs were isolated from
buffy coats obtained from healthy seronegative blood
donors and cultured as described previously [112]. The
neutralization sensitivity was tested for the twelve indi-
viduals who developed CrNA and the nine individuals
who did not develop CrNA. The individuals who devel-
oped CrNA were included in this group following the
criteria of having a geometric mean ICsq titer > 90 in
serum and the ability to neutralize > 5 viruses from the
panel of six heterologous viruses in a pseudovirus assay
developed by Monogram Biosciences. The panel
consisted of six pseudoviruses with envelope sequences
from primary isolates of HIV-1 subtypes A (94UG103),
B (92BR020 and JRCSEF), C (93IN905 and MGRM-C-026)
and CRFO1_AE (92THO021) [35]. Individuals of whom the
sera had a geometric mean ICs, titer < 45 in serum and
neutralized < 2 viruses from the panel of 6 heterologous
viruses were included in the group that did not develop
CrNA (Table 1). In total eleven broadly reactive neutraliz-
ing monoclonal antibodies (bNAbs) were tested; [gG1 b12
(kindly provided by NIBSC; EVA3065), 2G12, 2F5 and
4E10 (kindly provided by NIBSC; ARP3277, EVA3063,
ARP3239), PG9 and PG16 (AIDS reagent program #12149
and 12150), VRCO1 (AIDS reagent program #12033), 447-
52D (kindly provided by NIBSC; ARP3219)) and PGT121,
PGT126 and PGT145 (kindly provided by IAVI NAC re-
pository); and three pools of polyclonal HIVIg sera: pool 1
(AIDS reagent program #3957 lot. nr. 12-100158), pool 2
(AIDS reagent program #3957 lot. nr. 14—-120074), and
pool 3 (AIDS reagent program #3957 lot. nr. 11-098130;
NABI lot. nr. IHV-50-111 and lot. nr. IHV-250-114 [122]).
HIVIg is a pool of concentrated antibodies from the blood
from HIV-positive asymptomatic persons with high levels
of HIV-1 specific antibodies.

From each virus isolate, a final inoculum of 20 50% tis-
sue culture infective doses (TCID50) was incubated for 1
h at 37°C with each specific monoclonal antibody in three-
fold serial dilution. The starting dilution was 25 pg/ml for
b12, 2G12, 2F5, 4E10 and 447-52D, and 5 pg/ml for PGY,
PG16, VRCO1, PGT121, PGT126 and PGT145. To test the
neutralization sensitivity of the virus clones against HIVIg
a final inoculum of 20 TCID50 was incubated for 1 h at
37°C in threefold serial dilution with a starting dilution of
1500 pg/ml. Subsequently, 10° PHA-stimulated PBMCs,
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derived from healthy blood donors, were added to the
mixture. After incubation with HIVIg an additional wash-
ing step was performed with phosphate-buffered saline
after 4 h of incubation at 37°C. On days 7 and 11, virus
production in culture supernatants was analyzed with a
p24 antigen capture enzyme-linked immunosorbent assay
[123]. The percent neutralization was calculated by deter-
mining the reduction in p24 production in the presence of
the bNAbs or HIVIg compared to the cultures with virus
only. When possible, IC50s were determined by linear
regression. When the analyses required the assignment of
one ICs, value per individual, we took the median of the
ICsq values of the individual virus clones. For calculations,
viruses with ICs, values below the lowest dilution or above
the highest dilution were assigned the lowest or highest
dilution value, respectively.

Statistical analyses

Statistical analyses on the gpl60 sequence and the
neutralization data were performed using Graphpad
Prism v5.01. Differences between sequences (length,
number of PNGS, NXS or NXT motifs and net electro-
static charge) were compared using a Spearman correlation
test, with the geometric mean ICs, titer across the six
heterologous viral panel as the absolute x-value. Differences
and correlations were considered statistically significant
when P values were < 0.05. In cases of normal distribution
of the data we used the unpaired t-test (for example to
compare the mean neutralization titers for the eleven
known bNAbs and polyclonal HIVIg pools between
individuals that did or did not develop CrNA). When
neutralization titers were not distributed normally, a
Mann—Whitney test was performed to compare the two
groups. For each individual, the median ICsy values of
each bNAb or HIVIg were used. Difference in NIS vs.
NLS glycosylation at position 332 and its correlation
with the presence of CrNA was compared using a
Fischer’s exact test.

Multiple sequence alignment for Sequence Harmony

A multiple sequence alignment was performed on 91 Env
sequences from 21 individuals, starting at nucleotide
position 91, which excludes the Env signal peptide, with a
minimum of one and a maximum of eleven sequences per
individual. In total we obtained 58 sequences from twelve
individuals who developed CrNA and 33 sequences from
nine individuals that did not develop CrNA (Table 1). In
order to create a Multiple Sequence Alignment of suffi-
cient consistency in the variable regions, three of the most
widely used tools, Praline, Muscle and Clustal [124-126],
were used with a range of settings (different Pam/Blosum
matrices, different gap open and gap extend penalties) and
evaluated. None gave completely satisfactory results, so
the final alignment was based on Praline with global pre-
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profiling and default settings. The variable regions were
extensively adjusted manually using the Jalview alignment
viewer and editor [126], by optimizing the alighment of
sequence patterns such as the NXS/T glycosylation sites
and guided by the conservation scores reported by Jalview,
which are based on the conservation of physicochemical
properties, without penalizing the introduction or elong-
ation of gaps (Additional file 7: Figure S4).

Comparison of viral sequences with Sequence Harmony
The Sequence Harmony (SH) method ([90] and www.ibi.
vu.nl/programs/segharmwww) was used to analyze amino
acid differences between the env sequences of the twelve
individuals who developed CrNA and the nine individuals
who did not develop CrNA (Table 2). The SH algorithm is
an entropy-based method, which detects positions within
an alignment that display compositional differences in re-
lated protein sequences divided in two groups, and might
therefore be linked to functional differences. In addition,
an empirical Z-score is calculated, reflecting the signifi-
cance of the SH-score obtained based on 100 random shuf-
fling events of the sequences between the two groups. For
details see reference [86] and the online documentation on
the web server (www.ibi.vu.nl/programs/segharmwww). SH
measures the overlap in distribution of amino acid types
between two subgroups (A and B; in this case env se-
quences obtained from individuals who developed CrNA
and individuals who did not) at a certain position (i) in the
sequence alignment as follows:

v
SHAE — 5 2 Jog— 0%
i =Zpi,log P
where pf‘x indicates the observed frequency in group A for
amino acid type x at position i in the sequence, and p%,
analogously for amino acid frequencies observed in
group B sequences. The final SH score is calculated by
SH; = % ( SHY2 + SH?* ). Therefore, an SH score of 0
indicates amino acid positions that are specific for one
of the sequence groups, whereas an SH score of 1 indi-
cates a complete overlap at this amino acid position
between the two groups. In our dataset, the number of
sequences included per individual varies from 1 to 11,
which makes the analysis biased towards individuals
with larger numbers of sequences included. To adjust for
this bias we extended the SH method by including a
weight for each sequence. We assigned a weight w=1/N,
to each sequence as the inverse of the number of se-
quences N, included for individual p. Each individual
will therefore have the same impact on the total score in
each group. Cut-off scores were set as SH<0.7 for the
residues in the variable regions and <0.85 for residues
in the conserved regions, i.e. a less strict selection in the
conserved region to allow also small(er) differences to
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be detected. The lower (negative) the z-score, the less
likely that the results were found by chance.

Structural analysis

SH yielded a list of amino acid differences in Env between
individuals who did developed CrNA and who did not,
but structural analysis informs us on the location of these
positions in the protein structure. A structure of the
complete Env trimer is not available. In order to assist the
inspection of the positions that were different between
the two groups as identified by SH, we built a model
that contained all gp120 domains. We started with the
gp120 structure from 3JWD [104], because it contains
the N- and C-termini of gp120. To this structure we
added the V1V2 loops from 3U4E [64] and using 1GCG
[127] to obtain an overlap with the 3JWD structure; as
well as the V3 and V4 regions from 2B4C [128]. These
structures were overlaid using the ‘super’ and ‘pair_fit’
functions of PyMol (The PyMOL Molecular Graphics
System, Version 1.5.0.4 Schrodinger, LLC). No additional
loop modeling was performed, so the actual conformation
of the V1V2, V3 and the V4 regions as presented should
be considered an arbitrary visualization of the residues
identified by SH. Note that the glycans are absent from
this model. The sites selected by the SH analysis (i.e., the
residues scoring below the cut-off, as described above)
were mapped on the three-dimensional structure of the
resulting model using PyMol.

Availability of supporting data

The sequences supporting the results of this article are
available in the GenBank repository [Genbank: EU743974-
743976; EU743978-743979; HQ6444871-644872; JF910158-
910162; JF910166; JF910176-910178; JF910181-910183;
JF910188-910190, http://www.ncbi.nlm.nih.gov/genbank].

Additional files

Additional file 1: Figure S1. Title of data: Baseline characteristics for
the individuals with non-CrNA, intermediate CrNA and CrNA. Description
of the data: (A) time, in months, between SC and CrNA level measured
by Monogram Biosciences; (B) time, in months, between SC and isolation
of clonal viral variants; (C) CD4" T cells/ul blood at set-point; (D) viral
load, in log10, at set-point. Individuals with non-CrNA, intermediate CrNA
and CrNA in their serum are represented by circles, squares and triangles,
respectively. Each individual is represented by one symbol.

Additional file 2: Figure S2. Title of data: Genetic relationships
between viruses from individuals with diverse levels of CrNA in serum.
Description of data: Complete gp160 sequences derived from 26
individuals with varying levels of CrNA in serum were aligned and a ML
tree was constructed. Individuals with high, intermediate and low CrNA
are indicated in red, blue or green, respectively.

Additional file 3: Table S1. Title of data: Sequence Harmony results
with consensus sequences. Description of data: The Sequence Harmony
(SH) method ([90] and www.ibi.vu.nl/programs/segharmwww) was used
to analyze amino acid differences between the consensus env sequences
of the twelve individuals who developed CrNA and the nine individuals
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who did not develop CrNA, for details see Methods. The SH algorithm is
an entropy-based method, which detects positions within an alignment
that display compositional differences in related protein sequences
divided in two groups, and might therefore be linked to functional
differences. In addition, an empirical Z-score is calculated, reflecting the
significance of the SH-score obtained based on 100 random shuffling
events of the sequences between the two groups. Cut-off scores were
set as SH<0.7 for the residues in the variable regions and <0.85 for
residues in the conserved regions, i.e. a less strict selection in the
conserved region to allow also small(er) differences to be detected. The
lower (negative) the z-score, the less likely that the results were found by
chance.

Additional file 4: Figure S3. Title of data: Multiple sequence alignment
of gp160 sequences from CrNA and non- CrNA individuals used for SH
analysis. Description of data: Multiple sequence alignment of 91
complete gp160 sequences from 21 individuals, starting at nucleotide
position 91, excluding the Env signal peptide, with a minimum of one
and a maximum of eleven sequences per individual. In total 58
sequences from twelve individuals who developed CrNA and 33
sequences from nine individuals that did not develop CrNA, CrNA and
non-CrNA respectively, are depicted.

Additional file 5: Table S2. Title of data: Subclustering of positions
identified by SH. Description of data: Six sites are isolated in the structure
(and sequence) and form a cluster of their own. Three small clusters are
purely sequential. Another sequential cluster (T138, N139, T140, N141,
S142) is not present in any of the crystal structures analyzed, but aligns
with a similar region (T138—T135, N139—1136, N141—N137 in 3U4E)
which makes it cluster with another residue (K151 at 4A). Finally, there
are four other clusters containing sequentially distant residues with on
average slightly more than four residues per cluster. In one case this
clustering is tight, with a distance around 3A, the three other distances
involved are around 6-7A. One of these clusters consists of three
sequential parts and involves one tight and one looser distance. Most
clusters are restricted to within one of the V or C regions, except for the
one that connects C1 and C2, and the two others that bridge C3 and V4.
Almost all residues selected within the V4 region are in close contact
with the a2-helix (336-353) of the C3 region.

Additional file 6: Table S3. Title of data: Median neutralization 1Csq
titer per individual per bNAb. Description of data: Median neutralization
ICs titer of the primary HIV-1 variants from 21 selected individuals to
neutralization by eleven different bNAbs covering the four known
epitope clusters, namely CD4BS (b12 and VRCO1), gp120 outer domain
(447-52D, 2G12, PGT121 and PGT126), quaternary V1V2 (PG9, PG16 and
PGT145) and MPER (2F5 and 4E10), and to the three polyclonal HIVIg
pools. Interestingly, early HIV-1 variants of individuals who developed
CrNA were more sensitive to neutralization by polyclonal HIVIg pool 1
compared to early viruses from individuals who did not develop CrNA
(p = 0.037), although this was found for the other two pools tested.

Additional file 7: Figure S4. Title of data: Correlation of SH-scores and
Z-scores. Description of data: (A) Correlation of the SH scores as found by
Sequence Harmony; (B) Correlation of the Z-scores found by Sequence
Harmony. Each amino acid difference in Env between individuals who
did or did not developed CrNA is represented by one dot. The value on
the x-axis represents scores found when using 91 Env sequences as
described in Materials, and the value on the y-axis represents the scores
found when using the consensus sequences of the 12 individuals who
did and the 9 individuals who did not developed CrNA. Statistical
analyses on the SH-scores and the Z-scores were performed using
Graphpad Prism v5.01. Correlations between the two methods were
compared using a Pearson correlation test. Differences and correlations
were considered statistically significant when P values were < 0.05.
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