
Faivre et al. Retrovirology            (2024) 21:2  
https://doi.org/10.1186/s12977-024-00634-1

REVIEW

The chemokine receptor CCR5: multi-faceted 
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Abstract 

Chemokines are cytokines whose primary role is cellular activation and stimulation of leukocyte migration. They 
perform their various functions by interacting with G protein-coupled cell surface receptors (GPCRs) and are 
involved in the regulation of many biological processes such as apoptosis, proliferation, angiogenesis, hematopoiesis 
or organogenesis. They contribute to the maintenance of the homeostasis of lymphocytes and coordinate the func-
tion of the immune system. However, chemokines and their receptors are sometimes hijacked by some pathogens 
to infect the host organism. For a given chemokine receptor, there is a wide structural, organizational and conforma-
tional diversity. In this review, we describe the evidence for structural variety reported for the chemokine receptor 
CCR5, how this variability can be exploited by HIV-1 to infect its target cells and what therapeutic solutions are cur-
rently being developed to overcome this problem.
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Introduction
Chemokines belong to the cytokine family. Their che-
moattractant properties are at the origin of their name 
(chemoattractant cytokines). They are a family of small, 
soluble 8–14 KDa proteins that exert important functions 
of intercellular communication. All chemokines exert 
their functions by binding to G-protein coupled receptors 
(GPCR) also called chemokine receptors. Chemokines, 
regulate many biological processes such as prolifera-
tion, apoptosis, angiogenesis, hematopoiesis or lymphoid 
organ development, but their main role is to activate 
and control leukocyte migration. Following interaction 

with their specific chemokine ligands, chemokine recep-
tors trigger signaling that initiates a chemotaxis process, 
which traffics the cell to a desired location within the 
organism. These molecules are involved in the main-
tenance of lymphocyte homeostasis under physiologi-
cal conditions and the deregulation of their expression 
is associated to many diseases [1]. Although chemokine 
receptors play a pivotal role in the host’s antimicrobial 
defense mechanisms, they can serve as primary tar-
gets for various pathogens. These pathogens may either 
encode chemokine mimics or, as observed in the context 
of HIV-1, use chemokine receptors to directly infect their 
target cells.

Some pathogens can induce the production of mol-
ecules that bind to receptors with a higher affinity than 
their natural ligands [2–5], others will modify the expres-
sion level of chemokines [6, 7] or of chemokine receptors 
[8]. In all cases, this is an effective way to either evade 
immune selection or, on the opposite, to lead to a del-
eterious burst of the immune system (cytokine storm) 
[9]. This strategy is used by a wide variety of pathogens 
ranging from ticks [10, 11], parasites [12, 13] to bacte-
ria [6, 7, 14] and viruses [15–30]. Among viruses, one 
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can cite as examples Epstein-Barr viruses that encode a 
GPCR (BILF1) capable of forming a dimer with CXCR4 
chemokine receptor thereby inhibiting its signaling but 
also human cytomegalovirus (CMV) that secretes a sol-
uble chemokine receptor (pUL21.5) which binds selec-
tively to the chemokine RANTES with very high affinity, 
blocking the interaction of RANTES with its cellular 
receptors (CCR5). In both cases, viruses interfere with 
cellular signaling processes, reducing the effectiveness of 
the immune response [17]. Such phenomenon has also 
been described for poxviruses such as Respiratory syn-
cytial virus [18], mousepox [19, 20], smallpox [21, 22], 
monkeypox [23] (of which several hundred cases have 
been diagnosed in humans in Europe during the spring 
2022), herpes viruses [24–27] and HIV [28]. This is not 
an exhaustive list and for more details see [29, 30].

In some cases, direct attachment of pathogens to a 
chemokine receptor represents the first step of infec-
tion, the receptor acting as an anchor that allows the 
pathogen to dock to the plasma membrane of its target 
cell before entering into the cell or releasing its contents 
into the cytoplasm. This has for instance been described 
for pathogenic bacteria Staphylococcus aureus (whose 
toxins interacts with CCR5 chemokine receptor) [31], 
for Human Respiratory Syncytial Virus (that binds to 
CX3CR1 chemokine receptor) [32–34] and HIV (that 
uses CCR5 and/or CXCR4 chemokine receptors to attach 
and infect immune cells) [35–38]. In the case of HIV-1, 
the CCR5 chemokine receptor not only acts as an anchor 
for the virus to attach to the cell surface, but also plays 
an active role in the infection process by initiating sign-
aling cascades that mimics the signaling of chemokines 

and promotes infection [28, 39–41]. To be thorough, 
and although it is outside the scope of this review, it is 
interesting to note that the HIV can also bind to other 
receptors such as glycan-binding proteins, so-called lec-
tins, which mediate potent viral transmission to  CD4+ 
T cells known as trans-infection [42]. One can cite DC-
SIGN/CD209 [43], the C-type lectin DC immunorecep-
tor (DCIR) [44], the mannose receptor (MR) or Siglec-1/
CD169 [45].

A very large number of studies have been conducted 
on HIV-1 and have revealed the ability of this virus to 
exploit the wide structural variability (i.e. different con-
formational states) of chemokine receptors to bypass 
the immune system and circumvent some therapeutic 
approaches. It is this last aspect that we aim to discuss 
in this review: how the structural diversity of chemokine 
receptors is exploited by HIV-1 to infect its target cells, 
whether this diversity comes from one person to another, 
from one cell type to another or within the same cell. 
We will here focus mainly on the C-C chemokine recep-
tor type 5, also known as CCR5 and to a lesser extent on 
C-X-C chemokine receptor type 4 (CXCR4).

HIV‑1 infection requires interaction 
with chemokine receptors
The early steps of HIV-1 infection first involve the 
binding of the HIV protein envelope gp120 to the CD4 
receptor (Fig.  1, step 1). This process then requires the 
interaction of gp120 with a chemokine receptor than can 
be either CCR5 or CXCR4 (Fig.  1, step 2). This second 
interaction defines the tropism of the virus infecting the 
cell; viruses that bind to CCR5 are called “R5”, those that 

Fig. 1 Schematic view of the early steps of HIV infection. The HIV envelope (Env), consisting of gp120 and gp41 subunits, first binds to the CD4 
receptor located at the plasma membrane of the infected cell (1). This binding induces a conformational change in gp120 that allows 
the interaction of its V3 loop with a co-receptor (2). The co-receptor can be either CCR5 or CXCR4, defining the tropism of the virus (see main text). 
This second binding induces a new conformational change in gp120 which exposes the fusion peptide of gp41 that anchors its N-terminal domain 
into the plasma membrane of the target cell (3). This initiates a process of fusion that will lead to the release of the viral content into the cytoplasm 
of the infected cell (for more details see [38, 54])
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bind to CXCR4 are called “X4” and those that are able to 
bind to both are known as “R5X4”. R5 viruses are prefer-
entially transmitted [46] and are predominant during the 
chronic phase of infection [47, 48]. Approximately 50% of 
patients with advanced HIV develop X4 virus in addition 
to R5 virus. This usually occurs after several years and is 
associated with a decline in the CD4 + T cell count and a 
rapid progression to a pathologic state [49–53].

The combination of the structural diversity of both 
HIV-1 and CCR5 offers a broad range of possible interac-
tions between these molecules, providing as many oppor-
tunities for infection. On the one hand, the V3 loop of the 
viral protein gp120, which is involved in the binding to 
CCR5 (Fig.  1, step 2) [55, 56], is one of the most varia-
ble sites of HIV-1, with differences of up to 50% between 
isolates [57, 58]. This explains why the number of CCR5 
molecules recognized by different HIV-1 gp120 proteins 
varies differently between various cell types [59]. On the 
other hand, GPCRs have long been depicted as switches 
that can exist in two distinct states: inactive and active. 
Over the past two decades, this vision has considerably 
evolved and it is now well established that the situation 
is far more complex than originally thought. Numerous 
crystallographic and cryo-electron microscopy struc-
tures have revealed that GPCRs can adopt many differ-
ent three-dimensional structures. Ligands or G-proteins 
selectively bind to a subset of these conformations, caus-
ing a population shift and establishing a new equilibrium 
[60–64]. In this way, Urvas and Kellenberger recently 
published a comparative analysis of all chemokine—
chemokine receptor structures uncovering that while 
N termini receptors structures exhibit conserved inter-
action patterns with chemokines, the second extracel-
lular loop exhibits several subfamily-specific features 
[65]. Moreover, these structures are only the tip of the 
iceberg since they represent only static snapshots of the 
most stable states of the proteins when there is a thermal 
equilibrium which leads to oscillations between multiple 
transient conformations [66].

Structural variability of chemokines receptors 
involved in HIV‑1 infection
CCR5 and CXCR4 receptors belong to the GPCR class A 
family. These cell-surface receptors can detect extracellu-
lar molecules and induce an intracellular response. Bind-
ing of signal molecules to the extracellular surface of the 
receptor activates intracellular G proteins which in turn 
act on various effectors mediating intracellular signaling 
effects. These receptors are made up of 7 transmembrane 
helices connected by three extracellular and three intra-
cellular loops and their overall 3D structure can be mod-
ulated by many factors. Importantly, the 3D structure of 

CCR5 and CXCR4 associated with different antagonists 
has been elucidated a decade ago [67, 68].

Post‑translational modifications
A first level of structural differences relates to the modu-
lation of post-translational modifications of receptors. 
Hundreds of post-translational modifications of proteins 
have been reported to date [69]. This diversity leads to a 
structural variety of proteins that will influence their abil-
ity to interact with their ligands but also offer many pos-
sibilities for viruses to adapt to their attachment. Many 
post-translational modifications have been described for 
CCR5 including, o-glycosilation, phosphorylation, sulfa-
tion and palmitoylation (Fig. 2A).

O-glycosylation and Phosphorylation—O-glycosylation 
of CCR5 does not appear to affect the ability of HIV-1 to 
infect cells [70] and there is little data on the impact of 
CCR5 phosphorylation on HIV-1 infection. Phosphoryla-
tion of this receptor appears to be primarily involved in 
internalization and recycling and thus its abundance at 
the surface of the cell (for review, see [71]). However, one 
cannot exclude that it also has an impact on the overall 
structure of the proteins and contributes to their struc-
tural diversity at the surface of the cell.

Sulfation—By contrast, sulfation of tyrosine residues 
3, 10, 14 and 15 of the N-terminal moiety of CCR5 has 
been described to play an important role in the function-
ality of this receptor [72]. In 1999, Farzan and colleagues 
have shown that sulfation of the amino-terminal part of 
CCR5 contributes to the binding of its ligands MIP-1 α 
and MIP-1 β but also to its binding to gp120/CD4 com-
plexes and thus to the ability of HIV-1 to infect cells [73]. 
More recently, using ELISA approaches and performing 
binding experiments on cells expressing CCR5 under 
conditions that modulate their sulfation level, Scurci and 
colleagues have shown that CCR5 sulfation is heteroge-
neous thereby affecting the binding properties of natural 
chemokines and some monoclonal antibodies (mAb 3A9 
only binds to the sulfated peptide while mAb HEK/1/85a 
shows a clear preference for the unsulfated peptide) [74]. 
These authors also suggest that the difference in bind-
ing ability between natural ligands (MIP-1 α, MIP-1 β, 
RANTES/CCL5) and the analogue 5P12-RANTES (an 
HIV entry inhibitor that binds to CCR5) are—at least 
in part—due to the heterogeneity of sulfation on the cell 
surface (other factors, such as the molecular fit of ligands 
with the transmembrane domain of the receptor, can also 
influence their global affinity). This proposal is in agree-
ment with other recent NMR works that have identified 
sulfation combinations that are important for ligand 
binding [75–77]. To a lesser extent this effect is also 
observed with CXCR4, which exists in several different 
forms of sulfation [78].
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Palmitoylation—CCR5 can also be palmitoylated on 
three cysteine residues: C321, C323, and C324, in the 
C-terminal tail of CCR5 [79, 80]. The presence of pal-
mitate groups will affect CCR5 at three levels: on the 
structure of the receptor itself, on its cell distribution 
and on its membrane localization [81, 82]. From a 
strictly structural perspective, the insertion of palmi-
tate into the cytoplasmic leaflet of the plasma mem-
brane profoundly modifies the conformation of the 
cytosolic tail housing the palmitoylated cysteine [83] 
and affect the overall GPCR structure [84–86]. In addi-
tion, such modification has been shown to promote 
coupling to G-receptors [87] and phosphorylation of 
CCR5 [88] leading to a potential increase of structural 
diversity of the receptors. Another important effect of 
palmitoylation lies in its impact on the membrane dis-
tribution of receptors within the cell. Palmitoylation 

of membrane proteins is often required for their cor-
rect folding, which protects them from the degradation 
pathway associated with the endoplasmic reticulum. In 
other words, palmitoylation orchestrates the subcellu-
lar traffic of GPCRs to the plasma membrane. For this 
reason, HIV-1 cannot infect cells in which CCR5 is not 
palmitoylated, because it is not addressed to the plasma 
membrane [79, 89]. The presence of a saturated lipid 
(i.e. palmitate) that inserts into the membrane is known 
to promote protein relocation into liquid-ordered raft 
domains [86, 90, 91]. In this regard, palmitoylation of 
CCR5 is essential for the incorporation of CCR5 into 
the plasma membrane rafts [85] that offers a new lipid 
environment to the proteins inducing some conforma-
tional changes that will be discussed in the following 
section of this manuscript.

Fig. 2 Schematic representation of the factors that can influence the 3D-structure of CCR5 coreceptor. A Post-translational modifications 
(PMTs): sites of O-Glycosylation (Ser6, Thr16, Ser17) [70, 71], sulfation (Tyr3, 10, 14, 15) [73, 75–78], palmitoylation (Cys321, 323 and 324) [79–91] 
and phosphorylation (Ser336, 337, 342 and 349) [235, 236] are represented by colored circles. Factors such as G-protein coupling (B) [28, 60, 
97–103], mutations (C) [126–129, 177, 178], surface density [117–123] and oligomerization [136–149] (D) and membrane surrounding [152–173] (E) 
are also exemplified
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Membrane organization of chemokine receptors
As mentioned before, chemokine receptors present a 
structural diversity linked to their intrinsic chemical 
composition. Beyond this strictly “structural” aspect, the 
receptor surrounding plays an essential role in the modu-
lation of its three-dimensional structure. Among these 
environmental factors, the coupling with G proteins or 
other transmembrane proteins but also the interactions 
with their lipid environment are key elements.

Coupling to G proteins—As indicated by their name, 
GPCRs can be coupled (or not) with different types of 
heterotrimeric G proteins (Fig.  2B). Human genome 
encodes 18 different Gα proteins, 5 Gβ proteins, and 12 
Gγ proteins [92]. CCR5 has been shown to interact with 
several of them: Gαi, Gαq, Gβ and Gγ [28, 93]. This com-
bination of possible interactions not only contributes to 
the structural diversity of CCR5, offering larger possibili-
ties of HIV to bind to the cells, but it also favors infection 
by triggering signal transduction upon HIV binding.

Conformational changes: many authors have studied 
if interactions with G proteins could modify CCR5 con-
formation and affect their ability to interact with HIV-1. 
Certain small molecule inhibitors of CCR5 used as HIV-1 
inhibitors, such as vicriviroc (VVC), maraviroc (MVC) or 
TAK779, act as allosteric modulators that stabilize a con-
formation of CCR5 that the virus does not effectively rec-
ognize, thus preventing its entry [94–96]. Several authors 
have investigated whether the binding of these inhibitors 
was affected by the coupling of CCR5 with G proteins. By 
performing binding assays, they showed that the associa-
tion of the intracellular domains of CCR5 with G proteins 
alters their interactions with the inhibitors, suggesting 
that the association of CCR5 with the signaling machin-
ery induces substantial conformational changes that 
affect the binding of these inhibitors and their ability to 
block HIV-1 entry [97–100]. Similar conclusion were also 
obtained by other studies that used monoclonal antibod-
ies able to identify different CCR5 conformations [101]. 
These proposals were corroborated by cryo-electron 
microscopy structures which showed notable structural 
changes depending on whether CCR5 was coupled to a 
Gαi1 protein or not [102]. This is also in agreement with 
former results obtained on another GPCR receptor, the 
β2-adrenergic receptor, whose coupling with the G pro-
tein is loose and does not stabilize the receptor in a sin-
gle conformation but allows for the existence of distinct 
intermediates [60, 103]. Taken together, these results 
show that whether or not CCR5 is coupled to G proteins 
is a source of conformational diversity.

Signal transduction: binding of HIV-1 gp120 to CCR5 
has been shown to trigger activation of Gαi or Gαq pro-
teins. This results in the modulation of many important 
cellular functions, including cell migration, adhesion, or 

survival [104–112]. Additionally, it is noteworthy that the 
interaction between the viral envelope and CCR5 can also 
trigger a response via β-arrestins. Initially considered for 
their role in receptor desensitization, β-arrestins are now 
recognized as versatile scaffolds interacting with various 
signaling proteins, including MAPKs, PI3K, and protein 
kinase B [113]. The activated signaling pathways will ulti-
mately impact the cell susceptibility to HIV infection. For 
instance, it has been demonstrated that exposure to viral 
gp120 can initiate viral replication in cultures of resting 
CD4 T cells from infected individuals [114]. These find-
ings suggest that virus-hijacked signaling process may 
subsequently facilitate pathogenesis. More details of 
these processes can be found in reviews by Wu and Yoder 
[28], Nickolof-Bybel et al. [40] and Juno and Fowke [115].

The intricate interplay between the G proteins, the 
CCR5 receptor and its binding to the HIV envelope pro-
tein underscores the complexity of understanding the 
exact role of each in HIV infection. The ability of the virus 
to infect its target cells depends not only on its ability to 
bind to the receptor, but also on its ability to trigger a cel-
lular response that promotes its spread. Therefore, eluci-
dating not only the ability of the virus to bind to CCR5, 
but also the signaling pathways it induces in conjunction 
with these structural changes could open the door to the 
discovery of innovative antiretroviral agents.

Receptors surface density—HIV-1 infection involves lat-
eral organization of the receptors as it requires the bind-
ing of trimers of the virus envelope glycoprotein to host 
cell receptors leading to membrane fusion. Numerous 
studies have shown that effective infection can only occur 
if several of these trimers are simultaneously involved in 
the process [116]. As a consequence, the density of recep-
tors present at the surface of the cells will have a direct 
impact on the capacity of the viruses to infect them 
[117–121] (Fig.  2D). For example, by quantifying CCR5 
expression in acutely HIV-infected subjects over a 2 year 
period, it was shown by Yang et  al. that high levels of 
CCR5 on CD4 central memory cells are associated with 
rapid disease progression [122]. Conversely, in elite con-
trollers (individuals who spontaneously control HIV-1 
replication in the absence of antiretroviral therapy), the 
analysis of the surface phenotype and transcriptional 
profile of CD4 + T cells has revealed low CCR5 expres-
sion, leading to the conclusion that low CCR5 expression 
protects the cells from HIV-1 infection [123]. Finally, it 
has been shown that some mutations induce a decrease 
for CCR5 addressed to the plasma membrane, confer-
ring to individuals an almost total resistance to HIV-1 
infection. This is the case for truncated CCR5 due to 
the delta 24 mutation [124, 125] and the delta 32 muta-
tion [126–129] (Fig.  2C) that are known to impact the 
localization of CCR5. This will be developed in the next 
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chapter. Various studies have then investigated the mini-
mum number of receptors required for infection. Infec-
tivity assays performed on HeLa cells in which individual 
clones express either large or small amounts of CD4 and 
distinct amounts of CCR5 have shown that the minimum 
amount of CCR5 allowing infection is dependent on the 
quantity of CD4 in the membrane and vary from 1.103 to 
1.104 CCR5 per cell [119]. Furthermore, approximately 
four to six CCR5s assemble around the virus to form a 
complex needed for infection [130]. Since the efficiency 
of infection depends on both CD4 and CCR5 concentra-
tions rather than on precise amounts of each, the authors 
have proposed that this efficiency also depends on the 
diffusion of these proteins within the membrane and 
on their ability to encounter each other to form virus-
CD4-CCR5 ternary complexes [37]. This was later on 
evidenced by Baker et al. who measured the dynamics of 
CD4 and CCR5 by FRAP and revealed the existence of 
membrane domains that concentrate CD4 and CCR5 in a 
1:5 ratio [131]. Finally yet importantly, it appears that the 
levels and expression profile of CCR5 can influence the 
tropism of virus strains for different cell types [132–134] 
and correlates with the appearance of viral reservoirs 
[135].

Oligomerization of receptors—Many GPCRs are able 
to interact with each other to form higher-order struc-
tures (homomers and/or heteromers) (Fig. 2D) that can, 
upon allosteric modulation, exhibit distinct biochemical 
properties from monomers [136–139]. Both CCR5 and 
CXCR4 have been shown to form many different homo 
and heteromers whose exhaustive lists can be found in 
[140] (Table  1) and [141] (Table  1). Many studies have 
used Bioluminescence or Fluorescence Energy Trans-
fer (BRET and FRET, respectively) to detect oligom-
ers formation. These methods are based on the fact that 
light energy can only be transferred from a donor to an 
acceptor if these molecules are less than 10  nm apart. 
By using these experimental approaches, it has first 
been shown that CCR5 constitutively forms homodi-
mers at the surface of T-lymphocytes [142]. Thereafter, 
similar fluorescence measurements combined with the 
use of monoclonal antibodies that recognize different 
epitopes of CCR5 allowed to establish that CCR5 oli-
gomers are structurally different from monomers and 
that HIV-1 preferentially recognize the monomeric form 
of the receptor [143]. Similar results have been obtained 
by dynamic approaches consisting in tracking and clas-
sifying the motion of different receptor subpopulations 
[144, 145]. Further studies finally provided evidence of 
three distinct CCR5 dimeric organizations [146]. On 
the same principle, the formation of CCR5-CCR2b het-
eromers has been evidenced and binding experiments 
revealed that the interaction between heterodimer units 

is of allosteric nature and modifies the binding properties 
of chemokines [147, 148]. Interestingly, oligomerization 
of CCR5/CD4/CXCR4 receptors has also been reported 
in the literature. This association has been shown to pre-
vent X4 HIV-1 virus from binding to target cells [149]. 
Overall, these data support the view that oligomeriza-
tion of chemokine receptors affects their structure and 
may influence the susceptibility of cells to infection. The 
development of super-resolution fluorescence methods, 
such as Stochastic Optical Reconstruction Microscopy 
(STORM) or Photo-Activation Localization Microscopy 
(PALM) has permitted direct visualization of GPCRs 
such as mu-opioid receptor [150] and dopamine recep-
tor [151] at the single-molecule level, unveiling that their 
oligomers are transitory structures with rapid association 
and dissociation kinetics. This opens the gate to future 
experiment carried out on CCR5 and CXCR4 to decipher 
their mechanism of oligomerization and its role in HIV-1 
infection.

Lipid surrounding—Finally, it has long been known 
that the lipid membrane has an impact on the structur-
ing of membrane proteins [152, 153] (Fig.  2E), this is 
particularly true for GPCRs [154–156], including CCR5 
and CXCR4 [157–160]. For example, it has recently been 
reported that ceramide or related sphingolipids might 
invert the topology of CCR5, preventing macrophages 
from migrating toward CCL5 [161] and similar results 
were obtained with CXCR4 and the CXCL12 chemokine 
[160]. Concurrently, Calmet et  al. have reconstituted 
CCR5 receptors into model membranes of controlled 
lipid composition and demonstrated that cholesterol 
decreases the binding affinity of maraviroc to CCR5 
[157]. Molecular dynamics simulation further suggested 
that cholesterol restricts the structural dynamics of 
the receptor [157]. It is interesting to notice that sphin-
golipids and cholesterol are key components involved 
in the formation of lipid rafts [162, 163]. Actually, a lot 
of work has been done to understand the contribution 
of lipid rafts in the organization of HIV-1 receptors and 
in the infection process [164]. Indeed, extensive studies 
conducted in the late 1990s have shown that the CD4 
receptor is clearly associated with rafts [165–167]. Sub-
sequently, other studies based on raft extraction and pro-
tein analysis have shown that CCR5 is mainly associated 
with lipid rafts [168] while CXCR4 is only partially local-
ized into them [168–170]. Moreover, the use of confor-
mational antibodies has revealed that rafts stabilize the 
active conformation of CCR5 towards its ligands [171]. 
Lastly, Yang and colleagues have used model systems 
mimicking HIV-1 envelopes and T-cell membranes to 
demonstrate that the hydrophobic mismatch at bound-
aries between liquid-ordered and liquid-disordered 
regions (i.e. lipid raft and non-raft regions) generates 
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a line tension that can facilitate membrane fusion with 
the virus envelope [172, 173]. Taken together, these data 
suggest that lipid rafts may act as platforms that facili-
tate virus entry both by fostering local concentrations of 
receptors and/or co-receptors and by modulating their 
conformation.

Genetic mutation of chemokine receptors is double‑edged 
sword for HIV‑1
In this review, we have discussed the beneficial effects 
that heterogeneity in chemokine receptor structure 
could have on HIV-1 infection. Nevertheless, this vari-
ability can, in some rare cases, be detrimental for viruses. 
Indeed, it has been found in the 90’s that about 1% of 
the Caucasian human population carries a homozy-
gous 32 base pair deletion in the gene encoding for the 
CCR5 receptor, resulting in a truncated gene that pro-
duces non-functional receptors named CCR5 delta-32 
[127, 132, 174]. This mutation, discovered in a group of 
homozygous patients known as "exposed uninfected", 
confers resistance to infection. It has been shown that the 
protein CCR5 delta-32 remains mostly localized in the 
endoplasmic reticulum where it exerts a trans-dominant 
negative effect on the wild type CCR5 protein, prevent-
ing its transport to the cell surface [175]. Furthermore, 
it forms dimers with the CXCR4 proteins in the ER, 
which also limits their distribution to the plasma mem-
brane [176]. As a consequence, both CCR5 and CXCR4 
are absent from the plasma membrane conferring to the 
cells a resistance to R5, X4 and R5X4 viruses [126–129]. 
This observation has been exploited to initially cure two 
patients who became famous and known as " Berlin 
patient" [177] and " London patient " [178]. Both of them 
have received allogeneic hematopoietic stem cell trans-
plantation from donors with a homozygous CCR5 delta-
32 mutation to cure a leukemia [179]. More recently, 
three other patients have been cured using the same 
strategy, one at Weill Cornell hospital of New York in the 
frame of IMPAACT P1107 clinical trial (NCT02140944) 
[180], a second one at the City of Hope cancer institute 
in Los Angeles as revealed by Jana Dickter during the 
AIDS 2022 press conference and a third one in Düssel-
dorf in 2023 [181]. At this stage, it should be stressed that 
we cannot exclude the possibility that additional factors, 
such as the transplant procedure itself, may have played a 
role in these results.

Although large-scale therapy based on this strategy is 
not feasible, these results demonstrate that CCR5 is a 
suitable target for HIV-1 gene therapy. It should be noted 
that such a treatment could potentially influence other 
medical conditions. For instance, it has been suggested 
that the CCR5-delta32 mutation might contribute to pro-
longed kidney transplant survival [182]. Conversely, it 

has also been proposed that this mutation could increase 
susceptibility to neuroinvasive West Nile virus infections 
[183].

Targeting CCR5 to fight the virus
In the last decades, three main strategies targeting 
CCR5 have mainly been developed to block HIV infec-
tion: the use of CCR5 ligands, the use of antibodies and, 
more recently, editing the genome in order to eradicate 
CCR5 from the cell surface or modify its structure. It is 
important to highlight that the first two strategies can 
take advantage of the structural diversity of CCR5 by 
specifically targeting the subset of receptors implicated 
in HIV-1 infection. This targeted approach may help to 
minimize the adverse effects of drugs. In the light of the 
structural variabilities of CCR5 discussed above, we will 
now discuss the potential of each of these strategies.

Development of CCR5 ligands—This strategy aims to 
develop molecules that will bind to CCR5 and prevent 
the interaction between CCR5 and the gp120 HIV pro-
tein thereby aborting HIV entry mediated by fusion and 
infection. Up today, many molecules have been produced 
such as Tak-779 [96], cenicriviroc [184], CMPD-167 
[185], Aplaviroc [186], vicriviroc [94] or maraviroc [95] 
(for a detailed review see [187, 188]). Despite the large 
number of molecules developed and clinical trials car-
ried out, only maraviroc has been approved for use in 
HIV treatment in 2007 [189]. It remains the only CCR5 
inhibitor in clinical use to date. It is an inverse CCR5 ago-
nist that impairs HIV envelope binding to CCR5 through 
a noncompetitive and allosteric modulation [67, 95, 98, 
190].

However, nine CCR5 mutations have been identified as 
inducing a decrease of the affinity for maraviroc (up to 
tenfold) [191]. It should be noted that, with one excep-
tion, all these mutations also modify gp120 binding and 
are therefore less detrimental in terms of protection 
against viral infection. The use of maraviroc can cause a 
tropism switch to X4 strains although this is a very rare 
event in the absence of pre-existing X4 strains. This drug 
cannot be used in the presence of X4 strains, as a result, it 
requires a viral tropism test before use. Part of the prob-
lem of its use also arises from the possible emergence of 
virus variants that recognize the maraviroc-CCR5 com-
plex, as well as free CCR5 [192–194].

Development of anti-CCR5 antibodies—Various 
attempts have been made to develop antibodies that 
prevent HIV infection [195–197]. These antibodies are 
designed not only to bind to CCR5 and prevent its inter-
action with the viral protein gp120, but also to trigger 
the internalization of the co-receptor [198]. Only two 
antibodies reached clinical trials: CCR5mAb004 [188], 
that have been withdrawn in 2006, and Leronlimab 
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[196] (formerly PRO 140), for which many clinical trials 
have been completed (NCT02175680, NCT00110591, 
NCT02483078, NCT00613379, NCT00642707) or 
are still running (NCT03902522, NCT02859961, 
NCT02355184, NCT02990858, NCT05271370). This 
antibody has not yet been granted approval by the Food 
and Drug Administration, but has been designated fast-
track status in 2019 [199]. Leronimab is a humanized 
monoclonal IgG4 antibody that targets the extracellu-
lar domain 2 of CCR5, and impairs its interaction with 
HIV-1 gp120 preventing virus entry. Subcutaneous 
administration of this antibody to HIV-1-infected indi-
viduals significantly reduced their viral load between 
successive injections [200]. When administered intra-
venously to HIV-1 infected adult subjects, it has also 
showed potent and long-lived antiviral activity [201]. The 
only downside is that Leronimab does not recognize all 
CCR5 proteins since receptor occupancy was around 
85% [201] meaning that 15% of CCR5 receptors poten-
tially escape to the antibody and might participate to 
the emergence of resistant HIV-1 strains. Their use also 
raises pharmacokinetic issues. Because they are pro-
teins, they cannot be absorbed from the gastrointestinal 
tract and must be administered parenterally. A final issue 
arises from the fact that the use of anti-CCR5 antibodies 
can lead to a shift in tropism towards CXCR4 [202].

CCR5 gene editing—Recent advances in genome edit-
ing offers unprecedented possibilities for gene therapy, 
as it is now possible to replace one or more bases in any 
gene of interest, at any location [203, 204]. The CRISPR/
Cas9 system or the use of zinc finger nucleases (ZFN) 
are methods of choice for such gene editing [205, 206]. 
These tools can be very useful to fight against HIV infec-
tion. The experimental strategy consists in extracting 
hematopoietic stem cells from patients, suppressing 
CCR5 expression in these cells thanks to an appropriate 
treatment (i.e. CRISPR/Cas9 or ZFN) before reinject-
ing them. The treated cells, newly resistant to infection, 
should then be able to proliferate and substitute cells sen-
sitive to HIV-1. Several attempts have been performed in 
the frame of clinical trials such as NCT03164135 (CCR5 
depletion thanks to CRIPR/CAS9), NCT03666871 and 
NCT02388594 (CCR5 depletion thanks to ZFN). These 
experiments have been shown to produce in vitro HIV-1 
resistance which constitutes an encouraging proof of 
concept for HIV cure [207–211]. Despite these successes 
for CCR5 ablation, low genome-editing frequencies [212] 
and high off-target activity[213] have been observed. 
Therefore, genome-editing techniques still need to be 
improved before they can be used on a mass scale. Fur-
thermore, since CCR5 deletion alone has no impact on 
infection by X4-tropic viruses, some authors have per-
formed a double knockout (KO) CCR5 + CXCR4 [214]. 

Unfortunately, a poor engraftment of the R5X4-CRISPR-
Cas9 KO CD4 + T cells in mice bone marrow has been 
obtained.

Another promising approach consists in taking advan-
tage of the delta-32 mutation described earlier. This time, 
the strategy consists in modifying CCR5 gene (and not 
suppress it) in order to express the delta-32 truncated 
CCR5 protein. We have seen that this mutation sup-
presses the expression of CCR5 and CXCR4 at the cell 
surface, thus protecting them from R5- and X4-tropic 
viruses. This also present the advantage to target one 
gene instead of two and the risk of adverse side-effects 
seems limited insofar as this mutation has been observed 
naturally on thousands of people who do not seem to 
present any deleterious effects. Using this method, Ye 
et al. [215] and Qi et al. [216] succeeded to render cells 
resistant to HIV-1 infection whatever the tropism of the 
virus. Again unfortunately, the successful rate was low 
(20% on Jurkat cells and 11% in primary CD4 + cells) 
[216] so the protocols still need to be improved. Unlike 
the other approaches discussed in this chapter, CCR5 
delta 32 editing overcomes the structural variability of 
CCR5 described in this manuscript. As such, this strategy 
appears to be a very promising approach for eradicating 
HIV by targeting CCR5.

Conclusion
The more varied the receptor structure, the more diffi-
cult it is to block them all, and the more opportunities 
viruses will have to bind to them to infect cells [123, 217]. 
The factors that can modulate the conformation and the 
organization of receptors involved in HIV-1 infection are 
numerous: post-translational modifications, expression 
level, coupling to G proteins, oligomerization or muta-
tion of CCR5 and lipid environment (Fig. 2). These fac-
tors can be interdependent which further complicates 
their possible structural combinations (for instance, pal-
mitoylation promotes the localization of CCR5 into the 
lipid rafts domains, which will then promote their inter-
action with the G proteins that are also concentrated 
there). All these parameters can vary within the same cell 
[98, 218–223], from one cell type to another [99, 224–
226] and, by extent, from one patient to another. The 
combination of these factors leads to an infinite number 
of intermediate conformations which will present dif-
ferent affinities for their natural substrates but also for 
HIV-1 receptors [67, 99, 100, 221, 227–230], themselves 
presenting a very large structural variety [59, 231–233]. 
This tremendous diversity explains the difficulties 
encountered over the past 30  years in the fight against 
AIDS. Considerable advances have been made and HIV 
infection is now well controlled by antiretroviral therapy 
(ART) and patients can live almost normally as long as 
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they have access to these treatments and adhere strictly 
to the medication instructions. Nevertheless, these treat-
ments do not block viral entry and they are not without 
risk since they can induce numerous side effects such 
as central nervous system disorders, bone defects, car-
diovascular, hepatic or renal risks [234]. In addition, the 
treatments options remain limited for some patients with 
multiclass resistance and must be taken for life as they 
do not target the integrated proviral genome and fail to 
eradicate the virus in so called viral reservoirs. From this 
point of view, recent advances in genome editing offer 
encouraging prospects not only for blocking viral entry 
by modifying CCR5, but also for excising HIV sequences 
integrated into the genome [204]. One can hope that the 
combination of all these new therapeutic approaches will 
bring us closer to the development of an effective antivi-
ral treatment against HIV that will be affordable for the 
broadest possible populations.
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