CORRECTION

Correction to: DNA topoisomerase 1 represses HIV-1 promoter activity through its interaction with a guanine quadruplex present in the LTR sequence

María José Lista^{1,7}, AnneCaroline Jousset^{1,8}, Mingpan Cheng^{2,9}, Violaine SaintAndré³, Elouan Perrot⁴, Melissa Rodrigues⁴, Carmelo Di Primo², Danielle Gadelle⁵, Elenia Toccafondi^{1,8}, Emmanuel Segeral¹, Clarisse BerliozTorrent¹, Stéphane Emiliani¹, JeanLouis Mergny^{2,6} and Marc Lavigne^{1,4*}

Following publication of the original article [1], we have been informed that Fig. 6 has been superimposed on itself during Production and after author proofing, therefore rendering it illegible. Figure 6 has now been replaced.

Published online: 11 July 2023

The online version of the original article can be found at https://doi. org/10.1186/s12977-023-00625-8

*Correspondence:

Marc Lavigne

marc.lavigne@pasteur.fr

¹Institut Cochin, INSERM, Université Paris Cité, CNRS, Paris F-75014, France ²CNRS UMR 5320, INSERM U1212, ARNA, Univ. Bordeaux, IECB,

Bordeaux 33000, France

³Institut Pasteur, Bioinformatics and Biostatistics Hub, Université Paris Cité, Paris 75015, France

⁴Institut Pasteur, Departement of Virology, Université Paris Cité, Paris 75015. France

⁵Institut de Biologie Integrative de la Cellule, CNRS, Université Paris-Saclay, Cedex 91198, Gif Sur Yvette, France

⁶Laboratoire d'Optique et Biosciences, Ecole Polytech nique, CNRS,

INSERM, Institut Polytechnique de Paris, Palaiseau 91120, France ⁷Department of Infectious Diseases, School of Immunology and Microbial

Sciences, King's College London, London, UK ⁸Université de Strasbourg, CNRS UPR 9002, Architecture et réactivité de

l'ARN, Strasbourg 67000, France

⁹School of Engineering, China Pharmaceutical University, Nanjing 211198, China

© The Author(s) 2023. **Open Access** This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

References

1. Lista, et al. Retrovirology. 2023;20:10. https://doi.org/10.1186/ s12977-023-00625-8.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

