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A large population sample of African 
HIV genomes from the 1980s reveals 
a reduction in subtype D over time associated 
with propensity for CXCR4 tropism
Heather E. Grant1*, Sunando Roy2, Rachel Williams3, Helena Tutill2, Bridget Ferns4, Patricia A. Cane6, 
J. Wilson Carswell7, Deogratius Ssemwanga5, Pontiano Kaleebu5, Judith Breuer2 and Andrew J.    Leigh Brown1 

Abstract 

We present 109 near full-length HIV genomes amplified from blood serum samples obtained during early 1986 from 
across Uganda, which to our knowledge is the earliest and largest population sample from the initial phase of the HIV 
epidemic in Africa. Consensus sequences were made from paired-end Illumina reads with a target-capture approach 
to amplify HIV material following poor success with standard approaches. In comparisons with a smaller ‘intermediate’ 
genome dataset from 1998 to 1999 and a ‘modern’ genome dataset from 2007 to 2016, the proportion of subtype D 
was significantly higher initially, dropping from 67% (73/109), to 57% (26/46) to 17% (82/465) respectively (p < 0.0001). 
Subtype D has previously been shown to have a faster rate of disease progression than other subtypes in East African 
population studies, and to have a higher propensity to use the CXCR4 co-receptor (“X4 tropism”); associated with a 
decrease in time to AIDS. Here we find significant differences in predicted tropism between A1 and D subtypes in 
all three sample periods considered, which is particularly striking the 1986 sample: 66% (53/80) of subtype D env 
sequences were predicted to be X4 tropic compared with none of the 24 subtype A1. We also analysed the frequency 
of subtype in the envelope region of inter-subtype recombinants, and found that subtype A1 is over-represented in 
env, suggesting recombination and selection have acted to remove subtype D env from circulation. The reduction 
of subtype D frequency over three decades therefore appears to be a result of selective pressure against X4 tropism 
and its higher virulence. Lastly, we find a subtype D specific codon deletion at position 24 of the V3 loop, which may 
explain the higher propensity for subtype D to utilise X4 tropism.
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Introduction
The main (M) group of HIV-1 viruses that cause AIDS 
can be categorised into distinct lineages or “subtypes” 
[64]. Evidence points to the epicentre of the HIV pan-
demic being Kinshasa [66] in the early part of the twen-
tieth century [24], and it largely remained within the 

Democratic Republic of Congo for many decades, 
undergoing substantial recombination [40, 78]. Strong 
genetic bottlenecks created geographically [25] and phy-
logenetically distinct subtypes by the 1960s [80] which 
subsequently spread throughout Africa and into new sus-
ceptible populations across the rest of the world. Today 
we see this footprint in the global subtype distribution 
which varies considerably across different countries and 
risk groups [8].
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There has been much speculation and interest in the 
possibility of phenotypic differences between subtypes 
(see review by [28] that may have contributed to any 
one subtype’s relative success over another [23]. Disen-
tangling the relative roles of genetic drift and selective 
adaptation in HIV lineages amongst hosts is difficult, 
not least because HIV transmission is heterogeneous, 
and some lineages may simply be amplified into bottle-
necks by chance [62]. Furthermore, subtype comparisons 
are confounded by differences in mode of transmission 
(e.g. subtype B in men who have sex with men, [14], and 
viral characteristics that might be under selection, such 
as infectivity or virulence, are confounded by a range of 
factors, including host genetics, (particularly HLA types, 
[41]). Subtype comparisons within the same country, 
population, or cohort are therefore strengthened by the 
reduction of these factors [48]. In Uganda subtypes A1 
and D have been co-circulating at high frequencies for 
many decades [82], in both general population cohorts 
[70] and high risk communities [6, 68], providing a rare 
opportunity to compare their impact directly.

Co-receptor tropism (the secondary receptor used 
alongside CD4) can be distinguished in cell-culture 
where “fast replicating” syncytium inducing (SI) viruses 
use CXCR4 (X4 tropic), and “slow” non syncytium induc-
ing (NSI) viruses use CCR5 (R5 tropic) [16]. Fast replicat-
ing X4 viruses have long been associated with faster CD4 
decline [45], and the risk of AIDS progression could be as 
much as 3.8 × higher [18], which in real terms translates 
to multiple years of additional lost life. Comparisons of 
R5 and X4 viruses at the V3 loop where tropism is largely 
determined (but not exclusively e.g. [73], indicate that 
positive amino acid charges at positions 11 and 25 are 
strongly predictive of X4 tropism (the ‘11/25 rule’; [79]). 
Currently, more sophisticated machine learning mod-
els are used to predict co-receptor tropism based on V3 
amino acid training data (e.g., geno2pheno, [67]).

Subtype D has been shown consistently to progress to 
AIDS faster compared with other subtypes [10, 21, 37, 38, 
42, 43, 69, 76]. It has also been reported that subtype D 
viruses are more likely to use CXCR4 co-receptors [36, 
39, 74, 77], and that individuals infected with subtype D 
reach higher viral loads more rapidly [2].

HIV sequencing is important for use in detecting 
drug resistant mutations, but can also provide insights 
about epidemic size and diversity e.g. [70] or move-
ment between key populations by phylogenetic analy-
sis e.g. [6, 44]. Sequencing in East Africa up until 2013 
had been limited mostly to consensus Sanger sequences 
of partial gene sequences of p24 or gp41  [49], with very 
little genome sequence data from the twentieth century, 
although partial pol sequencing has recently become 
more common since the roll out of antiretroviral therapy. 

The PANGEA project [59] aimed to rectify this for the 
twenty-first century and has obtained large datasets of 
near full-length sequences from Africa to provide more 
detailed phylogenetic information [82].

Samples from serological surveys conducted in early 
1986 from hospitals and antenatal clinics in Uganda were 
re-discovered in storage in 2013 during the relocation 
of what were then the Public Health England laborato-
ries at Porton Down. Standard clinical pol sequencing 
[11] was attempted with some limited success [82], and 
amplification and sequencing success with the PAN-
GEA protocol was also limited (unpublished) due to the 
age of the samples. To overcome barriers in the face of 
considerable RNA degradation, we used target-capture 
techniques with baits designed to capture a wide vari-
ety of HIV-1M to recover 109 new near full-length and 
37 partial genomes. This is a unique population dataset 
from the early African epidemic, shortly after AIDS was 
discovered from a decade where few HIV genomes are 
available, particularly from Africa.

Methods
Sample preparation
Serum samples were collected from across Uganda 
between January and May 1986, including as part of a 
serological survey of HIV prevalence in different popu-
lations [13]. Samples were sent to Porton Down in the 
UK for antibody testing in 1986 and were subsequently 
stored there at − 80 °C. After their rediscovery they were 
passed to the PANGEA project in 2013.

In the current work, 168 HIV positive samples which 
had been identified by ELISA were RNA extracted 
with the QIAamp viral RNA mini kit (Qiagen). A tar-
get-capture approach [20] developed for samples with 
low concentrations or degraded RNA virus genomes 
was adopted. Thus 120 base pair capture baits were 
designed with an in-house pipeline to target the whole 
HIV genome, using 2635 reference genomes covering 
global subtype and CRF diversity (baits licensed to Agi-
lent no. 5191-6709, SureSelectXT CD Pan HIV1). cDNA 
libraries were constructed with SuperScript IV Reverse 
Transcriptase (Invitrogen) followed by NEB Second 
Strand cDNA Synthesis before using the SureSelectXT 
Target Enrichment System for Illumina Paired-End Mul-
tiplexed Sequencing Library. This included a pre-capture 
PCR step during library preparation; followed by bait 
hybridization and a capture step with streptavidin beads 
to enrich for HIV fragments; and a post-capture index-
ing PCR. Paired end sequencing was carried out with the 
Illumina MiSeq v2 500 cycle kit.
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Sequence assembly
Trimming, adapter removal, and quality checking of 
reads was performed with TrimGalore, cutadapt and 
FastQC [3, 47, 53], using a minimum Phred score of 
30. Mapping to reference genomes was done with the 
Burrow-Wheeler Aligner MEM algorithm [52] and the 
samtools and bcftools libraries [19], firstly to 170 refer-
ence genomes (encompassing a wide range of subtype 
and CRF diversity) to identify the best genotype, and 
then to the best reference for a single reference assembly. 
A visual assessment in Geneious Prime 2022.0.1 (www. 
genei ous. com) was carried out to check for good cover-
age across the genome, or any dips that might indicate 
an inter-subtype recombinant sequence. If this was the 
case, the multi-reference BAM files were examined, or 
an alternative de-novo assembly with HAPHPIPE and 
SPAdes was attempted [5, 29]. Either the single reference 
assembly (or de-novo assembly if improvement could be 
found) was then fed into the HAPHPIPE framework for 
fine tuning with three rounds of iterative improvement. 
Coverage statistics and vcf files were produced for each 
and finally a consensus sequence with a minimum of 
10 × coverage at every base pair position was generated 
using GATK [54] within HAPHPIPE.

‘Intermediate’ and ‘modern’ datasets
In addition to the newly generated ‘historical’ dataset, 
a collection (n = 46) of genomes from the Rakai district 
(Uganda) in 1998 and 1999 provided an ‘intermedi-
ate set’ [34], whilst a ‘contemporary set’ was taken from 
the MRC/UVRI PANGEA genome collection (n = 465) 
sampled in Central Uganda between 2007 and 2016 
(described fully in [30].

Subtyping and co‑receptor prediction
All genomes were subtyped with the full genome ver-
sion of SCUEAL [46]. All sequences were subjected to 
co-receptor prediction using the  geno2pheno  co-recep-
tor tool [67] first by aligning the V3 loop by eye and 
extracting the amino acid sequence in Geneious Prime 
2022.0.1 (www. genei ous. com). The inter-subtype recom-
binant genomes (unique recombinant forms; URFs from 
all three datasets with a clear A1 or subtype D majority 
(over 70% the length of env as determined by SCUEAL 
breakpoints and clearly covering the V3 loop) were 
included. Subtype level consensus amino acid sequences 
were found and Shannon’s entropy of the two were calcu-
lated then compared with the Entropy-Two tool from the 
Los Alamos Database (https:// www. hiv. lanl. gov/ conte nt/ 
seque nce/ ENTRO PY/ entro py. html).

To investigate the origin of a deletion at position 24 
in the V3 loop, additional data from the oldest subtype 
B and D envelope sequences were obtained from the Los 

Alamos National Laboratory (www. hiv. lanl. gov) for com-
parison. A BEAST [72] phylogeny was constructed (see 
[31], and an ancestral state reconstruction for presence 
or absence of the position 24 deletion by parsimony was 
then carried out with the R package ‘castor’ [71] and plot-
ted in ggtree [83].

Results
Historical sequences
HIV specific baits were used in a target-capture step 
to enrich HIV genetic material before Illumina MiSeq 
sequencing to generate a paired-end read dataset of 109 
near full-length consensus sequences with a minimum of 
10 × coverage at every position. In addition to these near 
full-length consensus genomes (> 8000  bp from gag to 
nef), 37 partial sequences (> 1000  bp) were generated (a 
65% genome recovery success from 168 samples, or 87% 
partial sequence recovery, Additional file 4: Table S1).

Average coverage spanned from × 27 to × 1769, with no 
significant difference found between subtypes or between 
subtypes and inter-subtype recombinants (Fig.  1). This 
method is considerably more sensitive than without the 
target-capture step; in 2014 some of these samples were 
subjected to the PANGEA protocol [27] with modest suc-
cess, generating 5 near full-length genomes and 17 partial 
genomes, (a success rate of 5% and 22% respectively from 
a 96-sample plate; data not shown).

Of the 109 consensus genomes, 90 had some basic 
location information. The majority are from the “Cen-
tral” region (n = 55) which includes Kampala and hos-
pitals within Kampala, Rubaga (n = 12), Mulago (n = 8) 
and Nsambya (n = 7), and unidentified antenatal clin-
ics (n = 2). A further 31 genomes were recovered from 
Kitovu Hospital (Masaka District), 4 from Lacor hospital 
in Gulu in northern Uganda, one from a hospital in Jinja 
(80 km East of Kampala) (see Additional file 5: Table S2 
and map of Uganda in Additional file 1: Fig. S1).

Change in subtype frequency
The overall subtype distribution of the 109 historical 
1986 genome set was as follows: 73 subtype D (67.0%); 
17 subtype A1 (15.6%); 1 subtype C (0.9%) and 17 inter-
subtype recombinants composed of A1, D (15.6%) and 
1 composed of A1, C and D (0.9%). All inter-subtype 
recombinants had a unique recombination pattern 
(Additional file 2: Fig. S2). Subtype D was the most prev-
alent in all sampling locations, but particularly prevalent 
in Kitovu Hospital in Masaka, 130 km to the southwest 
of Kampala where 27/31 (87%) of genomes and 3/5 (60%) 
partial genomes were subtype D. The SCUEAL desig-
nated subtype distribution for the ‘intermediate’ genome 
dataset was 26 D (56.5%); 7 A1 (15.2%); and 13 inter-
subtype recombinants containing A1, D, and C (28.2%). 

http://www.geneious.com
http://www.geneious.com
http://www.geneious.com
https://www.hiv.lanl.gov/content/sequence/ENTROPY/entropy.html
https://www.hiv.lanl.gov/content/sequence/ENTROPY/entropy.html
http://www.hiv.lanl.gov
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The ‘modern set’ had the distribution: 82 D (17.6%); 3 
C (0.6%); 143 A1 (30.8%) and 232 inter-subtype recom-
binants (49.9%). The proportional change of genome level 
subtype over the three periods is illustrated in Fig.  2a. 
Combining other subtypes with recombinants, the rela-
tive frequencies of A1 and D, are significantly different in 
these three time periods (χ2 = 122.68, df = 4, p < 0.0001), 

and show a significant linear trend for reduction in sub-
type D genome frequency over time (Cochran Armitage, 
Z = − 10.861, p < 0.0001).

Furthermore, the frequencies of subtypes A1 and D 
within the URF envelopes were also assessed (Fig.  2b). 
The majority subtype within the envelope region of all 
URFs was determined based on SCUEAL-estimated 

Fig. 1 Average read coverage across the genome for each genome assembly, and three example coverage plots of inter-subtype recombinant 
genomes from historical samples. Panel a gives the average coverage per genome assembly by subtype (with base 10 scale), which shows no 
significant difference between subtypes A1 and D, or between either subtype and the inter-subtype recombinants. Panel b shows the coverage 
plot of the inter-subtype recombinant with the highest average coverage (× 1769), panel c shows the only A1,C,D inter-subtype recombinant 
genome (average × 80), and d the lowest coverage inter-subtype recombinant (average × 27). The dotted horizontal lines show 5 × , 10 × and 
50 × and the SCUEAL designated subtype and breakpoints are shown as schematic bars underneath each plot (subtype A1 in blue, D in orange, 
and C in red)
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breakpoints. A threshold of 70% over the length of the 
env gene, including the V3 loop, was used to classify 
env as D, A1, or a recombinant. The relative frequency 
of subtype D also falls in the URF envelope region over 
time (Cochran Armitage, Z = −  1.9225, p = 0.027), and 
considering all time periods together, there were many 
more URFs with subtype A1 envelopes (n = 131), than 
URFs with subtype D envelopes (n = 76), significantly dif-
ferent to the expected frequency from the genome level 
(χ2 = 45.973, df = 3, p < 0.0001).

Co‑receptor usage
The machine learning application geno2pheno [51] 
was used to predict virus co-receptor tropism of all 
V3 sequences in the three datasets (Additional file  6: 
Table  S3). Adopting a 5% false positivity rate threshold, 
there is a significantly higher proportion of CXCR4 core-
ceptor usage by subtype D compared with A1 during all 
three periods (Table 1). Of the historical set, 66% (53/80) 
of subtype D envelope sequences were predicted to be 
X4 tropic whilst none (0/24) were predicted to be X4 
tropic for the A1 sequences (χ2 = 29.8, df = 1, p < 0.0001). 
Of the intermediate genomes, 33% (11/33) of subtype D 
were X4 tropic compared with none (0/13) of subtype A1 

(χ2 = 4.01, df = 1, p = 0.04), and of the modern day 49% 
(70/143) subtype D were X4 tropic, compared with 5% 
(13/256) for subtype A1 (χ2 = 104.5, df = 1, p < 0.0001).

Subtype specific differences in V3 loop at the amino acid 
level
We used the Los Alamos Entropy-Two tool which uses 
randomisation with replacement to test for differences in 
entropy between subtypes. In total, 14 positions were sig-
nificantly more entropic in Subtype D than A1 (includ-
ing the crucial positions of 11 and 25), while three sites 
were more entropic in subtype A1 than D (positions 19, 
22, and 24), see Table 2a.

The consensus length of subtype A1 was 35 codons, 
whilst that for Subtype D was 34 codons, due to a dele-
tion at position 24 in the majority of both historic (94%; 
68/72), and modern-day, (90%; 73/81) subtype D. Whilst 
the deletion 24 is found in the vast majority of Ugandan 
subtype D sequences, it is found only in some subtype 
D outgroup sequences, and not found in the Subtype B 
consensus (Table  2b). By mapping this deletion onto a 
subtype B/D phylogeny, we suggest that a deletion arose 
before the introduction of subtype D in Uganda, but 
also independently in some other subtype D lineages 
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(see ancestral state reconstruction in Additional file  3: 
Fig.  S3). In the ‘modern’ subtype D dataset, there are a 
number of additional changes in the V3 loop, including a 
further codon deletion at position 23 in many sequences, 
confirming a distinctive difference in the behaviour of 
this region of env in this subtype (see alignment files in 
Additional files 7 and 8).

Discussion
Here we describe a population sample of 109 HIV 
genomes from the early stages of the epidemic in 
Uganda, and a period where very few HIV genomes are 
available globally. Most sequences from the early years 
of the epidemic are now retrospectively obtained by 
amplification of material from preserved serum or tis-
sue. For example, the oldest sequence fragment to date 
(ZR59 from the DRC) was obtained from a 1959 plasma 

sample, but unfortunately, only a few hundred base pairs 
were sequenced [84] due to its degraded nature, and the 
limitations of the technology at the time of sequenc-
ing. Two well-known isolates (MAL and ELI; [1]) were 
the first full-length genome sequences generated from 
African samples obtained contemporaneously, but fol-
lowing passage in cell culture, which would have rapidly 
accumulated lab-induced changes [58]. We show here 
that target-capture with next generation sequencing can 
work well on highly degraded serum samples from over 
30  years ago, and without cell passage induced errors.  
Yamaguchi et  al. [81] have also successfully employed 
similar target-capture methods, obtaining genomes from 
a wide range of subtypes including from 1987 and the 
DRC. More recently “jackhammer” techniques recov-
ered a 1966 genome sequence of a subtype C virus, where 
target-capture methods failed [33]. New sequencing 

Table 1 Co-receptor tropism predictions for subtypes D and A1 adopting the 5% false discovery rate from geno2pheno. Distinction is 
made between V3 sequences from genomes containing only one subtype and URFs

Subtype Historic 1986 Intermediate 1998/9 Modern 2007‑2016

X4 R5 Proportion X4 X4 R5 Proportion X4 X4 R5 Proportion X4

D (genome) 46 26 53/80 (66%) 9 17 11/33 (33%) 44 38 70/143 (49%)

D env (URF) 7 1 2 5 26 35

A1 (genome) 0 16 0/24 (0%) 0 5 0/13 (0%) 5 136 13/256 (5%)

A1 env (URF) 0 8 0 8 8 107

Other 0 1 0% 0 0 0% 5 55 8%

Total 53 52 50% 11 35 24% 88 371 19%

Table 2 a Consensus V3 amino acid sequences of subtypes A1 and D from Uganda with pairwise entropy comparison at each site, 
and b V3 sequences of outgroup sequences to subtype D in Uganda

The Entropy-Two tool from the Los Alamos National Laboratory database was used to compare Shannon’s Entropy at each codon position (indicating variability at 
each position). Sites with significantly different (p < 0.01) entropy between the subtype A1 consensus and the subtype D consensus are highlighted in bold. Positively 
charged amino acids (K, Lys) and (R, Arg) are shown in blue, while negatively charged amino acids (D, Asp) and (E, Glu) are shown in red, geno2pheno predictions are 
shown to the right
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technologies now mean that we are increasingly limited 
more by the availability of preserved virus material rather 
than method sensitivity to recover sequences from old 
samples.

In this historical dataset, most genomes are ‘pure’ sub-
types, consistent with the sample being taken during an 
early point in the Ugandan epidemic when the two sub-
types had not co-existed for very long. However, we do 
find 18 inter-subtype recombinant forms, all of which 
have a unique pattern, representing at least 18 independ-
ent co-infection or super-infection events with different 
subtypes. Dual infection and recombination between 
these two subtypes was therefore occurring well before 
1986. There is now an extremely high prevalence of 
unique recombinant forms in Uganda [12, 30, 50], with-
out any evidence of a major circulating recombinant 
form. This is not unexpected within a generalised epi-
demic of such large scale and network complexity involv-
ing two subtypes at similar prevalence [7, 63], which has 
not experienced any obvious bottlenecks.

Ugandan cohort studies have been of global interest 
because unusually, the generalised epidemic provides 
a natural experiment for directly comparing the pheno-
types of two distinct HIV subtypes. These cohort studies 
have consistently found subtype D to be more virulent 
than subtype A1, with faster drops in CD4 counts and 
more rapid progression to AIDS [38, 42, 69]). A faster 
rate of progression in Subtype D has been confirmed in 
neighbouring Tanzania [76] and in the UK [21].

There is an extensive literature on the subject of differ-
ences in virulence between viral strains, often framed in 
terms of viral load [9, 26, 35]. Viral load is a well-known 
predictor of HIV virulence [56]. However, cohort stud-
ies often report no significant difference in viral load 
between subtypes e.g. [10], and it appears that differences 
in viral load cannot explain differences in mortality risk 
between subtypes A1 and D [4, 55], suggesting that the 
“subtype D effect” contributes to virulence even after 
accounting for differences in viral load [22].

Like viral load, co-receptor usage is also well known to 
be associated with virulence in HIV [45, 65]. We found 
a significant co-receptor usage difference between sub-
types D and A1, confirming what has been previously 
reported by studies with smaller sample sizes [36, 39]. 
Any observation made about co-receptor changes over 
time at the population level would be confounded by 
the disease stage of patients, since co-receptor switching 
is associated with advanced disease stage [16, 45], and 
many of the 1986 patients would have been experienc-
ing severe AIDS, while many of the modern patients had 
access to antiretroviral therapies. Taking each of the three 
time points independently however, we found consist-
ently that subtype D is more likely to be X4 tropic than 

subtype A1. This difference was particularly stark in the 
1986 dataset where 66% (53/80) of subtype D envelopes 
had X4 tropic viruses compared to 0/24 subtype A1 enve-
lopes. The high proportion of X4 tropism in subtype D 
may not be surprising given that the majority of the 1986 
samples came from late-stage AIDS patients in hospitals, 
but this was true of both subtypes, and none of subtype 
A1 had an X4 tropism prediction.

Uganda is one of the best sampled countries in East 
Africa, and these are some of the largest African HIV 
genome datasets available, but even so, the data here 
represent only a tiny fraction of the Ugandan epidemic. 
Additional samples would lend more power to our find-
ings, particularly if they could be stratified into regions 
and risk groups which are subject to some heterogeneity 
by subtype (see [6, 68, 70]. Any subtype specific amplifi-
cation bias can be assumed absent in the historical data-
set, since baits were designed with all HIV-1M diversity 
(2635 reference genomes) and there was no significant 
difference in read depth between the two subtypes. In 
the modern dataset, the near full-length genomes and 
partial genomes had a comparable subtype distribution 
[30] again suggesting the absence of preferential subtype 
specific amplification. For the intermediate [34] dataset 
however, samples underwent cell passage before nested 
PCR, which may have preferentially amplified X4 viruses 
and introduced artefacts [57, 75].

Previously, a change in relative proportion of the two 
subtypes has been shown using sequence fragments of 
gag and gp41 coding regions in a single district (Rakai), 
between 1994 and 2002 [17] and also between 1993 and 
2012 [49]. We support these findings by showing an even 
more dramatic drop in subtype D, in near full-length 
genomes, sustained over a longer time period (1986–
2016), and over a wider geographical area. All HIV sub-
type D genes decreased in frequency over time, but this 
was particularly true in env. We looked at URF genomes 
containing either A1 or D env segments and found that 
subtype D was under-represented compared to subtype 
A1 at the genome level. This suggests selection has acted 
with the help of recombination to preferentially include 
V3 loops with a higher propensity to be R5 tropic (sub-
type A1) over those with a propensity to be X4 tropic 
(subtype D) in URFs.

Finally, we show a subtype specific difference at the 
amino acid level of subtype D, where subtype D has 
higher entropy at many positions including the key posi-
tions 11 and 25, and find a deletion at position 24 which 
was likely present during the bottleneck of the expansion 
of subtype D into Uganda from the DRC. This deletion 
does not always confer X4 tropism, and the R5 pheno-
type is still predicted by geno2pheno for many sequences 
with the deletion. Instead, we propose that the inherited 
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“sequence space” of subtype D alters the mutational path-
ways available, pre-disposing subtype D to X4 tropism 
since there are a multitude of diverse mutational path-
ways that V3 loops can take to “switch” from R5 to X4 
during the course of infection [61]. Interestingly, some 
authors have reported that the reverse is true for subtype 
C: which has a lower propensity to utilise CXCR4 [60], 
because it requires additional mutations to reach X4 tro-
pism [15].

In the 1990s, Uganda mounted a concerted national 
effort from the highest levels in government down to 
grass roots which helped to encourage large scale behav-
ioural changes [32]. Once the epidemic was no longer 
growing, HIV variants would have come under a selec-
tive pressure to lengthen the time to AIDS, thereby 
increasing their effective reproduction and expanding the 
exposure window [26]. We propose that selection acted 
against viruses most likely to encode the X4 phenotype, 
and favored those with the R5 phenotype. Differences in 
co-receptor switching propensity is therefore a very com-
pelling explanation for the dramatic reduction in subtype 
D over time, and its association with more rapid disease 
progression as reported by various Ugandan cohort stud-
ies from the twentieth century.
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