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REVIEW

Co‑receptor signaling in the pathogenesis 
of neuroHIV
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Abstract 

The HIV co‑receptors, CCR5 and CXCR4, are necessary for HIV entry into target cells, interacting with the HIV enve‑
lope protein, gp120, to initiate several signaling cascades thought to be important to the entry process. Co‑receptor 
signaling may also promote the development of neuroHIV by contributing to both persistent neuroinflammation and 
indirect neurotoxicity. But despite the critical importance of CXCR4 and CCR5 signaling to HIV pathogenesis, there 
is only one therapeutic (the CCR5 inhibitor Maraviroc) that targets these receptors. Moreover, our understanding of 
co‑receptor signaling in the specific context of neuroHIV is relatively poor. Research into co‑receptor signaling has 
largely stalled in the past decade, possibly owing to the complexity of the signaling cascades and functions mediated 
by these receptors. Examining the many signaling pathways triggered by co‑receptor activation has been challeng‑
ing due to the lack of specific molecular tools targeting many of the proteins involved in these pathways and the 
wide array of model systems used across these experiments. Studies examining the impact of co‑receptor signaling 
on HIV neuropathogenesis often show activation of multiple overlapping pathways by similar stimuli, leading to 
contradictory data on the effects of co‑receptor activation. To address this, we will broadly review HIV infection and 
neuropathogenesis, examine different co‑receptor mediated signaling pathways and functions, then discuss the 
HIV mediated signaling and the differences between activation induced by HIV and cognate ligands. We will assess 
the specific effects of co‑receptor activation on neuropathogenesis, focusing on neuroinflammation. We will also 
explore how the use of substances of abuse, which are highly prevalent in people living with HIV, can exacerbate the 
neuropathogenic effects of co‑receptor signaling. Finally, we will discuss the current state of therapeutics targeting 
co‑receptors, highlighting challenges the field has faced and areas in which research into co‑receptor signaling would 
yield the most therapeutic benefit in the context of HIV infection. This discussion will provide a comprehensive over‑
view of what is known and what remains to be explored in regard to co‑receptor signaling and HIV infection, and will 
emphasize the potential value of HIV co‑receptors as a target for future therapeutic development.
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Introduction
Infection with human immunodeficiency virus (HIV), the 
cause of acquired immunodeficiency syndrome (AIDS), 
has been a major public health issue since the emergence 
of the virus in the early 1980s and more than 38 mil-
lion people are currently infected with HIV [1]. Today, 

more than 50% of people living with HIV (PLWH) use 
combined antiretroviral therapy (cART), and for these 
individuals, HIV positivity has become a manageable, 
rather than life threatening, condition. While cART has 
ameliorated many of the symptoms and comorbidities 
associated with infection, antiretroviral drugs can only 
suppress, but not eliminate, viral infection. Suppressed, 
chronic HIV infection is still associated with a variety 
of comorbid conditions, including cardiovascular, meta-
bolic and neurological complications [2]. Indeed, 20–50% 
of infected individuals still suffer from the constellation 
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of neuropathologic, behavioral and cognitive symptoms 
now known as neuroHIV [3]. Thus, it remains critical 
to delve further into the neuropathogenesis of HIV to 
develop novel and more effective therapeutic strategies 
for the treatment of this disease.

Infection with HIV is almost always mediated by inter-
actions between the HIV envelope protein, gp120, the 
CD4 receptor and a co-receptor, generally the chemokine 
receptors CCR5 or CXCR4. These chemokine receptors 
[4–7], were first associated with HIV infection in the 
mid-1990’s [8–14]. Initially, the use of CCR5 or CXCR4 
was considered cell type specific, with viruses that 
infected T-cells using CXCR4 and viruses that infected 
macrophages and microglia using CCR5 [15–17]. This 
was due, in part, to the use of transformed T-cell lines 
that predominantly express CXCR4, whereas primary 
macrophages express more CCR5. Consequently, early 
researchers classified viruses based on their cell tropism: 
T-cell (T)-tropic and macrophage (M)-tropic. However, 
both primary lymphocytes and macrophages express 
CCR5 and CXCR4 [18–21], and while viruses that infect 
myeloid cells generally use CCR5 as a co-receptor, this is 
not an absolute rule [13, 22, 23]. Use of CXCR4 is now 
generally associated with later stages of infection rather 
than a specific cell type [24]. Viral tropism is now defined 
by the co-receptor used for entry; R5 tropic viruses use 
CCR5, X4 tropic viruses use CXCR4, and viruses that 
can use either CCR5 or CXCR4 are known as dual-tropic 
viruses [25, 26]. HIV may be able to use other chemokine 
receptors as co-receptors [9, 27], but most data indicate 
CCR5 and CXCR4 are the primary receptors mediating 
viral entry; therefore, these receptors are the focus of this 
review.

Much of the current research on CCR5 and CXCR4 
focuses on their role as HIV co-receptors. However, 
both CXCR4 and CCR5 are also chemokine receptors, 
and their activation mediates complex signaling cas-
cades that initiate a variety of other functions under 
both pathological and homeostatic conditions [28–30]. 
As members of the G-protein coupled receptor (GPCR) 
superfamily, CCR5 and CXCR4 translate ligand binding 
into intracellular signals through the activation of G pro-
teins. Canonically, both receptors were thought to signal 
through coupling to  Gαi [30–33] but there is significant 
evidence that they also act through  Gαq and through 
non-Gα protein pathways, including those initiated by 
 Gβγ and β-arrestins [29, 34–36]. There has been substan-
tial research into the use of small molecule antagonists, 
endogenous chemokines and chemokine analogues, and 
blockade of co-receptor function as HIV therapeutics 
[37–41]. However, these efforts continue to be hindered 
by an incomplete understanding of how co-receptor sign-
aling and specific co-receptor conformations contribute 

to viral infection. Blocking co-receptor activity affects 
many more processes than just HIV neuropathogenesis, 
and co-receptor inhibitors often have unwanted side-
effects in regard to disruption of homeostatic function 
[42, 43], further complicating the development of tar-
geted therapeutics for these receptors. There is currently 
only one FDA-approved antiretroviral targeting an HIV 
co-receptor, the CCR5 inhibitor Maraviroc, and its effi-
cacy often decreases with disease progression due to 
mutations that interfere with gp120 binding to CCR5 [37, 
44, 45].

Despite these challenges, there is a critical need for 
novel drugs and strategies that target co-receptor sign-
aling. This is particularly true in the context of neuro-
HIV, where the interaction of HIV virions with CCR5 
and CXCR4 expressed on both myeloid and neuronal 
cell populations seems to play a role in persistent neu-
roinflammation and neuronal dysfunction [46–51]. 
Unfortunately, research into the mechanism(s) by which 
co-receptor signaling promotes the development of neu-
roHIV has slowed in recent years, in part owing to the 
complexity and contradictory data involved in the exam-
ination of GPCR signaling. The aim of this review is to 
reinvigorate this area of research by providing a compre-
hensive overview of co-receptor signaling and its role in 
HIV infection, with a specific focus on co-receptor signal 
transduction and how this influences viral entry, repli-
cation, and the pathogenesis of neuroHIV. We will then 
discuss how substance abuse, which is highly prevalent 
in the HIV-infected population, alters co-receptor signal-
ing to promote neuropathogenesis. Finally, we will assess 
the new technologies and recent research in this area, 
describing the current state of therapeutics specifically 
targeting co-receptors, and discuss specific experimental 
questions that are particularly important to the ongoing 
development of therapeutics capitalizing on co-receptor 
signaling.

HIV pathogenesis
While the number of new HIV infections per year has 
declined since 2000, and people are now living longer 
with HIV, nearly 2 million new infections and 800,000 
HIV-associated deaths still occurred in 2019 [1]. The 
reductions are due to the evolution of cART, first devel-
oped in the mid-1990’s. Prior to cART, HIV infection led 
to uncontrolled viral replication, loss of CD4 + T-cells 
and impaired immune function [52, 53]. This left indi-
viduals susceptible to opportunistic infections and a 
rapid progression to AIDS, invariably resulting in death. 
The use of cART prevents this by suppressing viral rep-
lication, leading to a recovery in CD4 + T-cell levels and 
immune function, although it does not eliminate the 
virus [52, 54, 55]. Additionally, evidence suggests that 
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viral replication is incompletely suppressed in the CNS 
[56–60]. Thus, cART is not a cure, although it does dra-
matically lengthen the quality and quantity of life for 
chronically HIV infected individuals [3, 54, 55, 61]. Fur-
ther, the use of cART has also created new health issues, 
as PLWH suffer from a variety of new comorbidities 
associated with chronic infection and long-term therapy 
[62–66].

These comorbidities result from HIV infection and 
associated inflammation in organs throughout the body. 
HIV primarily infects CD4 + T-cells and myeloid line-
age cells including monocytes and tissue specific mac-
rophages such as microglia and alveolar macrophages 
[52, 53, 67, 68]. In addition to co-receptors, viral entry 
requires the CD4 receptor, which is bound by the HIV 
envelope protein, a dimer of trimers comprised of a 
trimer of heavily glycosylated gp120 proteins and a con-
nected trimer of gp41 proteins [69, 70]. The interaction 
between a host CD4 receptor and a gp120 trimer on the 
external surface of the viral membrane induces a con-
formational shift in the envelope protein. This exposes 
further binding sites, allowing gp120 to bind to the viral 
co-receptors CXCR4 or CCR5 [71, 72], inducing a further 
conformational shift which causes the trimeric gp41 to 
“spring out” and insert itself into the host-cell membrane 
[73, 74]. This initiates membrane fusion, merging the 
host and viral membranes and enabling the viral capsid, 
which contains the viral RNA genome and viral proteins 
such as reverse transcriptase and integrase, to enter the 
cell [69, 70].

Following entry, the viral capsid undergoes remod-
eling by host proteins in a process called uncoating, and 
the viral reverse transcriptase enzyme converts the HIV 
RNA into proviral DNA, although the precise order of 
these operations is still not completely clear [75]. There 
is some debate as to whether the capsid is completely 
disassembled or remains intact, though more recent evi-
dence supports the latter hypothesis [76–78]. Following 
uncoating and reverse transcription, the newly gener-
ated proviral DNA and additional viral proteins such as 
reverse transcriptase, Vpr, matrix and integrase proteins, 
is incorporated into a pre-integration complex made up 
of a number of cellular proteins as well as the capsid core 
[76, 79]. This complex then is then transported through 
a nuclear pore complex into the nucleus, where the viral 
integrase enzyme then incorporates the proviral DNA 
into the host genome [79]. In the nucleus, host transcrip-
tional machinery transcribes the viral DNA into mRNA, 
which is spliced, exported and translated into the early 
proteins Tat and Rev. These proteins regulate further 
HIV gene expression, with the Tat protein facilitating 
transcription elongation and the generation of full-length 
viral RNA, while the Rev protein facilitates the export of 

unspliced and incompletely spliced viral mRNA into the 
cytoplasm to generate the viral polyproteins and acces-
sory proteins [80]. Following translation, individual Gag 
proteins as well as Gag polyproteins traffic to the plasma 
membrane where they mediate the essential events in 
virion assembly within specialized membrane microdo-
mains. During this process, viral envelope proteins are 
concentrated at the assembly site, the spherical parti-
cle is assembled through protein–protein interactions 
and viral RNA is packaged into the assembling virion 
[81–83]. In T-cells, this occurs on the inner surface of 
the plasma membrane, while in macrophages and other 
myeloid cells it takes place on the surface of internal, 
plasma membrane connected compartments [84–86]. 
The viral proteins and viral RNA are incorporated into 
an immature viral particle that buds off from the mem-
brane [81, 82]. After budding, the viral protease cleaves 
the viral polyproteins, and the gag proteins assemble into 
a capsid containing the viral RNA and proteins, forming 
a mature, infectious virion, which can spread the virus to 
other cells [81, 82].

NeuroHIV
Neurological symptoms associated with HIV infection 
have existed since the start of the epidemic [87, 88], and 
still affect 20–50% of the infected population despite 
cART [3, 63, 89, 90]. The presentation and severity of 
these issues has changed with cART, but infected indi-
viduals still suffer from a spectrum of neuropathologic, 
cognitive, motor, and behavioral sequelae known as HIV-
associated neurocognitive disorders (HAND) or neu-
roHIV [63, 91, 92]. NeuroHIV is initiated by HIV entry 
into the central nervous system, which occurs rapidly 
after initial infection [88, 93, 94]. There are several pro-
posed mechanisms by which HIV is thought to enter the 
brain, but the most widely accepted is the “trojan horse 
hypothesis” [95], which suggests HIV enters the CNS 
within infected  CD14+/CD16+ monocytes, and possibly 
infected CD4 + T-cells, which transmigrate across the 
blood–brain barrier (BBB) and release virus into the CNS 
[93, 96–100]. In the brain, HIV targets primarily myeloid 
lineage cells such as microglia and different populations 
of CNS macrophages [67, 101, 102]. These infected cells 
drive the development of neuroHIV through production 
of new virions as well as the elaboration of inflammatory 
factors such as cytokines and viral proteins [101–103]. 
The inflammatory and neurotoxic milieu created by these 
factors has been proposed to drive neuronal dysfunction 
and synaptic injury, which in turn is thought to contrib-
ute to cognitive deficits observed in patients [47, 48, 104–
108]. In addition to myeloid cells, studies also suggest 
astrocytes may be infected with HIV at low levels [109–
111]. It is not clear if astrocyte infection is productive 
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and/or if these cells substantially contribute to viral rep-
lication, and there is some controversy as to whether 
they are infected at all [112–115]. Although central to 
the development of neurological symptoms, neurons are 
not infected by HIV [67, 116] and neuronal dysfunction 
is thought to be initiated by the inflammatory mediators 
secreted by other infected and activated cells [3].

Prior to cART, HIV-associated neuropathology was 
characterized by the formation of multinucleated giant 
cells, presence of microglial nodules, infiltration of lym-
phocytes, activated CNS macrophages, and neuronal loss 
[87, 107, 117–120]. These effects were particularly promi-
nent in dopamine-rich brain regions, specifically in the 
substantia nigra, prefrontal cortex (PFC) and striatal sub-
structures including the caudate nucleus, putamen, and 
nucleus accumbens [57, 66, 87, 121–125]. Severe behav-
ioral and cognitive symptoms were common [118, 120, 
126], and some studies found HIV encephalitis (HIVE) 
in more than 50% of infected individuals [119, 127]. Viral 
proteins, including gp120, were observed in the brains of 
patients, particularly those with HIVE [46, 128, 129], sug-
gesting a neurotoxic role of gp120. A number of studies 
additionally found CSF viral loads correlated with neuro-
logical dysfunction [130–132], further suggesting a link 
between viral persistence and neuroHIV. With the use of 
cART, HIVE has almost disappeared, and the symptoms 
of neuroHIV tend to be subtler, with gradual, non-linear 
growth over time [3, 126, 133]. NeuroHIV remains prev-
alent in cART treated individuals despite the suppres-
sion of viral replication [90, 104], but the presentation 
has shifted and overt neuronal loss is no longer readily 
observed [133]. Instead, PLWH present with hippocam-
pal and cortical changes in synaptic number, reduced 
frontostriatal connectivity, increases in myeloid cell 
activation and accumulation of infected myeloid cells, 
neuroinflammation, oxidative stress, and white matter 
abnormalities [134–139]. This suggests the etiology of 
this disease is not solely derived from active viral repli-
cation [140–142], although HIV entry into and spread 
within the CNS is essential to the initiation of neuroHIV.

Current data indicate chronic neuroinflammation 
is a key factor in neuropathogenesis in cART-treated 
individuals [138, 143–145], likely resulting from inter-
actions between host CNS cells and the infected cells 
comprising a stable reservoir of HIV in the brain 
[146–148]. A number of studies have found markers of 
immune activation in the plasma [149, 150], CSF [145, 
151, 152], and post-mortem brain tissue [142] of cART-
treated individuals, even in the absence of detectible 
virus. Additionally, markers of neuronal injury, includ-
ing alterations in dendritic spine length and density 
[106, 153–155], subcortical atrophy [135, 156, 157], and 
changes in metabolites like N-acetylaspartate [139, 158, 

159] are observed, and associated with impaired neu-
rocognition [104–106]. These changes are thought to 
occur through two distinct, but not mutually exclusive, 
mechanisms. The direct injury hypothesis suggests that 
shed viral proteins, including gp120, directly promote 
neurotoxicity by binding to both CXCR4 and CCR5 on 
neurons. The bystander effect theory proposes that neu-
ronal injury is caused by the secretion of neuroinflam-
matory mediators, such as inflammatory cytokines and 
chemokines, by infected and activated macrophages 
and microglia [160]. There is substantial debate within 
the field about these processes, particularly regarding 
the role of viral proteins in directly promoting neuro-
toxicity. While in vitro and in vivo rodent studies dem-
onstrate neurotoxic effects of individual viral proteins 
[49, 106, 128, 161–171], it is not clear whether the con-
centrations of these proteins produced during cART-
treated infection mediate similar effects in the human 
CNS [172]. Therefore, the source of gp120-mediated 
coreceptor activity in the CNS in PLWH on cART is 
not clear and is likely to be the gp120 found on intact 
virions, rather than shed gp120. Thus, much of the dis-
cussion below applies to co-receptors activated through 
interactions with virions during the process of attach-
ment and entry.

Studies indicate that CNS viral infection is incom-
pletely suppressed by cART, suggesting that neuronal 
injury and inflammation associated with co-receptor 
signaling in cART-treated individuals may be due to 
intact virions. HIV RNA is detectable in the CSF and 
CNS of cART treated populations, indicating the per-
sistence of viral replication [56–60], although it is not 
clear if this is directly associated with worsening pathol-
ogy [56, 60, 173]. This viral persistence may be due to a 
CNS viral reservoir, likely established well before cART 
is initiated [174]. These reservoirs are thought to be pre-
dominantly composed of myeloid cells, namely perivas-
cular macrophages and microglia, which are long-lived, 
non-dividing and resistant to HIV-induced apoptosis 
[96, 175–177]. Due to these properties, as well as the 
poor CNS penetration of many antiretrovirals [178–181], 
CNS reservoirs are unaffected by a number of antiretro-
viral drugs [182], and can produce virus long after initial 
infection [177]. Given that the interaction of HIV virions 
with CXCR4 and CCR5 can drive signaling pathways that 
can directly lead to neuroinflammation and activation 
of other myeloid populations, it is possible that many of 
the long-term effects may be due to the activation of co-
receptors by viral particles. Taken with the central role 
for CXCR4 and CCR5 in the spread of the HIV infection 
throughout the CNS, these co-receptors and the sig-
nal transduction processes associated with them make 
attractive targets for antiretroviral therapeutics targeting 
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both the spread of infection and the development of 
neuropathogenesis.

Chemokine receptors
Both CCR5 and CXCR4 are G-protein coupled, 7-trans-
membrane receptors (GPCR) that belong to a family of 20 
proteins known as chemokine receptors. These receptors 
are expressed on a wide range of cell types and are clas-
sified into four subgroups depending on which subfami-
lies of chemokines they bind: CXC, CC, XC, and  CX3C 
receptors [28, 30, 183]. While chemokines are known to 
act as chemoattractants, chemokine receptor activation 
also mediates a broad array of physiological processes, 
including cell migration, cytoskeletal rearrangement, 
cell survival, and inflammation [28, 184]. These recep-
tors are often upregulated in response to tissue damage 
or in diseases such as cancer and HIV, attracting immune 
cells to respond to the damage or insult [30, 185, 186]. 
While many different chemokines and chemokine recep-
tors play a role in HIV neuropathogenesis [183, 187, 188], 
CCR5 and CXCR4 are considered the major co-receptors 
used by HIV-1 strains and are thought to mediate many 
of the resulting chemokine responses [189, 190], making 
them appealing targets for antiretroviral development.

Like other GPCRs, chemokine receptors transmit sig-
nals resulting from ligand binding via an associated com-
plex of three distinct G-proteins;  Gα,  Gβ, and  Gγ subunits 
[191]. In the inactive state, GPCRs are coupled to a trimer 
of these G-proteins, one of each type. Ligand binding ini-
tiates a conformational shift in the GPCR, activating the 
 Gα subunit by exchanging a bound guanine diphosphate 
(GDP) for a guanine triphosphate (GTP). This causes 
the  Gα subunit to dissociate from the receptor to initiate 
distinct downstream signaling cascades [192]. There are 
four distinct subtypes of  Gα proteins:  Gαs,  Gαi,  Gαq, and 
 Gα12/13, each associated with distinct signaling cascades, 
though distinct G-proteins can activate the same down-
stream effectors or have overlapping functions [191]. The 
signal transduction pathways initiated by  Gα proteins are 
more frequently studied, but  Gβ and  Gγ subunits, which 
form an obligate dimer  (Gβγ), can also activate several 
signaling mechanisms [193–195]. There are also several 
G-protein independent signaling cascades, which vary 
with chemokine receptor, cell type and effector [196, 
197]. These G-protein independent pathways are medi-
ated by β-arrestins 1 and 2, which can serve as scaffolds 
for downstream signaling molecules [196, 198–200]. This 
often involves the recruitment of Src kinases [199, 201], 
which are also activated by  Gαi signaling [202], and can 
lead to downstream activation of mitogen activated pro-
tein kinase (MAPK) signaling pathways [203–205] as well 
as the PI3 kinase (PI3K) signaling pathway [199, 206].

Chemokine receptor signal transduction is also reg-
ulated by blocking receptor signaling. This involves 
GPCR kinases (GRKs) phosphorylating several different 
residues on the active carboxyl terminus of the GPCR, 
recruiting β-arrestins [207, 208]. Following their recruit-
ment, β-arrestins carry out two main functions. First, 
they occlude the G-protein binding site on the chemokine 
receptor, blocking signaling and desensitizing the recep-
tor [208, 209]. Next, β-arrestins can recruit the cellular 
machinery required for clathrin-mediated internaliza-
tion, initiating either receptor recycling [209, 210] or lys-
osomal degradation of the receptor [211]. Some studies 
suggest that the strength of the interaction between 
the arrestin and the receptor regulates this choice, with 
weaker interactions resulting in degradation and stronger 
interactions leading to receptor recycling [212]. Irrespec-
tive of the precise mechanism, GRK/β-arrestin-mediated 
desensitization and internalization works in conjunction 
with ligand stimulation to mediate chemokine receptor 
signaling.

The primary function of chemokine receptors is to 
mediate cell migration, and much of the signaling origi-
nating from these receptors promotes cell movement. 
Classically, these receptors couple to  Gαi [4, 31, 36, 
213–215]. Activation of this G protein inhibits adenylate 
cyclase, decreasing cyclic AMP (cAMP) production [29, 
35, 215–217].  Gαi can also activate Src and Lyn kinases 
[202, 218, 219], which in turn activate the small GTPases 
Ras and/or Raf resulting in MEK and ERK phosphoryla-
tion [220–222] and leading to chemotaxis [223–228]. 
Release of the  Gβγ subunits can also stimulate cell move-
ment [195, 228, 229], activating PI3K and the serine/
threonine kinase AKT [224, 230]; the GTPases Rac and 
Rho [231]; or phospholipase C-β (PLCβ) [232, 233], 
which hydrolyzes phosphatidylinositol 4,5-bisphosphate 
 (PIP2) to diacylglycerol (DAG) and inositol triphosphate 
 (IP3), initiating intracellular calcium  (Ca2+) release from 
the endoplasmic reticulum as well as activation of pro-
tein kinase C (PKC). Several of these cascades, includ-
ing activation of PI3K and AKT [199, 206], or Src and 
ERK1/2 [203–205], can also be triggered by recruitment 
of β-arrestins and are associated with a number of down-
stream functions, including chemotaxis and apoptosis 
[196, 198–200].

These are just some of the vast network of signaling 
pathways associated with chemokine receptor activation, 
and both CCR5 and CXCR4 have a number of impor-
tant pathways specifically associated with their activity. 
The complexity of these and other signaling networks 
initiated by co-receptor binding is often amplified by 
the use of different types of cell systems. The use of dif-
ferent types of cells has enabled more precise interroga-
tion of specific signaling processes, but it has also led to 
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confusing and contradictory data, as co-receptors in dis-
tinct cell types often show different responses to similar 
stimuli. This is particularly problematic when compar-
ing transfected cells and cell lines to primary cells and 
in  vivo systems, as it can create confusion about the 
physiologically relevant actions of co-receptors during 
disease. These signaling processes, their downstream 
effects and the caveats associated with their study are 
discussed below, and those involved in HIV pathogenesis 
are described in detail in the subsequent section. Further 
discussion on the functions and pathways activated by 
chemokine receptor signaling can be found in additional 
reviews [29, 34, 234–236].

CCR5
The CCR5 receptor was first identified as a human mono-
cyte chemokine receptor in 1996, following the discovery 
of its primary ligands CCL3 (MIP1α), CCL4 (MIP1β), 
and CCL5 (RANTES) [4–6, 237]. Only CCL4 binds 
exclusively to CCR5, with CCL3 also binding to CCR1 
and CCL5 acting as a ligand for both CCR1 and CCR3 
[28, 238]. Several other ligands including CCL2 (MCP-
1), CCL7 (MCP-3), CCL8 (MCP-2), CCL13 (MCP-4) and 
CCL11 (eotaxin), have shown some affinity for CCR5 
in  vitro in binding studies or competition assays [237], 
but the in vivo relevance of these interactions is unclear 
[37, 186]. CCR5 is expressed on a number of cell types, 
including macrophages [18, 239], microglia [18, 240], 
T-cells [18, 20, 21], and numerous other immune cells 
[18] as well as astrocytes [114, 240] and neurons [49, 185, 
241].

Under homeostatic conditions, chemokine signaling 
through CCR5 is associated with numerous physiologi-
cal processes including leukocyte migration [218, 223, 
242–244], regulation of inflammation through cytokine 
and chemokine release [245, 246], and the activation of 
cell survival pathways [219]. These functions are thought 
to be particularly important in the context of viral infec-
tion or cellular injury. For example, CCR5 is upregulated 
during inflammation on CD8 + T-cells, promoting the 
migration of these cells towards the site of infection and 
thereby increasing the likelihood of encountering antigen 
specific cells to enhance the adaptive immune response 
[247]. This receptor may also play a role in the recruit-
ment of immune cells to the CNS [248], the formation of 
atherosclerotic plaques [186], and tumor cell migration 
and survival [249, 250]. These effects require a number 
of intracellular signaling cascades, some of which may be 
distinct to CCR5 activation by specific ligands, such as 
CCL5 [35, 251].

Due to its broad influence, CCR5 signaling is tightly 
regulated by several processes, generally triggered by 
phosphorylation of serine residues on its C-terminus and 

the Asp-Arg-Tyr (DRY) motif leading to GRK/arrestin 
mediated receptor desensitization and internalization 
[34, 252]. The early steps of CCR5 desensitization are 
similar to that of other chemokine receptors and involve 
C-terminal phosphorylation, recruitment of β-arrestins, 
and clathrin-dependent endocytosis [34, 207, 253]. Upon 
internalization, CCR5 is directed through the endoso-
mal recycling compartment to the trans-golgi network 
(TGN), where it is then recycled back to the cell sur-
face upon resensitization [254, 255]. Importantly, dif-
ferent ligands can induce different fates for CCR5 once 
it is internalized. Some, like the chemokine analogues 
PSC-RANTES and AOP-RANTES, promote sequestra-
tion of CCR5 in the endosome recycling compartment 
or TGN [254, 256, 257], while others, like the physiologi-
cal ligand CCL5, induce recycling back to the cell surface 
[255, 258]. This appears to be due to the ability of these 
ligands to alter the structure of the intracellular CCR5 
loops via GRK recruitment and/or binding of different 
β-arrestins [256, 259]. Given that the sequestration of 
CCR5 is a promising method of blocking viral entry [38, 
212, 258, 260–263], further examination of the processes 
mediating CCR5 desensitization and recycling may have 
important implications for HIV infection and potential 
antiretroviral activity.

CCR5 signaling
The CCR5 receptor can signal through several distinct 
G-protein mediated pathways. Signaling through  Gαi 
inhibits the activation of adenylate cyclase, regulating 
the production of cAMP [35, 215, 216, 251] and MAPKs 
[191, 221, 264], and functions such as T-cell prolifera-
tion and chemotaxis [34, 214, 230, 265–267]. Signaling 
through  Gαi can be influenced by the formation of oli-
gomers, changing the responses to select ligands [268]. 
For example, in HEK293 cells co-transfected with CCR5 
and/or CCR2, the  Gαi inhibitor pertussis toxin (PTX) 
block CCL5-induced  Ca2+ release in cells expressing only 
CCR5, but not in cells co-expressing CCR5 and CCR2 
and treated with CCL2 and CCL5 [268]. Homodimeri-
zation or dimerization with either CCR2 or CXCR4 may 
also prevent gp120 binding [244, 269, 270], although 
whether this has any in vivo relevance is unclear.

However, several CCR5 signaling pathways are insen-
sitive to pertussis toxin, indicating the involvement of 
alternative G-proteins and/or G-protein independ-
ent signaling mechanisms [271–273]. Much CCR5-
initiated signal transduction can also occur through 
intracellular  Ca2+ release and PLCβ activation, which 
can be mediated by  Gβγ [32, 215, 219, 232, 233, 242, 
274]. Moreover, many studies rely solely on pertussis 
toxin, which may have  Gαi-independent effects via its 
B-oligomer [32, 275], or do not make use of specific 
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G-protein inhibitors, making it is difficult to define the 
specific G-proteins initiating each pathway. Further, 
while not specific to CCR5, studies have suggested that 
the release of  Gβγ, rather than  Gαi is essential for chem-
otaxis mediated by  Gαi-coupled receptors [195, 229]. 
Both the PLCβ and PI3K signaling cascades mediate 
the chemotactic response to CCR5 binding by activat-
ing a number of Ser/Thr protein kinases, particularly 
members of the PAK and FAK families, in macrophages 
[230, 242, 273, 276] and T-lymphocytes [213, 214, 276]. 
Signaling via the PLCβ signaling cascade also activates 
MAPKs [221, 267], which is associated with the pro-
duction of inflammatory mediators [31, 267, 277] and 
chemotactic responses [223, 278, 279]. Activation of 
PI3K is specifically required for CCL5 mediated chemo-
taxis in macrophages and T-lymphocytes and cytoskel-
etal rearrangement induced by Rho GTPases [230, 242, 
280], and can also activate AKT and MAPK signaling 
[221, 267]. These data demonstrate the importance of 
PLCβ and PI3K in CCR5-chemokine signaling, suggest-
ing the release of  Gβγ may be more critical in mediating 
the effects of CCR5 than  Gαi.

CCR5 may also couple to  Gαq, which can also initiate 
 IP3-mediated intracellular  Ca2+ release [36, 215, 251, 
281]. A recent study showed that both CCL4 and CCL5 
could initiate  Ca2+ flux in HEK.CCR5 cells, and this 
was inhibited by the  Gαq inhibitor YM-254,890 [215]. 
The physiological relevance and extent of  Gαq-specific 
CCR5 signaling is unclear, due to the extensive overlap 
between  Gβγ and  Gαq signaling. However, the centrality 
of  Gβγ-mediated PI3K signaling to chemotaxis suggests 
CCR5 mainly acts through  Gαi and  Gβγ in response to 
physiological ligands [195, 229]. In addition, the binding 
of HIV gp120 may push CCR5 towards  Gαq signaling, as 
siRNA against  Gαq, but not  Gαi, prevented CCR5-medi-
ated changes in viral fusion [281] and gp120 induces sev-
eral  Gαi independent signaling effects [273, 282–285].

In addition to  Gαi,  Gαq, and  Gβγ signaling, several sign-
aling processes may be independent of G-protein activ-
ity. Stimulation of CCR5 by either CCL2, CCL3, or CCL5 
leads to activation of janus kinases 1 and 2 (JAKs) [214, 
271, 272], and activation of JAK2 was insensitive to both 
pertussis toxin and U73122, an inhibitor of PLCβ [272]. 
This suggests JAK2 activation is mediated via G-protein 
independent mechanisms, potentially through a direct 
JAK-CCR5 interaction, which can lead to the phospho-
rylation and dimerization of the receptor. Activation of 
the PI3K/AKT signaling could also be initiated by G-pro-
tein independent signaling through β-arrestins, as CCL4 
stimulates macrophage chemotaxis by inducing the for-
mation of a β-arrestin signaling complex comprised of 
PI3K, Pyk2 and Lyn, leading to downstream ERK activa-
tion [218].

The responses to CCR5 binding are mediated by a 
number of effectors, including but not limited to MAPKs 
[219, 223, 271, 273, 276, 277, 282, 286], signal transducer 
and activator of transcription (STAT) proteins [214, 272, 
287], AMP-activated protein kinases (AMPKs) [242], 
and small GTPases (Rac, Rho) [266] or FAKs like Pyk2 
[213, 243, 272, 273, 276, 282], which play a critical role in 
chemokine-mediated cellular migration in both lympho-
cytes and macrophages [223, 230, 243, 266, 276]. Many 
of these effectors are activated by one or more endoge-
nous CCR5 ligands, such as the phosphorylation of the 
MAPK ERK 1/2 by both CCL3 and CCL4 [223]. Multi-
ple overlapping pathways are linked to MAPK signaling, 
including the release of pro-inflammatory chemokines, 
cell survival, cell death, the activation of STATs, and the 
activation of matrix metalloproteinases (MMPs) [279, 
288, 289]. For example, induction of CCL5 in response 
to influenza infection leads to  Gαi-mediated activation 
of both the MEK/ERK and PI3K/AKT signaling cas-
cades, reducing apoptosis in mouse macrophages [219]. 
Stimulation with CCL5 also leads to  Ca2+ mobilization 
and the activation of JAK1/STAT5, triggering cell polari-
zation and migration. However, this did not occur with 
AOP-RANTES, a synthetic CCL5 derivative that can 
also bind to CCR5 but does not induce chemotaxis [261, 
290], due to differences in the length of  Gαi-association 
and subsequent release of  Gβγ [214]. Many of these path-
ways may also be regulated by PI3K and PLCβ activity. 
For example, both of these proteins were necessary to 
promote CCL5-mediated chemotaxis through AMPK in 
RAW264.7 rodent macrophages [242]. This demonstrates 
that activation of CCR5 by a single ligand can simulta-
neously activate several different G-proteins and down-
stream pathways, regulating multiple cellular functions, 
a commonality among GPCRs. Indeed, CCR5-mediated 
activation of JAK/STAT pathways may play a role in 
T-cell activation and proliferation, although it is unclear 
whether this is solely due to CCR5 or a combination of 
CCR receptors, including CCR2 [34, 268, 271, 287, 291]. 
These data show that CCR5 can initiate signaling through 
both G-protein dependent and independent pathways 
and demonstrate the substantial overlap between CCR5 
signaling cascades activated by distinct G-proteins 
(Fig.  1A). These overlaps, combined with the likelihood 
that the coupling of CCR5 to certain G-proteins and 
pathways may be different in distinct cell types and spe-
cies, shows the challenges involved in defining how the 
specific ligands activate certain signaling pathways and 
highlights an important area for future studies.

Conformation mediated changes in CCR5 signaling
In addition to complications due to overlapping path-
ways and distinct effects in different cell types [214, 
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271, 272], analysis of CCR5 signaling is complicated by 
the existence of conformationally heterogenous popu-
lations of CCR5 on the cell surface [257, 292–294]. 
The conformational differences center on the degree of 
exposure of binding sites in the N-terminal (NT) and 
second extracellular loop (ECL2) regions [40, 292], and 
the interaction of the N-terminus with the transmem-
brane helix bundles [34, 295]. These differences seem 
to have a broad impact on receptor function, changing 
the affinity for different ligands, the coupling to specific 
G-proteins and the functional potency of  2nd messenger 
induction [215, 257, 294, 296, 297]. In CCR5 transfected 
L1.2 lymphocytes, antibodies against the ECL2 region 
of CCR5 efficiently blocked the binding and functional 
response of CCL3, CCL4, and CCL5, whereas an anti-
body against the N-terminal region blocked only CCL4 
binding and signaling, not CCL5 [292, 298]. Moreover, 
an CCR5 antibody mapped to multiple ECL domains 
was able to increase  Gαi-associated GTPγS binding, 
but not  Ca2+ flux, suggesting stabilization of specific 

conformations of CCR5 is associated with distinct sign-
aling cascades [292].

Other studies show differences in the β-arrestin medi-
ated internalization of specific CCR5 populations, sug-
gesting subpopulations of CCR5 conformations may 
be resistant to chemokine-induced internalization in 
macrophages, but not T-cells [299]. This is consistent 
with studies showing subpopulations of CCR5 may dif-
fer between cell types [257, 300]. These differences may 
involve changes in receptor occupancy based on the abil-
ity of different ligands to bind to distinct CCR5 confor-
mations [215]. Notably, natural chemokines only bind 
to a few distinct conformations, but gp120 may interact 
with a much wider number of CCR5 populations, poten-
tially due to the interaction of the flexible V3 region of 
gp120 with the N-terminus of CCR5 [215, 257, 293, 
300, 301]. Indeed, changes in the exposure of the NT or 
ECL2 regions can increase the binding affinity for spe-
cific sequences in CCR5 tropic viral envelopes [300], 
likely playing a role in the maintenance of gp120—CCR5 

Fig. 1 Chemokine signaling through CCR5 and CXCR4. Both CCR5 and CXCR4 can signal through a multitude of pathways, only some of which 
are represented here. A In response to its cognate ligands CCL3, CCL4, and CCL5 (CCL4 shown as a representative ligand), CCR5 can signal through 
a variety of G‑protein dependent and independent pathways. These signaling processes broadly modulate chemotaxis and inflammation. While 
CCR5 acts through  Gαi,  Gαq (not shown) and  Gβγ, the  Gβγ subunit may regulate the majority of downstream signaling, including PLCβ activation, PI3K 
activation, and the downstream activation of AMPKs and MAPKs, particularly p38 MAPK.  Gαi can also interact with Src family kinases, leading to the 
activation of MAPKs via small GTPase activation, which in turn regulates the chemotactic effects of this receptor. Independent of G proteins, CCR5 
signaling can also be mediated through interaction with β‑arrestins and the JAK family, activating ERK1/2 and STAT respectively. B CXCR4 signaling 
is also mediated through  Gαi and  Gβγ, and in certain contexts CXCR4 can also couple to  Gα13. In addition to regulating chemotaxis, CXCR4 signaling 
also has significant effects on cell survival and proliferation. As with CCR5, PI3K and MAPK activation are central to these signaling pathways and are 
largely responsible for mediating the effects of CXCL12‑CXCR4. The similarities in the signaling pathways between these two receptors highlight 
how the same effectors can regulate vastly different physiological effects, demonstrating the complexity of studying chemokine receptor signaling. 
Solid arrows represent defined, published pathways while dashed arrows represent pathways that have not been directly demonstrated but are 
likely to occur based on the current understanding of GPCR signaling
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binding in the presence of natural ligands and some 
antagonists. Thus, defining not only the CCR5 signaling 
pathways, but the shifts in ligand binding and signaling 
associated with those structural changes, could initiate or 
enhance the development of a number of novel antiretro-
viral effectors [40, 293, 301, 302].

CXCR4
The CXCR4 receptor was first identified on peripheral 
blood lymphocytes in 1994 [7] and is highly expressed in 
a variety of cell types including lymphocytes, hematopoi-
etic stem cells, neural cells, and stromal fibroblasts [30]. 
Expression of CXCR4 is relatively low on myeloid cells 
such as macrophages and microglia [303]. The primary 
ligand for CXCR4 is the chemokine CXCL12 (SDF-1), 
which is ubiquitously expressed in both embryonic and 
adult tissues, including liver, pancreas, spleen, brain, and 
heart [304]. The CXCL12/CXCR4 signaling axis was long 
considered monogamous until 2007 when it was discov-
ered that macrophage migration inhibitory factor (MIF) 
was an alternative ligand for CXCR4 [305]. Additionally, 
both pharmacologic antagonism and knockdown studies 
have shown that extracellular ubiquitin (eUb), is also a 
natural ligand for CXCR4 [306].

In adults, CXCL12-CXCR4 binding promotes the sur-
vival and trafficking of immune cells [307, 308]. During 
embryogenesis, CXCL12 is important for proliferation, 
migration, and differentiation of immature progenitors 
[309, 310]. The CXCL12/CXCR4 signaling axis is also 
important in CNS homeostasis, where it regulates the 
migration of neural precursors [311, 312], establishment 
of neural circuitry [313, 314], modulation of NMDA 
subunit composition [315], and alterations in dendritic 
spine number and morphology [316, 317]. MIF also plays 
an important role in cell recruitment and arrest through 
binding to CXCR2 and CXCR4 [305], and can exert pro-
tective functions in liver fibrosis, myocardial ischemia–
reperfusion injury and in the developing cerebral cortex 
upon tissue damage [318]. In contrast to CXCL12, MIF 
is not associated with homeostatic function, but rather 
pro-inflammatory and pro-atherogenic activity [305, 
319], and is considered an inflammatory cytokine [320]. 
Similar to other CXCR4 ligands, eUb can also mediate 
chemotaxis, but the chemotactic activity is weaker than 
induced by CXCL12 [321]. Furthermore, the interaction 
of eUb with CXCR4 is independent of the N-terminal 
receptor domain used by CXC12 and instead relies on 
binding sites in the  2nd and  3rd extracellular loop [321].

Like CCR5 and other GPCRs, CXCR4 signaling is 
regulated by desensitization (homologous and heterolo-
gous), internalization, and degradation. Direct activation 
of PKC by phorbol esters [322, 323], T or B cell receptor 
engagement [324, 325], CXCR1 activation [326], or CCR5 

activation [327] are able to induce CXCR4 internaliza-
tion. CXCR4 can recycle back to the plasma membrane 
following PKC-mediated internalization [322]; however, 
the receptor recycles poorly following CXCL12 stimula-
tion [328]. CXCR4 has been shown to be ubiquitinated, 
sorted to the lysosome, and degraded [329], which is 
mediated by the E3 ubiquitin ligase AIP4 [330]. Targeting 
CXCR4 with specific agonists or molecules that promote 
the internalization and sequestration has not been as 
widely explored as for CCR5, owing in part to the physio-
logical requirements for CXCR4 binding. However, there 
has been some progress in finding drugs that can induce 
signaling while preventing viral binding [43, 331].

CXCR4 signaling
Like CCR5 and other chemokine receptors, CXCR4 
signals primarily through G-protein dependent path-
ways, primarily  Gαi mediated inhibition in cAMP pro-
duction. Recombinant overexpression systems, such as 
HEK293T and Sf9 cells show that CXCR4 can activate 
different  Gαi proteins, including  Gαi1,  Gαi2,  Gαi3, and  Gαo 
in response to CXCL12 stimulation [332], although it 
seems that CXCR4 couples more efficiently to the  Gαi1 
and  Gαi2 rather than  Gαi3 and  Gαo [333, 334]. Activation 
of CXCR4 coupled to  Gαi triggers activation of MAPK 
and PI3K pathways [335], mediating effects on migration 
[336–338] as well as cell survival and proliferation [313, 
339]. CXCR4 can also act through other G proteins, such 
as the noncognate G protein  Gα13 [340] or  Gαq [341, 342], 
although this may be context specific. CXCR4 only cou-
ples to  Gαq in dendritic cells and granulocytes but not 
T and B cells [343], and coupling to  Gα13 may have par-
ticular relevance in cancer, where  Gα13 is overexpressed 
[344, 345]. As with CCR5, activation of CXCR4 coupled 
to  Gαq can induce  IP3 mediated  Ca2+ release through 
PLCβ [341, 342]; this pathway can also be activated via 
the released  Gβγ subunit [235, 346]. Activation of CXCR4 
coupled to  Gα13 in Jurkat T cells mediates cell migration 
via activation of Rho [340], and also mediates CXCR4 
trafficking into Rab11 + vesicles during CXCL12-induced 
endocytosis in T cells [347].

Like CCR5, CXCR4 can also signal through G protein 
independent mechanisms, such as β-arrestin-mediated 
signaling. Both β-arrestin-1 and -2 enhance CXCR4-
mediated ERK activation [338], and β-arrestin-2 is 
involved in p38 activation and migration following 
CXCL12 stimulation [348]. Additionally, upon CXCL12 
stimulation, CXCR4 can dimerize and become phospho-
rylated at intracellular tyrosines by rapid recruitment and 
activation of JAK2 and JAK3 [349]. This leads to STAT 
dimerization and activation of the STAT pathway, which 
is unaffected by pertussis toxin treatment [349]. The JAK/
STAT pathway leads to diverse cellular effects, including 
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mobilization of  Ca2+ from intracellular stores, and after 
its nuclear translocation, the transcription of several tar-
get genes [349]. Studies using a JAK-specific inhibitor 
have shown that in a T-lymphoblast cell line, the asso-
ciation of  Gαi with CXCR4 is dependent on JAK, further 
supporting a co-dependent mechanism between mem-
bers of the JAK/STAT pathway and G-protein coupled 
signaling [350] (Fig.  1B). Activation of the JAK/STAT 
pathway may also be affected by the oligomerization 
state of this receptor, as homodimerization of CXCR4 
is necessary to elicit G protein independent activation 
of JAK/STAT and enhance the response of CXCR4 to 
CXCL12 [349]. The heterodimerization/oligomerization 
of CXCR4 to other receptors may have a number of other 
potential effects on chemokine signaling responses as 
well, interfering with the binding to one receptor in the 
oligomer or altering its ability to interact with or signal 
through intracellular mediators [351]. This is exemplified 
by the potential ability of ACKR3 to interact with CXCR4 
and affect CXCR4 trafficking and/or coupling to other 
proteins [352].

HIV activation of co‑receptors
In the context of HIV infection, CCR5 and CXCR4 are 
primarily studied as co-receptors that interact with gp120 
to mediate efficient membrane fusion [16, 70]. In addi-
tion to mediating viral entry, gp120 binding also activates 
CXCR4 and CCR5, but the signaling processes associ-
ated with this interaction remains poorly understood. 
Additionally, it remains unclear if co-receptor signaling 
is a requirement for efficient viral entry and replication. 
Early studies in primary CD4 + T-cells, macrophages, 
and transformed T-cell lines suggested that uncoupling 
CCR5 from  Gαi signaling does not alter HIV entry [33, 
353–357], but more recent data contradict these find-
ings, showing a requirement for G-protein signaling for 
viral entry and fusion [281, 358–360], or even post-entry 
stages of infection [361–366]. At least one recent study 
also indicates that co-receptor binding by shed or recom-
binant gp120 provokes different responses than does 
binding by virus associated gp120 [364], suggesting that 
some of the difference between studies could be due to 
the type of gp120 used.

While many gp120 induced signaling processes overlap 
with those initiated by cognate ligands, there are a num-
ber of pathways in which the response, kinetics, G-pro-
teins and downstream effectors involved differ from 
those activated by endogenous ligands. Indeed, relative 
to endogenous ligands, gp120-co-receptor interactions 
stimulate the expression of a substantial number of dif-
ferent genes [364, 367]. This section will focus on the 
most well documented signaling pathways, which are 
detailed in Fig. 2. In general, we will discuss the effects of 

gp120, reflecting both the fact that this is the major pro-
tein interacting with co-receptors on intact virions and 
that the literature in the field has historically relied on 
the use of monomeric gp120. While this provides more 
precise insight into specific co-receptor driven signal-
ing processes, it is important to note that the concentra-
tions of gp120 used in many of the following studies are 
unlikely to represent levels in cART-treated individuals. 
Further, the gp120 driving these processes in the CNS of 
cART-treated PLWH are likely to present on the virion 
surface in complex with gp41 and have a different struc-
ture than free gp120 [70, 364], and may require interac-
tion with CD4 [71, 74], even if the downstream signaling 
effects are driven solely by the co-receptors. However, 
while some studies suggest there may be some differences 
between the responses of shed gp120 and virus associ-
ated gp120 [364], many indicate that monomeric gp120 
and virus-associated gp120 largely initiate the same sign-
aling cascades [213, 264, 285, 365, 366, 368–370]. There-
fore, we have focused on studies that use gp120 to show 
clearly defined roles for co-receptors, rather than CD4, in 
specific signaling mechanisms, to better define specific 
co-receptor driven signaling processes. Finally, given the 
extensive overlap between R5 and X4 signaling pathways, 
they will be discussed together, with specific differences 
pointed out when necessary.

Calcium and ion channels
Ca2+ flux is important to viral infection [281, 371, 372] 
and a number of studies have specifically examined the 
role of  Ca2+ in HIV entry [281, 373]. In human monocyte 
derived macrophages (hMDM), both R5 and X4 gp120 
can increase intracellular  Ca2+, although the magnitude 
of the  Ca2+ release elicited by X4 gp120 is less than that 
induced by R5 gp120 [369, 374]. In microglia, this effect 
is not seen in response to gp41 [375], suggesting it may 
be exclusive to the gp120 portion of the envelope protein. 
The response in T-cells is less clear. Some data show that 
human CD4 + T-cells release  Ca2+ in response to X4 but 
not R5 gp120, and that this is dependent on CD4 bind-
ing [369]. Other studies show that R5 gp160 from both 
HIV and SIV increases  Ca2+ release, but this does not 
occur in response to X4-tropic envelope proteins [265, 
361], although the differences may be due to the specific 
envelope proteins and cell types used. In cultured rat 
and human neurons, gp120 appears to directly disrupt 
neuronal  Ca2+, via alteration of the  [Ca2+]I mediated by 
NMDARs [49, 161],  Ca2+-gated and  Na+-gated chan-
nels [376]. However, it is unclear whether interactions 
between gp120 and neuronal CXCR4 and CCR5 con-
tribute to these rises in  Ca2+, or if the signaling is medi-
ated by interactions between HIV and co-receptors on 
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surrounding glial cells and/or co-receptor independent 
effects of gp120 [47, 48].

As  Ca2+ is a prominent  2nd messenger, it is not clear 
which specific  Ca2+ activated pathways are associated 

with HIV entry. However, Harmon et. al. used human 
U87 astrocytes to show that blocking  Gαq-mediated 
 Ca2+ flux by inhibiting ryanodine or  IP3 receptors blocks 
cell–cell fusion [281]. Data from our lab show that the 

Fig. 2 Co‑receptor signaling mediated by HIV envelope. The viral envelope glycoprotein gp120 can interact with both CCR5 and CXCR4 during 
the attachment and entry process, initiating both G‑protein dependent and independent signaling. Pathways activated through CCR5‑gp120 
interactions are shown here as representatives. Activation of both  Gαi and  Gαq has been reported in response to gp120. Signaling through  Gαq 
mediates activation of PLCβ, calcium release, and downstream activation of small GTPases, which are critical for viral entry, replication, and changes 
in actin dynamics. Signaling through  Gβγ can also activate PLCβ, as well as PI3K, both of which are linked to the activation of MAPKs. The most 
prominent MAPK shown to be involved in these processes is p38 MAPK, although other MAPK are also involved. The activation of MAPKs regulates 
a large number of downstream pathways, including but not limited to, the activation of STATS, activation of GTPases, the activation of MMPs, and 
the release of chemokines and cytokines.  Gαi and G‑protein independent interactions with β‑arrestins can also activate the Src family of kinases, 
which are also linked to PI3K and MAPK activation. Activation of all of these pathways can mediate a number of deleterious processes during HIV 
infection of the CNS, including neuroinflammation, blood–brain barrier dysfunction and increased migration of infected cells to the CNS, increased 
viral replication, and neurotoxicity. Many of these pathways overlap, meaning that gp120‑coreceptor interactions can influence these pathogenic 
processes through several different, interacting pathways depending on the cell type and system in which they are being studied. Solid arrows 
represent defined, published pathways while dashed lines indicate pathways that have not been directly demonstrated, but are presumed to occur 
based on what is known in the literature
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dopamine-mediated increase in HIV entry in hMDM 
requires dopamine-mediated  Ca2+ release [373], sup-
porting the importance of  Ca2+ in the entry process. 
These data suggest that while the two types of gp120 
have similar effects on  Ca2+, the magnitude and therefore 
outcome of envelope mediated  Ca2+ release is distinct 
between X4- and R5- tropic gp120.

G-protein coupled receptors are also associated with 
ion channel activity [374]. R5-gp120 can suppress the 
activity of the voltage gated  K+ channel BEC1 in 293  T 
cells [377] and X4-tropic envelope can increase the phos-
phorylation of Kv1.3 channels and induce membrane 
depolarization in T-cell lines [378]. In human mac-
rophages, X4 and R5 gp120 can elicit  Ca2+-activated  K+ 
currents,  Cl−  currents, and  Ca2+-permeant nonselec-
tive cation currents, which are blocked by the specific 
CXCR4 antagonist, AMD3100, or in cells from donors 
homozygous for the CCR5-� 32 mutation, respectively 
[374, 379]. This indicates that currents through this chan-
nel were mediated specifically by the co-receptors and 
not CD4 [374]. Ionic signaling via gp120 has also been 
reported in other cell types as well; exposure of rat pri-
mary astrocytes or primary microglia to X4 gp120 stimu-
lated  Na+/H+ antiport and  K+ conductance [380–382]. 
Interestingly, there are differences in the ability of natural 
ligands and gp120 to activate some of these ion channels; 
whereas non-selective cation channels are activated by 
R5 and X4 gp120, they were not activated by CXCL12 or 
CCL4 in hMDM [374]. Further, while the overall pattern 
of  Na+ and  K+ signaling between R5 and X4 gp120 in 
these hMDM was similar, there were differences in mag-
nitude and kinetics. For example, X4 gp120 induced less 
frequent  K+ current activation compared to R5 envelope 
[374, 379]. Although the precise physiological relevance 
of these differences is not clear, these studies suggest 
variability and potentially biased co-receptor signaling in 
response to different types of gp120, and to gp120 rela-
tive to natural ligands.

Tyrosine and MAP kinase signaling
Downstream of  Ca2+, gp120 acts on a number of kinases, 
such as the focal adhesion-related tyrosine kinase Pyk2 
[213, 273, 282, 284, 285, 370, 383, 384]. This kinase 
plays a critical role in R5 gp120 mediated cytokine and 
chemokine secretion [264, 273, 282–284], dendritic cell 
migration [285], activation of small GTPases such as 
Rac1 [281], and activation of MAPKs such as p38 MAPK 
[273, 282–285, 385]. Pyk2 activation in response to both 
R5 and X4 gp120 has now been demonstrated in a large 
number of systems, including primary CD4 + T-cells 
and T-cell lines [213, 370, 383, 384], hMDM [264, 273, 
282–284], dendritic cells [285], and astrocytic models of 

HIV [281], indicating its importance in gp120 mediated 
signaling.

In addition to Pyk2, and often downstream of it, gp120 
can activate several distinct but often overlapping sign-
aling cascades, several of which are also activated by 
cognate chemokines of both CCR5 and CXCR4 [273, 
277, 286]. These include several different MAPK path-
ways, such as p38 MAPK [273, 277, 282–285, 386–388], 
JNK/SAPK [273, 282–284], and ERK cascades [286, 363, 
368, 389, 390], all of which can be activated by both R5 
and X4 gp120, although the activation of these varies 
by stimulus and cell type [273, 363, 391]. In hMDM, for 
example, both types of gp120 can activate p38 MAPK, 
but X4 gp120 inconsistently induced activation of JNK/
SAPK compared to the more consistent activity induced 
by an R5 envelope [273]. In unstimulated human primary 
CD4 + T cells, high levels of gp120 increased ERK1/2 
phosphorylation, although other studies show ERK1/2 is 
only activated when T-cells are pre stimulated through 
the T-cell receptor (TCR) [384, 389, 391]. There is also 
conflicting evidence regarding ERK1/2 activation by 
R5 gp120, as studies in both artificial cell systems [277] 
and primary macrophages [273] reported no effect of 
R5 gp120 on ERK1/2 phosphorylation. However, others 
show a robust effect after treatment with gp120 from R5 
HIV [273, 286, 363, 390, 392, 393]. Neither differences in 
cell type nor gp120 strain fully explain these discrepan-
cies in ERK1/2 activity, as several studies used identical 
cell types and concentrations of gp120 [273, 390]. Given 
many studies were done with primary human cells, these 
discrepancies may suggest that population specific het-
erogeneity plays a significant role in the human signal-
ing response to gp120. It is also unclear whether these 
signaling events are physiological at the concentrations 
of gp120 present in vivo as gp120 is often used at extra 
physiologic levels [172].

Given the importance of Pyk2 and MAPK signaling 
activation, it is unsurprising that several G-protein-medi-
ated pathways have been implicated in the modulation 
of Pyk2 and MAPK activity.  Gαi-activated signaling has 
been linked to PI3K and downstream activation of Pyk2, 
p38 MAPK, and ERK1/2 [213, 220, 273, 363, 390, 393, 
394], while  Gαq signaling can activate PLCβ and lead 
to  Ca2+-mediated activation of Pyk2 [273, 281, 395], as 
discussed above. Given the variability of gp120 subtypes 
and cell systems used to define HIV signaling, it is pos-
sible that the coupling of CCR5 and/or CXCR4 to specific 
G-proteins varies with cell type and with X4 or R5 gp120 
[36, 197, 215]. Irrespective of the G-proteins involved, 
data indicate that the activation of the MAPK signaling 
pathway in response to both R5 and X4 gp120 is a com-
mon mediator of gp120 signaling, occurs in a wide vari-
ety of cell types, and is linked to a number of downstream 
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pathways that may play a role in the neuropathogenesis 
of HIV.

Indeed, in many studies, the functional outcome of 
both R5 and X4 gp120 mediated activation of the MAPK 
cascade, and in particular, p38 MAPK, has been asso-
ciated with neuronal dysfunction and death [50, 386, 
396–401]. Notably, activation of MAPK signaling cas-
cades by X4 gp120 has been suggested to play a role in 
the neurotoxic effects of gp120 compared to the protec-
tive effects of CXCR4 [160, 167, 400], supporting the 
concept of differential signaling induced by HIV and 
chemokine engagement of co-receptors. The clinical rel-
evance of data showing gp120 mediated neurotoxicity is 
not well understood, and it is unclear if and how R5 and 
X4 gp120 directly interact with neuronal co-receptors 
to drive these effects, as neurons lack the CD4 receptor 
[402]. Further, the amount of neuronal death observed 
in the brains of cART-treated PLWH has declined sub-
stantially [3, 133], suggesting that the current effects of 
co-receptor activation by virion associated gp120 are not 
inducing neurotoxicity. Still, the robust amount of data in 
this area suggests that co-receptor mediated activation of 
MAPK, specifically p38 MAPK, has an important role in 
HIV-induced neuropathogenesis.

HIV‑mediated signaling downstream of MAP kinases
Signaling through MAPK regulates a variety of functions, 
including but not limited to; the release of inflammatory 
chemokines and cytokines, the activation of STATs, and 
the activation of MMPs [36, 197, 215, 273, 282, 286, 390, 
393, 403, 404]. Secretion of inflammatory cytokines is of 
particular interest given the central role of these factors 
in driving HIV-associated neuroinflammation. Exposure 
to both R5 and X4 envelopes can lead to the production 
of a large number of chemokines and cytokines, including 
TNFα, MIP-1α, MIP-1β, IFN-γ, IL-1, IL-6, IL-10, MCP-1, 
CCL2, and CCL5 [246, 264, 273, 283, 284, 286, 389, 397, 
405]. Exposing macrophages and T cells to gp120 also 
leads to the translocation of several transcription factors 
critical to cytokine and chemokine secretion, including 
AP-1, NF-κB, and C/EBP [36, 197, 215, 246, 389, 406]. 
In addition to promoting inflammation, these chemotac-
tic and inflammatory mediators can modulate HIV rep-
lication [407] and recruit uninfected macrophages and 
T-cells that provide new targets for viral spread.

In hMDM, gp120 mediated release of the inflamma-
tory cytokines IL-1β and TNFα is PI3K dependent [264, 
390], although IL-1β secretion was also  Gαi dependent, 
suggesting  Gαi-mediated PI3K activation [264]. Both 
p38 MAPK and ERK1/2 may also mediate the release 
of these cytokines, potentially through independent 
signaling pathways [288, 390, 398, 404, 408, 409]. One 

of these pathways may involve the activation of the Src 
family of kinases, as Src activation has been linked to 
R5 gp120 mediated increases in both IL-1β and TNFα 
in hMDM [264, 286]. Src kinases mediate GPCR-
induced phosphorylation of the epidermal growth fac-
tor receptor (EGFR) [410], which then activates the 
PI3K/AKT signaling cascade and/or Pyk2 to mediate 
MAPK activation [410–412]. Src kinases are also linked 
to MAPK signaling through β-arrestins and Pyk2, sug-
gesting overlap between G-protein dependent and 
independent pathways [200, 413]. This suggests that 
G-protein dependent and independent mechanisms 
work in concert to promote cytokine and chemokine 
dysregulation, potentially via the MAPK pathway.

In addition to cytokines, STATs are also upregu-
lated in response to R5 and X4 gp120 [403, 414–416]. 
Canonically, activation of these latent cytoplasmic 
transcription factors is mediated by JAKs [417–419] in 
response to inflammatory and regulatory stimuli [419, 
420], although JAK independent mechanisms have been 
described [403, 415, 421]. Gp120-mediated activation 
of STATs 1 and 3 leads to activation of IL-6 in mono-
cyte derived dendritic cells (MDDC) and HBMECs 
[403, 414, 415], although the mechanisms leading to 
this activation differed. In MDDCs, activation involved 
p38 MAPK and activation of NF-κB [403], whereas in 
HBMECs it involved activation of PI3K [414, 415]. In 
MDDC, the actions of gp120 were distinct from those 
of CCL4, which did not induce STAT3 activation [403], 
although other studies have found that CCR5 ligands 
can activate the canonical JAK/STAT pathway [214, 
271, 272, 287, 349]. In HMBECs, HIV virions were also 
shown to activate STATs 1 and 3 and induce produc-
tion of inflammatory cytokines. Several of these studies 
further demonstrated that HIV released from infected 
cells activated STATs [415, 420], potentially disrupt-
ing the blood–brain barrier. These studies also suggest 
that there may be differences in HIV-associated STAT 
activation between cell types, and that HIV may acti-
vate certain STATs in a JAK-independent manner. In 
contrast to the number of pathways activating STATs, 
the upregulation of MMPs, which are responsible for 
the degradation of extracellular matrix (ECM), appears 
to be largely mediated by p38 MAPK [277, 387, 422]. 
Gp120 mediated increases in MMPs have been shown 
in a number of cell types, including MDDC, T-cells, 
and astroglioma cells [277, 387, 423]. The signal-
ing underlying this process is not clear, but it is likely 
regulated by the G-protein dependent and independ-
ent mechanisms described above. Together, these data 
further support the critical role of the MAPK cascade 
in mediating the effects of HIV on both target cells and 
surrounding cells.
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Changes in the actin cytoskeleton
Binding of gp120 to CCR5 and CXCR4 is also linked to 
alterations in the cytoskeleton, which may be important 
in both pre-and post-entry stages of infection. Both HIV 
and gp120 can activate Rho and Rac GTPases, predomi-
nantly Rho, cdc42, and Rac [281, 359, 424–426]. These 
GTPases are linked to cytoskeletal dynamics, including 
organization of actin and microtubules. Harmon et  al., 
demonstrated the importance of these pathways in an 
astrocyte model of viral entry, showing that R5 gp120 ini-
tiates a signaling cascade, via  Gαq, that activates Rac1 and 
is required for viral fusion [281]. The need for activation 
of the  Gαq cascade, particularly PKC, in early entry and 
replication events is supported by other studies that show 
inhibition of PKC delta significantly decreased HIV repli-
cation, but not entry, in hMDM [360]. Thus, co-receptor 
mediated changes in the cytoskeleton that allow viral 
fusion seem to require  Gαq mediated activation of small 
GTPases.

Both X4 and R5 gp120 mediate viral fusion through 
changes in Rac and Rho GTPase activity, but X4 gp120 
has specific effects on the actin cytoskeleton that are crit-
ical for infection of resting T cells [366]. Static cortical 
actin in resting T cells blocks productive infection, and 
gp120-CXCR4 signaling helps to overcome this inhibi-
tion through activation of cofilin, a cellular actin-depo-
lymerizing factor critical for actin dynamics and viral 
nuclear migration [366]. The effects of gp120 on actin 
dynamics are dose and conformation dependent [366, 
427]. At high doses, gp120 acts more like CXCL12, trig-
gering rapid cofilin phosphorylation and actin polymeri-
zation, followed by cofilin dephosphorylation and actin 
depolymerization [366, 368]. At lower doses, gp120 is 
incapable of triggering rapid changes, instead mediating 
gradual cofilin dephosphorylation and actin depolymeri-
zation [366, 427].

Alteration of the actin cytoskeleton by other modula-
tors have also been reported. WAVE2 is part of a mul-
tiprotein complex linking receptor signaling to actin 
nucleation and filament branching through Arp2/3. 
Gp120 triggers WAVE2 phosphorylation through both 
CXCR4 and CCR5, acting through early  Gαi independ-
ent and late  Gαi dependent mechanisms [428], and inhi-
bition of Arp2/3 activity significantly attenuated HIV-1 
nuclear migration and infection of CD4 + T cells [428]. 
Additionally, both R5 and X4 gp120 alter LIMK/cofilin 
signaling, which regulates actin depolymerization at the 
pointed (-) ends of actin filaments [365, 366, 428]. LIMK 
regulates cortical actin dynamics in CD4 + T-cells, and 
LIMK knockdown significantly inhibited early HIV viral 
DNA synthesis and CXCR4 internalization in these cells 
[365]. As both LIMK and WAVE2 are activated by Rac1 
[359, 365, 429], and are key players in regulating actin 

dynamics [429], these data suggest small GTPase regula-
tion of cofilin and ARP2/3 dynamics by gp120 allows HIV 
to hijack the actin cytoskeleton machinery to regulate 
actin treadmilling, promoting HIV nuclear migration.

Thus, co-receptor-mediated changes in key cytoskeletal 
proteins present a mechanism by which distinct signaling 
pathways mediate viral entry and replication in a number 
of different cell models. Co-receptor-mediated cytoskel-
etal alterations may also be important in establishing 
viral latency, particularly in T-cell populations [183, 367], 
although a discussion of this is beyond the scope of this 
review. While the precise signaling pathways and effec-
tors mediating the effects of gp120 may vary, it seems 
clear that co-receptor signaling plays an indispensable 
role in both the replication of HIV and the effects of HIV 
on surrounding cells.

Co‑receptor signaling in HIV neuropathogenesis
There are two prevailing hypotheses regarding HIV 
neuropathology, the direct injury hypothesis and the 
bystander effect theory [105]. The vast majority of 
research examining these areas in the context of gp120-
co-receptor signaling studies co-receptor activation via 
application or expression of specific gp120 proteins. 
These data show that gp120 mediated activation of both 
co-receptors contributes to both mechanisms of injury, as 
well as to the spread of CNS infection [49, 50, 386, 430–
433]. While these theories are not mutually exclusive, 
we did not find any studies from the post-cART era that 
show gp120 levels reach concentrations high enough in 
the CNS or periphery to have any biological effects [172]. 
In addition, although multiple CNS cell types express 
both CXCR4 and CCR5, including neurons, astrocytes, 
and dendritic cells [18, 114, 240, 241], neurons do not 
express CD4 [402], and CD4 is generally thought to be 
required for efficient binding of gp120 to either CCR5 or 
CXCR4 [69, 70]. Thus, it remains unclear whether direct 
interactions between monomeric gp120 and neuronal 
co-receptors have physiological relevance, and it may be 
that HIV-mediated neuronal injury is largely due to indi-
rect effects driven by low levels of active replication in 
microglia and perivascular macrophages [47, 48, 50, 172]. 
However, several in vitro studies have indicated a role for 
neuronal CCR5 or CXCR4 in the actions of gp120, sug-
gesting there may also be a role for CD4 independent 
interactions in neuropathogenesis [47, 49, 162, 163, 216, 
431, 434–436].

Given these data, we will only briefly discuss indirect 
effects of co-receptor signaling on neuronal injury and 
focus primarily on the role of the previously defined 
co-receptor signaling cascades and effectors in driving 
HIV neuroinflammation, as well as how external factors 
such as drug abuse can alter these events. As with our 
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discussion on HIV-mediated co-receptor signaling, we 
will largely discuss studies that have relied solely on mon-
omeric gp120 concentrations unlikely to be found in the 
CNS, as these represent the majority of the literature per-
taining to this subject and provide valuable insight into 
how the specific activity and signaling pathways activated 
by discrete co-receptors can drive neuroinflammation 
and neuroHIV as a whole.

Neuroinflammation
Activation of both CCR5 and CXCR4 by gp120 can 
induce the production of a number of inflammatory 
cytokines and chemokines [218, 273, 286, 387–390, 
403–405, 437], increase the transmigration of inflam-
matory and infected monocytes and T-cells [414, 420, 
425, 438], activate macrophage and glial populations 
[103, 284, 439], alter BBB integrity [277, 415, 438, 440] 
and induce oxidative stress, which can exacerbate these 
effects [423, 439, 441–443]. The majority of these events 
occur in infected and uninfected myeloid cells, includ-
ing both transmigrated peripheral monocytes, hMDM, 
and CNS resident cells such perivascular macrophages 
and microglia [50, 101, 444–448]. Astrocytes may also 
be involved [112, 444, 449, 450]. All myeloid cells express 
both co-receptors, with much higher levels of CCR5 [18, 
19], and in response to interactions with gp120 they pro-
duce cytokines and chemokines that increase inflam-
mation and recruit additional immune cells to combat 
infection. The cytokines associated with activation of 
co-receptors include TNF-α, IL-1β, CCL2, CCL3, CCL4, 
CCL5, CXCL10, CXCL12, IL-6, and IL-8, many of which 
are induced by MAPK-dependent signaling events, par-
ticularly p38 MAPK [273, 282, 286, 390, 392, 393, 397, 
403, 405, 414, 430, 446, 451]. Elevated concentrations of 
TNF-α are found in the brains and cerebral spinal fluid 
(CSF) of HAND patients [452–455] and upregulated 
IL-1β mRNA has been found in cognitively impaired 
individuals [456]. Both cytokines are early regulators 
of the inflammatory response, and their release leads 
to activation of immune cells such as macrophages and 
microglia [454]. IL-1β also activates astrocytes, stimu-
lating NF-κB activity [457] and the production of other 
inflammatory cytokines, including TNFα [454]. These 
cytokines can also act on neurons, contributing to synap-
tic injury and suggesting a mechanism by which gp120-
induced production of chemokines can promote both 
inflammation and neuronal dysfunction [154].

Co-receptor induced increases in TNF-α could pro-
mote increased monocyte migration and dysregula-
tion of the BBB by inducing the expression of adhesion 
molecules such as ICAM on endothelial cells [458] and 
promoting the production of chemoattractants, such 
as CCL2 and CCL4 [50, 459], which are released from 

macrophages and microglia. While early studies sug-
gested CCL4 could inhibit the interactions between 
CCR5 and gp120 [460, 461], this is unlikely to occur 
in  vivo given the ability of HIV to utilize different con-
formations of CCR5 to escape inhibition by endogenous 
chemokines [293, 462]. Thus, increased production of 
CCL4 could further activate CCR5, increasing the pro-
duction of chemokines and cytokines that both recruit 
infected monocytes into the CNS and draw uninfected 
CNS cells to the site of infection, thereby promoting the 
spread of HIV [97, 187, 463, 464]. A variety of additional 
factors, including other viral proteins, cell debris, and 
aberrant levels of neurotransmitters such as dopamine 
and glutamate [465–471], further enhance the release 
of some of these chemokines from macrophages and 
microglia. In the pre-cART era, increased levels of these 
chemokines were observed in the CNS of individuals suf-
fering from HIVE [452, 472], though this is far less com-
mon in the era of cART.

The development of neuroHIV is also influenced by 
the interactions of gp120 with co-receptors on non-
myeloid populations, including both CNS dendritic cells 
and endothelial cells [285, 403, 414, 420]. Many of these 
effects are induced by gp120-CCR5 interactions that 
release STATs and MMPs. For instance, gp120-CCR5 
interactions on dendritic cells activate several signal-
ing cascades including the p38 MAPK pathway, driving 
dendritic cell migration and the release of inflammatory 
cytokines via downstream STAT signaling [285, 403]. 
As the number of dendritic cells in the CNS is greatly 
increased during neuroinflammatory diseases [473], den-
dritic cell exposure to infected myeloid cells or viral pro-
teins could drive the recruitment of more dendritic cells 
to vulnerable areas of the CNS, further contributing to 
neuroinflammation and neuronal dysfunction. Co-recep-
tor-gp120 interaction on endothelial cells comprising the 
BBB can also result in increased myeloid cell recruitment, 
as several in  vitro models of the BBB show that gp120 
can drive increased monocyte migration and damage the 
BBB. This occurs via reduced expression of tight junction 
proteins and increasing expression of the inflammatory 
factors IL-6 and IL-8 [414, 415, 420, 425, 438, 474]. The 
precise mechanisms underlying these results are unclear, 
but is likely due to multiple mechanisms, including PI3K-
mediated STAT activation [414, 415, 438], activation of 
Rac1 and other GTPases [425], and PKC activation [438].

The activation of MMPs, which are upregulated in the 
CNS of HIV-infected individuals [475–477], may also 
play a critical role in the recruitment of infected cells into 
the CNS. These factors, such as MMP9, are associated 
with inflammatory diseases and increased permeability 
of the BBB [423, 440]. Both T-lymphocytes and C6 astro-
glioma cells increased MMP9 secretion in a p38 MAPK 
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dependent manner in response to R5 and X4 gp120 
[277], and both HIV and gp120 also increase MMP9 
secretion in macrophages [387]. Further, activation of 
MMPs is also associated with drug abuse, particularly the 
use of methamphetamine [387, 478]. This demonstrates 
one of many potential mechanisms by which substances 
of abuse can exacerbate HIV-associated neuropathology, 
with a number of additional potential overlaps between 
HIV and substance abuse discussed in subsequent sec-
tions. Overall, these and many other studies indicate that 
co-receptor-gp120 interactions act through a variety of 
distinct but overlapping signaling mechanisms, includ-
ing p38 MAPK, PI3K, STAT and MMP activation, to par-
ticipate in the inflammatory impact of HIV in the CNS. 
Although much progress has been made, further stud-
ies are needed to tease out the relative importance and 
role of these different pathways, and how they may work 
together to promote the production of inflammatory 
factors, migration of infected cells and other processes 
involved in neuroinflammation.

Co‑receptor mediated neuronal injury
Although the mechanisms by which HIV interactions 
with neuronal co-receptors can directly drive neurotox-
icity are not clear, several studies indicate that glial cells 
and macrophages can mediate the neurotoxic effects 
of gp120 [50, 154, 386, 479–482]. For example, inac-
tivation or depletion of macrophages and microglia 
abrogates gp120-mediated neurotoxicity [50, 480]; addi-
tionally, activation of CXCR4 on macrophages/micro-
glia is a prerequisite for gp120 neuronal injury [50, 386, 
481], suggesting these effects are driven by co-receptors 
on glial populations. Additionally, microglial activation 
is required for R5 gp120-induced synaptic degradation 
in primary cortical cultures [482], and X4 gp120-induced 
upregulation of ferritin heavy chain (FHC), which is asso-
ciated with cognitive deficits, only occurred in neuronal/
glial co-cultures [154]. Many of these neurotoxic effects 
are also seen in patients with HAND, suggesting that 
gp120-mediated effects play a role in the development of 
neurological disease [483, 484]. Thus, while shed gp120 
may not play a direct role in HIV-driven neurotoxicity, 
co-receptor activation by HIV virions in CNS immune 
cells and glia is still likely to contribute to neuronal 
damage.

As mentioned previously, activation of p38 MAPK is 
central to these neurotoxic effects, and this also seems 
to be mediated through non-neuronal cells. Activa-
tion of p38 MAPK was found in gp120-treated mixed 
cortical cultures (containing neurons, astrocytes, and 
microglia) and this was dependent on the presence of 
microglia [386]. Increases in glial p38 MAPK were nec-
essary for gp120-mediated neuronal apoptosis in mixed 

neuronal-glial cultures [386], and in rat cerebral corti-
cal cultures, gp120 appeared to indirectly induce neu-
ronal apoptosis via activation of the p38 MAPK pathway 
in macrophages and microglia [50]. Downstream of p38 
MAPK, the activation of MMPs from infected mac-
rophages has been demonstrated to contribute to gp120-
induced neurotoxicity, as these proteins can cleave 
CXCL12 into a neurotoxic product aa5-67 CXCL12. 
This cleaved form of CXCL12 is unable to properly bind 
to CXCR4; instead, it stimulates an alternative receptor, 
CXCR3, promoting neurotoxicity [485]. Upregulation of 
MMPs and cleavage of CXCL12 have been reported in 
HIV + brains and is suggested to contribute to neuropa-
thology in humans [486]. Additionally, changes in various 
inflammatory cytokines, such as TNF-α and IL-1β, may 
further indirectly promote neurotoxicity through a vari-
ety of mechanisms, including  Ca2+ overload [484], altera-
tions in dendritic spine length [153, 154], and axonal 
degeneration [479], all of which are associated with cog-
nitive deficits, particularly in the cART era [104–106]. 
Thus, many of the same signaling cascades implicated in 
co-receptor mediated neuroinflammation may also indi-
rectly contribute to neuronal damage via glial-neuron 
interactions. This suggests that advancing our under-
standing of co-receptor mediated neurotoxicity will 
require models that enable the careful dissection of cross 
cell type interactions.

Substance abuse and co‑receptor‑mediated 
neuropathology
Substance use disorders (SUD) have been comorbid with 
HIV infection since the start of the epidemic. Rates of 
SUD vary widely by region, substance, and specific sub-
population, but are found in roughly in 9–48% of HIV-
infected individuals globally, compared to 0.7–8.6% of 
the population as a whole [487–495]. There are particu-
larly high rates of HIV infection among individuals who 
inject drugs—twenty-two times higher than in the gen-
eral population [487, 488, 496]. The impact of SUD is 
especially important when considering neuroHIV, as the 
use of addictive substances is associated with increased 
neuropsychiatric comorbidities and is strongly correlated 
with cognitive decline, even with effective cART [497–
500]. This is likely because use of illicit substances can 
promote neuroinflammation and alter the progression 
of HIV-associated neuropathology [501–504], increasing 
HIV replication and dysregulating cytokine secretion and 
other immune functions in myeloid cells such as mac-
rophages and microglia [502, 504–507]. These effects can 
add to or synergize with the impact of HIV virions and 
viral proteins, including gp120, and host factors, exacer-
bating inflammation and damage to the BBB and recruit-
ing more myeloid cells to enhance the spread of infection. 
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Psychostimulants and opioids represent the major drug 
classes associated with SUDs in PLWH and have subse-
quently been the most studied in relation to gp120 and 
HIV neuropathogenesis.

Stimulants include methamphetamine (Meth), cocaine, 
and prescription drugs used to treat conditions such as 
ADHD, all of which act by directly increasing CNS dopa-
mine [508–510]. Dopamine, and by extension substance 
abuse, has been shown to modulate HIV infection, rep-
lication and inflammation, as well as alter the efficacy of 
the CCR5 entry inhibitor Maraviroc [66, 373, 465, 509, 
511–513], although a comprehensive discussion of the 
role of dopamine in HIV neuropathogenesis is beyond 
the scope of this review. However, studies also show that 
stimulants can directly synergize with gp120 to exac-
erbate neuropathology [387, 408, 437, 514–520]. Injec-
tion of cocaine and gp120 into rodent brains induced 
higher levels of apoptosis than either treatment alone 
[518], and treatment of rat primary neurons with gp120 
and cocaine also enhanced apoptosis through an apop-
totic pathway involving intracellular ROS production, 
mitochondrial membrane potential loss, and activation 
of the NF-κB and ERK, p38 and JNK/SAPK signaling 
pathways [514]. While this study did not demonstrate a 
direct role of co-receptors, these signaling pathways are 
activated by HIV interactions with co-receptors [273, 
277, 282–286, 363, 385–390, 406], suggesting HIV-medi-
ated activation of co-receptors on surrounding glia could 
indirectly exacerbate the effects of these drugs. This is 
further supported by studies demonstrating that cocaine 
and gp120 together may enhance microglial neurotoxic-
ity, as data show cocaine + gp120 alters energy metabo-
lism and AMPK expression to impair the function of 
CHME-5 microglia [521]. In transgenic rats express-
ing gp120, long term exposure to both gp120 and Meth 
synergized to impair learning and memory, dysregulate 
the components of GABAergic and glutamatergic  neu-
rotransmission systems and induce a loss of neuronal 
dendrites and presynaptic terminals in the hippocam-
pus [522]. Learning deficits induced by Meth and gp120 
exposure were also seen in gp120 + transgenic mice, with 
similar patterns of impairment as seen in HIV infected 
Meth users [523]. Moreover, exposure to both Meth and 
gp120 induced greater PBMC transmigration and greater 
decreases in trans-endothelial resistance and expres-
sion of tight junction proteins than either meth or gp120 
alone [515].

These affects may be further amplified through the 
direct interaction of stimulants with CCR5. Cocaine 
can increase mesolimbic CCR5 expression, and the con-
ditioned place preference behaviors associated with 
cocaine are reduced by the use of maraviroc, a CCR5 
antagonist [524]. Meth has been shown to increase CCR5 

expression in cultured macrophages and in the mye-
loid cells of SIV infected macaques [507, 525–527]. We 
and others have shown that dopamine can increase the 
expression of certain CCR5 conformations on the sur-
face of human macrophages [498] and THP-1 cells [528]. 
As small changes in surface expression of CCR5 can 
induce substantial changes in infection [529–532], drug-
associated changes in CCR5 expression or conformation 
could promote greater levels of viral infection, leading 
to increased levels of neurotoxic viral particles and an 
expanded viral reservoir. Together, these data suggest 
that the use of stimulants and the dopamine release they 
induce may synergize to increase infection and inflam-
mation in CNS cells, increasing the spread of HIV and 
expanding the CNS reservoir while also exacerbating the 
development of neuroinflammation.

Opioids are also commonly abused in HIV-infected 
populations and can exacerbate the symptoms of HAND 
[316, 533–535], potentially through interactions with 
both CXCR4 and CCR5 on glia and neurons. Opioids 
can increase both CCR5 expression and the expression 
of toll-like receptors in astrocytic model systems, poten-
tially increasing the magnitude of the inflammatory 
response to gp120 [437, 536–538]. Opioid receptors may 
also heterodimerize with CCR5, with some studies show-
ing mu opioid receptor (MOR) agonists reduce the chem-
otactic effects of CCR5 [539, 540], while others show 
that CCR5 ligands dampen the analgesic effects of MOR 
agonists [541, 542]. Stimulation of the MOR can inhibit 
homeostatic CXCR4 signaling in the CNS via the FHC 
protein [543], and stimulation of neurons co-expressing 
CXCR4 and MORs with morphine or the MOR agonist 
DAMGO inhibited intracellular pathways activated by 
CXCL12, preventing CXCL12-mediated neuroprotec-
tion and CXCR4 phosphorylation [543, 544]. This results 
in long-lasting inhibition of the receptor that is distinct 
from more common opioid-chemokine cross regulatory 
mechanisms including heterologous desensitization [542] 
and receptor dimerization [545]. Further, HIV gp120 can 
upregulate FHC in neuronal/glial cocultures via an IL-1β 
dependent mechanism [154], suggesting opioid use and 
HIV infection may act through overlapping or shared 
mechanisms to induce cognitive impairment. Several 
studies have also indicated that CCR5 plays a central role 
in modulating tat-morphine interactions, with the loss 
of CCR5 blocking tat-induced neurotoxicity, morphine 
tolerance and the release of pro-inflammatory cytokines, 
including CCL2 [448, 541]. This suggests crosstalk 
between CCR5 signaling and MOR signaling could lead 
to unique signaling effectors that exacerbate neuroin-
flammation and neuronal damage. Overall, these data 
indicate that the interactions between drugs of abuse and 
co-receptors can lead to a variety of detrimental effects, 
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increasing both HIV infection within the CNS and con-
tributing to neuropathology. Defining these processes 
more precisely is critical, as the mechanism(s) by which 
distinct substances of abuse exacerbate neuroHIV are 
unclear, hindering development of therapeutics spe-
cific to the vulnerable and growing population of HIV-
infected drug abusers.

Co‑receptors as targets in antiretroviral therapy
Co-receptors are essential for HIV entry and therefore 
make an attractive target for anti-retroviral therapeutics. 
Blocking cell entry prevents viral replication, and when 
combined with other drugs this can achieve sustained 
suppression, halting disease progression. Further, the 
role of co-receptor signaling in modulating neuroinflam-
mation suggests that targeting the downstream signal-
ing events may reduce the inflammatory effects of HIV, 
particularly in combination with other antiretrovirals. 
However, despite more than 30  years of antiretroviral 
development and numerous claims that co-receptor tar-
geting was an emerging, promising therapy [546–549], 
there is currently only one antiretroviral that acts on a 
co-receptor, the CCR5 inhibitor Maraviroc. There are 
several CCR5 inhibitors that were halted or are in ongo-
ing, late-stage clinical trials [44], and there is a CXCR4 
inhibitor, Plerixafor (AMD3100), but it is only approved 
for mobilization of hematopoietic stem cells, due to 
severe off-target effects associated with CXCR4 inhibi-
tion [42, 550]. A number of small molecular inhibitors 
and monoclonal antibodies have also been investigated 
as potential methods for blocking HIV interactions with 
CCR5, but most have not progressed past phase II tri-
als, and none to date have been approved by the FDA 
[37, 547, 551, 552], although the monoclonal antibody 
leronlimab (PRO 140) has been granted fast-track status 
[551]. And although they do not target the co-receptors 
directly, the anti-CD4 antibody Trogarzo, the gp120-tar-
geting attachment inhibitor Fostemsavir, and the fusion 
inhibitor Enfurvitide also inhibit the entry process medi-
ated by CCR5 and CXCR4 [553–555].

There are a number of reasons co-receptors are difficult 
to target, including the ability of HIV to utilize multiple 
different conformations [293, 300] and interference of 
therapeutics with homeostatic signaling leading to off-
target effects [43, 556]. The latter is particularly prob-
lematic for targeting CXCR4, as the essential function of 
CXCR4 in numerous homeostatic processes precludes 
the development of inhibitors targeting this receptor 
[43, 557]. Targeting CCR5 and CXCR4 are both associ-
ated with their own unique set of challenges; therefore, 
we will address these challenges and the current state of 
therapeutics separately. We will then address how we can 
utilize overlaps in the signaling processes associated with 

HIV binding to both receptors to potentially develop 
therapies to ameliorate both HIV infection and associ-
ated neuroinflammation.

CCR5
Early in the HIV epidemic, it was observed that indi-
viduals homozygous for the CCR5-� 32 mutation, which 
renders CCR5 nonfunctional, were resistant to HIV 
infection and lacked significant immunological defects 
[558, 559]. The importance of CCR5 as an antiretroviral 
target was confirmed when the “Berlin patient” received 
a stem cell transplant from an individual homozygous 
for CCR5-� 32 and was functionally cured of HIV [560]. 
Another patient receiving the same treatment is also 
in successful long-term remission from HIV infection 
[561], and CCR5-targeted drug Maraviroc is an effective 
antiretroviral. However, Maraviroc is highly susceptible 
to resistance mutations [45], necessitating the develop-
ment of alternative methods of targeting CCR5 [562]. 
Unfortunately, effectively interfering with viral binding 
to CCR5 is much more complex than had initially been 
anticipated. Early structural studies showed gp120 binds 
to the N-terminus of CCR5, the same region targeted by 
endogenous ligands, and in  vitro studies showing that 
CCL3, CCL4, and CCL5 have potent antiretroviral activ-
ity against R5 viruses [190, 460–462, 563]. However, 
newer studies suggest gp120 interacts with CCR5 differ-
ently than do natural ligands [257, 292–294, 300] and the 
antiretroviral activity of endogenous CCR5 ligands has 
not replicated across cell systems or in  vivo [260, 299, 
564].

This may be due to the capacity for gp120 to efficiently 
interact with CCR5 in multiple structural conformations, 
whereas natural ligands and inhibitors such as Maravi-
roc can only target specific conformations [293, 294, 298, 
300, 301]. Mutational studies and those using antibod-
ies targeting distinct CCR5 conformations confirm that 
CCR5 exists in multiple conformations and oligomeri-
zation states on a single cell, and these different states 
alter the binding affinity of multiple ligands [215, 257, 
268, 292, 294, 299, 300, 565]. Indeed, changes in CCR5 
conformation or mutations in gp120 can lead to a loss 
of efficacy for Maraviroc due to altered binding interac-
tions between CCR5 and gp120 [45, 293, 300, 565]. In 
addition, antiretrovirals that bind directly to CCR5 can 
still induce downstream signaling events, many of which 
can potentiate the impact of HIV on the CNS [37, 260]. 
For these reasons, the use of cognate CCR5 ligands is not 
considered a viable method to block HIV binding to this 
receptor.

This has led to an interest in developing biased ligands 
or small molecules that promote the internalization of 
CCR5 or bias signaling pathways to prevent HIV entry 



Page 19 of 35Nickoloff‑Bybel et al. Retrovirology           (2021) 18:24  

without stimulating downstream signaling [38, 39, 215, 
256, 262, 566]. Several different groups have designed 
effective chemokine analogues that target CCR5, pro-
moting the internalization and delaying the recycling 
of CCR5, rather than competing with other ligands for 
the binding site [38, 214, 256, 258, 260, 290, 302]. These 
molecules have up to 200 times the inhibitory potency 
of Maraviroc on the viral entry process. Perhaps more 
importantly, they may not promote intracellular signaling 
cascades, instead biasing the receptor towards associa-
tion with β-arrestins and internalization [38, 39, 256, 262, 
263, 566]. These analogues may be more effective than 
binding inhibitors like Maraviroc because they reduce 
the surface levels of CCR5, diminishing the impact of 
changes in gp120 binding regions or CCR5 conforma-
tions [256]. Additionally, it is possible that these mol-
ecules could exploit the ability of CCR5 to oligomerize 
with other receptors; a number of in  vitro studies have 
suggested that homo- or hetero-oligomerization of CCR5 
can block HIV infection and replication [244, 269, 270]. 
However, the impact of the formation of these oligomers 
on chemokine-induced signaling and their in  vivo rel-
evance is incompletely understood and requires a more 
complete understanding of chemokine and HIV-induced 
signaling.

CXCR4
While blocking CCR5 has been considered a more 
promising strategy for inhibition of viral entry and rep-
lication, an increasing number of patients are develop-
ing X4 tropic or dual-tropic viral strains that can bind to 
CXCR4 [557]. This suggests that targeting CXCR4 may 
be particularly beneficial for patients in the later stages 
of infection. Early chemical screening and medicinal 
chemistry efforts identified several CXCR4 antagonist 
peptides, including Plerixafor (AMD3100), one of the 
first CXCR4 antagonists to enter clinical trials for anti-
HIV activity [550]. Although AMD3100 appears to have 
a distinct binding site from the region occupied by the 
N-terminus of CXCL12, it still produced severe off-tar-
get effects, including cardiotoxicity, and these trials were 
terminated [567]. Several derivatives of AMD3100 have 
been developed that inhibit CXCR4 at sub-nanomolar 
concentrations; however, clinical utility of these com-
pounds is limited due to their lack of oral bioavailability, 
which is related to their high positive charge at physio-
logical pH [556]. Current studies have moved away from 
the early peptides and are using natural CXCR4 ligands 
as design templates, similar to the chemokine analogue-
based strategies described for CCR5. The N-terminus of 
CXCL12 has been shown to be essential for CXCR4 rec-
ognition, signal transduction, and antiretroviral activity; 
however, peptides targeting this region are less potent 

than native CXCL12, limiting their clinical effectiveness 
[556]. In a similar strategy, the N-terminus of another 
chemokine, viral macrophage inflammatory protein-II 
(vMIP-II) from human herpesvirus-8, was used as the 
design template for various classes of highly potent and 
selective CXCR4 peptide antagonists. While these pep-
tides display high CXCR4 affinity, anti-HIV activity, and 
the ability to mobilize hematopoietic stem cells in mice, 
they are still in the preclinical phase [568].

There are two primary challenges associated with 
developing CXCR4-targeting therapies, accommodating 
receptor oligomerization and minimizing undesirable 
side effects due to the normal, homeostatic functions of 
CXCR4. The ability of receptors to affect one another 
through oligomerization makes it essential to consider 
the in vivo state of CXCR4, particularly because CXCR4 
may homodimerize in both the absence [569] or presence 
of ligand [244, 570] soon after protein translation. Addi-
tionally, CXCR4 may also form heterodimers with other 
chemokine receptors like CCR2 [244, 570], as well as 
non-chemokine receptors, including CD4, opioid recep-
tors, and glycoproteins [351]. Although some studies 
have suggested that the induction of these dimers could 
be used as a strategy to target both R5 and X4-mediated 
infection [244, 269], the functional consequences of oli-
gomerization are not fully understood. This makes it diffi-
cult to predict the effects of pharmacological compounds 
if they do not target oligomerization states CXCR4 exist 
as in  vivo. However, oligomerization may also be bene-
ficial, designing drugs that target unique receptor com-
plexes, though this will be technically more challenging.

The biggest challenge in the development of CXCR4-
targeted HIV entry inhibitors is overcoming undesirable 
side effects that result from inhibition of CXCR4, as this 
receptor has essential roles in numerous homeostatic 
functions in the periphery and CNS. Studies on two 
of the CXCR4 antagonists brought into clinical testing 
(AMD3100 and AMD11070) were terminated early due 
to toxicity [557]. Thus, it is essential to develop molecules 
with potent anti-HIV activity, while preserving CXCL12 
signaling. A number of small molecules and nanobod-
ies have shown promise in vitro in blocking HIV binding 
while preserving CXCL12 interactions, but it remains 
unclear if this will translate to clinically useful drugs 
with an adequate safety profile in vivo [43, 571, 572]. A 
more promising way to address these off-target effects is 
the development of allosteric agonists that can activate 
CXCR4 in the presence of other CXCR4 antagonists and 
antibodies [43]. These allosteric agonists, such as RSVM 
and ASLW [331], may be useful in combination with 
small-molecule antagonists to block viral entry but still 
maintain homeostatic activation of CXCR4. However, 
this will require further understanding of the intracellular 



Page 20 of 35Nickoloff‑Bybel et al. Retrovirology           (2021) 18:24 

signaling mediating both homeostatic receptor activation 
and viral entry.

Strategies to target co‑receptor signaling pathways
While strategies to target CCR5 and CXCR4 via small 
molecules, antibodies, and chemokine analogues are 
promising, none of these holds promise in blocking both 
receptors concurrently. Dual co-receptor antagonists 
have been described [549], but the majority have only 
undergone in  vitro and in silico evaluation, and many 
show inadequate safety profiles and poor pharmacoki-
netics. Given differences in the requirements for CCR5 
and CXCR4 under homeostatic conditions, effective 
inhibition may require different approaches to ensure 
the functionality of CXCR4 in particular. An alternative 
method to target both co-receptors may lie in drugs tar-
geting common downstream signaling effectors induced 
by HIV-co-receptor interactions [41]. Although such 
drugs may not serve as antiretrovirals on their own, as 
they do not sufficiently block the viral life cycle, they 
could potentially act to ameliorate co-receptor mediated 
neuroinflammation and pathology. Given the prominent 
role of persistent neuroinflammation in driving neuropa-
thology in the cART era, there is a critical need to target 
mechanisms of inflammation within the CNS.

CCR5 and CXCR4 have a number of common path-
ways, with several specific effectors such Pyk2 and p38 
MAPK that are involved in a number of HIV-associated 
pathologies. These effectors are also involved in other dis-
eases, including cancer [573, 574], so a number of inhibi-
tors are already on the market, or in drug pipelines, and 
could be repurposed as HIV drugs. Inhibitors of tyros-
ine and MAP kinases may have anti-HIV activity [575, 
576], and p38 MAPK inhibitors have been examined as 
potential therapeutics in several inflammatory diseases 
and cancers [577]. A recent primate study using a p38 
MAPK inhibitor in combination with cART showed this 
combination reduced markers of immune activation, 
although only in the periphery [576]. But despite over 20 
candidates in clinical trials, no specific MAPK inhibitors 
have been clinically approved [577], likely due to the sub-
stantial number of signaling pathways and pathological 
and physiological processes in which this kinase plays a 
role. A more promising avenue may be to focus on tyros-
ine kinase inhibitors (TKIs), which are directed against 
Src family kinases [573, 578]. The Src family of kinases 
is linked to both the PI3K/AKT and MAPK signaling 
cascades via multiple mechanisms [410, 412, 413], and, 
in hMDM, can mediate changes in IL-1β and TNFα in 
response to R5 gp120 [264, 286]. These have been exam-
ined largely in the context of inhibiting replication and 
the establishment of the viral reservoir in T-cells [573, 
578], and TKIs such as dasatinib can both protect against 

HIV infection in humanized mice [579] and inhibit HIV 
replication in T-cells [580]. This suggests TKIs could be 
a useful adjuvant during early HIV infection to prevent 
establishment of viral reservoirs [581], and the centrality 
of both PI3K and MAPK signaling to co-receptor medi-
ated neuroinflammation suggests they could be prom-
ising targets in the CNS as well. Despite the fact that 
some of these therapeutics, such as dasatinib, have been 
approved for some cancers [582], they have not been 
sufficiently proven as an effective anti-HIV therapeutic 
[573]. Additionally, these studies have not addressed the 
potential use of these therapeutics in specifically amelio-
rating CNS pathology driven by HIV-co-receptor inter-
actions, despite in vitro evidence demonstrating a role for 
Src and its regulation of the MAPK and PI3K cascades in 
these effects [264, 286, 412, 413].

Conclusion
A huge body of work indicates co-receptor signal-
ing pathways activated by HIV are not only critical to 
the viral entry and replication process, but also to the 
broader neuroinflammatory and neurotoxic impact of 
HIV in the CNS. There have been numerous attempts to 
develop therapeutics targeting CXCR4 and CCR5, but 
most of these candidates did not or have not yet advanced 
out of trials, and many failed due either lack of efficacy 
or serious side effects [43, 583–587]. The lack of suc-
cess highlights the gap in our knowledge regarding how 
these effectors are activated by gp120 and natural ligands, 
their role in mediating physiological CCR5 and CXCR4 
signaling, and the impact of their downstream signal-
ing effectors on homeostatic and pathological processes. 
The signaling cascades initiated through both CCR5 and 
CXCR4 have a wide array of downstream consequences, 
mediated by a variety of overlapping pathways triggered 
by both HIV and chemokine interactions. Defining which 
of these pathways is associated with a specific ligand, 
G-protein, set of downstream effectors, and/or recep-
tor conformations is critical to understanding of how to 
target them. The emerging data suggesting that discrete 
receptor conformations induce distinct downstream 
events, and that these events are also cell-type specific, 
speaks to a need for comprehensive examinations of the 
conformations targeted by specific ligands, the signaling 
pathways and kinetics of each signaling event, and the 
downstream consequences for the specific cell and body 
as a whole. Filling in this knowledge gap is essential to the 
development of therapeutics targeting specific signaling 
pathways and highlights the need for rigorous studies in a 
more physiologically relevant context.

It is important to note that the majority of studies dis-
cussed here have been performed using highly artificial 
conditions. Thus, while they suggest a critical role for 
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co-receptors, they preclude drawing a definitive conclu-
sion regarding the impact of co-receptor signaling on 
HIV neuropathogenesis. This further highlights the need 
for future studies to make use of physiologically relevant 
cell types, and take advantage of new technologies, such 
as 3D culture systems and iPSC-derived primary cells, 
as well as animal models that more closely parallel the 
human immune system. Many of the neuroinflammatory 
effects of HIV-co-receptor interaction involve multiple 
cell types and show distinct activity in co-cultures rela-
tive to monocultures. Therefore, the development and 
use of mixed culture systems and organoids using com-
binations of neurons, glia and other myeloid cells will 
be critical to better mimic the interactions in the CNS. 
Combining data from these systems with more reduc-
tionist, single cell models that capitalize on newer tech-
nologies such as CRISPR and single cell genomic analyses 
such as single cell RNA sequencing (scRNAseq) and sin-
gle cell Assay for Transposase Accessible Chromatin 
(scATACseq), will enable targeted analyses of changes in 
the expression, transcription and or function of specific 
effectors within different signaling pathways. Moreover, 
pairing these assays with conformational studies will ena-
ble precise assessment of the effects of specific confor-
mational changes on HIV binding and signaling though 
CXCR4 and CCR5. These new systems should be com-
bined with experimental consistency and physiological 
accuracy in regard to the use of HIV concentration and 
treatment paradigms. This is particularly true in the use 
of monomeric gp120 versus intact HIV virions, given the 
lack of a demonstrable role of gp120 in driving neuroHIV 
in the cART era. The use of monomeric gp120 has been 
valuable in a number of areas, including studies high-
lighting the complexity of signaling pathways associated 
with HIV activation of co-receptors. However, the field 
needs to better address signaling in response to HIV viri-
ons, as this may reveal distinct differences in co-receptor 
engagement and point towards more physiologically rel-
evant signaling effectors that can be targeted.

A better understanding of the dynamic interaction 
between HIV and the CXCR4 / CCR5 co-receptors 
should enable the efficient development of ligands that 
precisely target only the signaling processes involved 
in entry. More broadly, both CXCR4 and CCR5 affect a 
wide array of diseases and homeostatic processes, from 
cancer to cardiac disease, indicating that effectively tar-
geting co-receptors and manipulating their signaling 
could be a useful tool in the treatment of a number of 
diseases. Thus, these same studies, experimental pipe-
lines and drug candidates will be used to develop thera-
peutics that not only inhibit the effects of co-receptors on 
HIV neuropathogenesis but could potentially be used to 
treat a number of other important human diseases.
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