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Abstract 

The development of safe and effective combination antiretroviral therapies for human immunodeficiency virus (HIV) 
infection over the past several decades has significantly reduced HIV-associated morbidity and mortality. Additionally, 
antiretroviral drugs have provided an effective means of protection against HIV transmission. Despite these advances, 
significant limitations exist; namely, the inability to eliminate HIV reservoirs, the inability to reverse lymphoid tissues 
damage, and the lack of an effective vaccine for preventing HIV transmission. Evaluation of the safety and efficacy of 
therapeutics and vaccines for eliminating HIV reservoirs and preventing HIV transmission requires robust in vivo mod-
els. Since HIV is a human-specific pathogen, that targets hematopoietic lineage cells and lymphoid tissues, in vivo 
animal models for HIV-host interactions require incorporation of human hematopoietic lineage cells and lymphoid 
tissues. In this review, we will discuss the construction of mouse models with human lymphoid tissues and/or hemat-
opoietic lineage cells, termed, human immune system (HIS)-humanized mice. These HIS-humanized mouse models 
can support the development of functional human innate and adaptive immune cells, along with primary (thymus) 
and secondary (spleen) lymphoid tissues. We will discuss applications of HIS-humanized mouse models in evaluating 
the safety and efficacy of therapeutics against HIV reservoirs and associated immunopathology, and delineate the 
human immune response elicited by candidate HIV vaccines. In addition to focusing on how these HIS-humanized 
mouse models have already furthered our understanding of HIV and contributed to HIV therapeutics development, 
we discuss how emerging HIS-humanized rat models could address the limitations of HIS-mouse models.
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Background
Despite combination antiretroviral therapy (cART)-
mediated suppression of human immunodeficiency virus 
(HIV) replication and promotion of immune reconstitu-
tion in patients, HIV-associated morbidity persists and is 
associated with the latent reservoir, unresolved immune 
abnormalities, and fibrosis in lymphoid organs [1]. 
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Additionally, HIV transmission remains endemic across 
the globe, and development of a functional cure and/or 
an effective vaccine will be required to end this epidemic 
[2]. HIV is a human specific pathogen; thus, animal mod-
els for evaluating the safety and efficacy of therapeutics 
and vaccines directly against HIV requires the incorpo-
ration of human lymphoid tissues and/or hematopoietic 
lineage cells. Such mouse models exist, and are termed, 
human immune system (HIS)-humanized mice [3, 4]. To 
construct HIS-humanized mice, immunodeficient mice 
are myoablated to eradicate residual mouse bone marrow 
stem cells, and then engrafted with human peripheral 
blood mononuclear cells (PBMCs) or human hemat-
opoietic stem cells (HSC) with or without transplanta-
tion of lymphoid tissues, such as thymus and/or spleen 
[5]. Over a period of a few weeks to months, transplanted 
mice develop human immune cells, and reconstitution is 
confirmed by flow cytometry [5] (Fig. 1). HIS-humanized 
mice can then be employed in studies investigating HIV 
prevention or cure strategies [5]. In this review, we will 
discuss the myriad of approaches for developing HIS-
humanized mouse models, and their applications in HIV 
therapeutics and vaccine development studies, along with 
their limitations. Finally, we will discuss the potential 

of an emerging HIS-humanized rat model, which has a 
longer lifespan and greater physiological similarity to 
humans compared to mice, designed to enable longitudi-
nal studies in evaluating therapeutics against HIV reser-
voirs and vaccine-induced immunity [6, 7].

Humanized mice that incorporate human immune 
cells
Peripheral blood lymphocytes (PBL)‑humanized mouse 
model
Human CD4+ T cells are the major target for HIV infec-
tion; thus, a mouse model with human CD4+ T cells 
provides a platform for modeling HIV/AIDS. Vari-
ous immunodeficient mouse models lacking mature T, 
B, [8] and NK cells, along with defects in macrophage 
phagocytic function [9] support robust reconstitu-
tion of human CD4+ T cells and other lymphocytes 
(e.g. CD8 + T cells) following transplantation of human 
PBMCs or CD4+ T cells. Such cells can be transplanted 
via intravenous (IV) or intraperitoneal (IP) injection into 
myoablated, immunodeficient juvenile mice (6–8  weeks 
old) at a dose of 5–10 × 10^6 cell per mouse, to gener-
ate peripheral blood lymphocyte (PBL)-humanized mice. 
Human CD4 + T cells are readily detectable in the blood 

Fig. 1  Construction of the human Immune System-humanized mouse models. (I) Immunodeficient mice are myoablated via irradiation or 
busulfan, followed by the administration of antibiotics and analgesics. General anesthesia is induced prior to surgery. (II) To generate human 
lymphoid tissue xenografts along with autologous immune cell reconstitution, human fetal lymphoid tissue(s) and liver are processed into 1 mm2 
pieces, and autologous CD34 + HSCs are isolated from the fetal liver via immunomagnetic selection. CD34 + HSCs are then transplanted via 
retro-orbital injection following renal capsule transplantation of the lymphoid tissues. Alternatively, to generate human immune cell only, PBMCs, 
CD4+ T cells, or CD34 + HSCs are transplanted via IV or IP injection. (III) Transplanted mice are maintained under specific pathogen-free conditions 
and the human lymphoid tissue(s), and/or immune cell reconstitution in the peripheral blood and murine lymphoid tissues (humanized-murine 
tissues) are allowed to develop over a period of 2–10 weeks (or more), resulting in the HIS-humanized mouse model
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at 4 weeks post-transplantation [9, 10], hence providing a 
humanized mouse model that can be generated in a rela-
tively short period. The PBL-humanized mouse model 
supports HIV replication and provides a means of evalu-
ating the efficacy of direct-acting therapeutics (e.g. anti-
virals drugs, antibodies) geared towards preventing HIV 
transmission [11] and controlling HIV replication [9]. 
Additionally, PBL-humanized mouse models constructed 
using PBMCs from HIV-infected individuals with unde-
tectable viral load can be employed as an in  vivo assay 
(mouse-quantitative viral outgrowth assay) for evaluat-
ing the eradication of the HIV reservoir in said individu-
als [12, 13]. A major limitation of this model is the rapid 
development of graft-versus-host (GvHD) disease within 
6–7  weeks following transplantation of lymphocytes, 
thus significantly restricting the experimental window 
[14]. Additionally, the PBL-humanized mouse model 
does not incorporate human macrophages, which are 
a major HIV reservoir in various organs, including the 
brain [9, 15]. However, modification of the PBL-human-
ized mouse model via transplantation of HIV-infected 
monocyte-derived macrophages in the brain supports 
HIV infection and pathogenesis in the brain [15].

Hematopoietic stem cells (HSC)‑humanized mouse model
In order to generate a de novo human immune system 
and reconstitute a broader spectrum of human immune 
cells in HIS-humanized mice, myoablated, immunode-
ficient mice are transplanted with human CD34 + HSCs 
via intrahepatic or intracardiac injection in neona-
tal mice [10, 16] or IV injection in juvenile/adult mice 
[16, 17]. These HSCs can be obtained from a myriad of 
sources, including fetal liver tissue [17, 18] and neona-
tal cord blood cells [4, 16, 19]. Human immune recon-
stitution in the HSC-humanized mouse model requires 
10–12  weeks to develop [20]. Various hematopoietic 
lineages, including T cells, monocytes/macrophages, B 
cells and dendritic cells are developed in the blood and 
other tissues (e.g., spleen, liver, brain) [20]. Moreover, the 
HSC-humanized mouse model generates a naïve human 
immune system, which negates confounding factors 
associated with prior pathogen exposure [16, 21]. The 
HSC-humanized mouse model supports HIV infection, 
CD4+ T cell depletion, chronic immune activation and 
limited anti-HIV T and B cell immune responses [4]. A 
major advantage of the HSC-humanized mouse model 
over the PBL-humanized mouse model is the delayed and 
reduced incidence of GvHD, which provides the oppor-
tunity for long-term modeling of HIV infection and rep-
lication [9]. The HSC-humanized mouse model provides 
a means of evaluating the efficacy and safety of direct-
acting therapeutics (e.g. antivirals drugs, antibodies) 
and immune-modulatory agents (e.g. pDC modulators 

[22]) geared towards preventing HIV transmission, con-
trolling HIV replication, and ameliorating CD4+ T cell 
depletion and chronic immune activation [4]. The HSC-
humanized mouse model supports HIV transmission 
via the IV (along with IP) route [18]; however, conflict-
ing reports exist for the mucosal route of transmission 
[23, 24]. Additionally, the reconstituted human T cells 
are educated in the mouse thymic epithelium, thus limit-
ing antigen-specific responses [25]. This limitation of T 
cell education in the murine thymic epithelium has been 
partially overcome by the construction human leukocyte 
antigen (HLA) class I transgenic-immunodeficient mice 
to support robust T cell development of HLA-matched 
HSC transplants [26]. Moreover, lymph nodes and spleen 
are poorly reconstituted, including a limited develop-
ment of human B and myeloid cells in the white and 
red pulps of the spleen [27]. Several modifications have 
been made to the HSC model to address these limita-
tions. Li et  al. constructed an immunodeficient mouse 
model that incorporated a lymphoid tissue-stromal 
cytokine transgene (i.e. thymic-stromal-cell-derived lym-
phopoietin) and demonstrated improved lymph node 
development in HSC-humanized mice [27]. Addition-
ally, studies have demonstrated enhanced human B and 
myeloid cell development in murine secondary lymphoid 
tissues via transgenic expression of critical cytokines 
(i.e. IL6; IL3, GM-CSF and SCF) for B and myeloid cell 
maturation [28–30]. Although incorporation of requi-
site human transgenes in HIS-humanized mice has been 
successful in demonstrating improved development of 
immune cells, often the resultant lineage is skewed, as 
the transgene expression is not synchronized for physio-
logical expression and supporting stromal cells and other 
essential cytokines are absent [28–30].

Humanized mice that incorporate human immune 
cells and lymphoid tissues
Bone marrow–liver–thymus (BLT)‑humanized mouse 
model
Another strategy for improving human immune cell 
development in HIS-humanized mouse models is to 
implant human lymphoid tissues containing the requi-
site microenvironment for supporting robust immune 
cell development. To facilitate human T cell educa-
tion and associated function, human thymic tissues are 
incorporated in HIS-humanized mice, and termed, Bone 
marrow–liver–thymus (BLT)-humanized mice [31, 32] 
(Fig.  2). BLT-humanized mice have served as a key ani-
mal model for HIV research for over a decade and are a 
cost-effective alternative to the surrogate, simian immu-
nodeficiency virus (SIV)-non-human primate (NHP) 
models. The BLT-humanized mouse model is generated 
by surgically transplanting myoablated, immunodeficient 
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mice with fetal human liver and thymus tissues, followed 
by IV injection of autologous CD34+ HSCs [31, 33, 34]. 
Transplanted mice require 10–12  weeks for systemic 
reconstitution of human cells post-transplantation [31, 
33, 34]. The most widely utilized strain for construct-
ing BLT mice is the NOD-Prkdcscid IL2rgTm1Wjl (NSG) 
[21, 32], which is readily available from Jackson Labo-
ratory. BLT-humanized mice can also be constructed 
using comparable immunodeficient mouse strains, such 
as, C57BL/6 Rag2−/−γc−/−CD47−/− (TKO) [21, 35]. 
The key benefit of the BLT-humanized mouse model over 
PBL- and HSC-humanized mouse models is the pres-
ence of human thymic microenvironment, which facili-
tates T cell education in an autologous human tissue that 
contains the requisite stromal cells (as well as cytokines 
and factors, presumably at physiological levels) [21]. 
BLT-humanized mice have systemic tissue reconstitution 
with human immune cells, including in mucosal tissues, 
which enables mucosal transmission [36–43] and reca-
pitulates the main route of HIV transmission in humans 
[36–44]. Other hallmarks of HIV infection and replica-
tion in BLT-humanized mice include robust T cell deple-
tion [36, 42], central nervous system infiltration [45, 46], 

immune response [35, 47–50], and latency [51–53]. The 
BLT-humanized mouse model is a robust platform for 
evaluating HIV prevention and cure strategies, including 
antiretroviral therapy, pre-exposure prophylaxis (PrEP), 
latency reversing agents (LRA), vaccination, proviral 
excision, and T cell engineering (Table 1).

Despite significant advances gained from the BLT-
humanized mouse model, the system does have some 
disadvantages. Construction of BLT-humanized mice 
requires advanced surgical expertise and extensive expe-
rience; therefore, these animals are constructed pre-
dominantly by specialized core facilities. Additionally, 
BLT-humanized mice are prone to GvHD, which limits 
the experimental window these animals can be utilized to 
approximately 6 months post-engraftment [54, 55]. How-
ever, BLT-humanized mice constructed with a C57BL/6 
immunodeficient background are resistant to GvHD [35, 
53]. Another disadvantage involves the use of human 
fetal tissues in constructing the model; these tissues are 
not readily available. Furthermore, a typical human fetal 
thymus and autologous fetal liver-derived HSCs can only 
support the construction of 15–25 BLT-humanized mice. 
The limited availability of said human fetal tissues creates 
logistical and operational constraints. Recently, a novel 
BLT-like humanized mouse model has been developed 
using non-autologous human cord blood-derived HSCs 
and human neonatal/pediatric thymus, which enable 
investigators to construct > 1000 BLT-like humanized 
mice using cryopreserved thymus tissues and readily 
available cord blood-derived HSCs [96]. Recent studies 
demonstrate that these BLT-like humanized mice develop 
human immune cells, support HIV infection and replica-
tion, and exhibit anti-HIV immune response (unpub-
lished data from Elie Haddad, Chloé Colas, et al., at the 
CanCure 5th Annual General Meeting—2019, Poster Ses-
sion, in Montreal, Canada). Despite systemic immune 
cell reconstitution and HIV-specific immune responses, 
both neonatal/pediatric tissue- and fetal tissue-derived 
BLT-humanized mouse models BLT mice do not develop 
a complete human immune system. The current widely 
used immunodeficient mouse models possess an IL-2 
receptor γ chain deletion [97–100]. As a result, mouse 
lymphoid organs do not fully develop in such models, 
[21] and the loss of lymphoid tissue microenvironment 
impairs the ability of BLT-humanized mice to develop a 
robust humoral immune response, as immunoglobulins 
are skewed towards IgM or weak IgG response [35, 49, 
99, 101–103]. Constructing BLT-humanized mice using 
immunodeficient mouse models with requisite human 
transgenic factors/cytokines, may optimize human B cell 
development and overcome the limitations of humoral 
immune response in the model [28, 104, 105]. An alter-
native strategy, which is consistent with the BLT-model 

Fig. 2  Current and emerging HIS-humanized animal models. To 
construct HIS-humanized mice and rats, immunodeficient mice 
and rats are myoablated, followed by engraftment of human 
lymphoid tissues (thymus with or without human spleen) under 
the kidney capsule, along with injection of autologous human 
CD34+ hematopoietic stem cells. In representative images, we 
show the engrafted human lymphoid tissues (human thymus 
xenograft-thymus, white tissue; human spleen xenograft-Spleen, 
dark brown tissue and the reconstituted rodent-spleen (humanized 
spleen-hSpleen). Note: mouse and rat organs are not at the same 
scale
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Table 1  Studies utilizing BLT-humanized mice for evaluating HIV-therapeutics

Strategy Therapeutic agent(s) Reference(s)

Antiviral therapy dCA [45, 56]

EFdA [57]

RAL [45]

PD-1 mAb [58]

PG16 bNAb [59]

PGT121 bNAb [60]

3TC, TDF [61]

AZT, ddI, IDV [52]

FTC, RPV, DTG [46, 57]

FTC, TAF, EVG [62]

FTC, TDF, DTG [37, 46, 51, 53, 63]

FTC, TDF, RAL [37, 46, 51, 63]

FTC, TDF, RAL, 3B3(Fv)-PE38 immunotoxin [64]

FTC, TDF, RAL, IFNα14 [61, 65]

Pre-exposure prophylaxis (PrEP) C5A peptide [66]

Cc-griffithsin [67]

CD4 AsiCs [68]

CD4-expressing Lactobacillus acidophilus [69]

CD4mc P-III-48 [70]

DTG-ultra LA [71]

EFdA [72]

G2-S16 PCD [73]

IgA [74]

MVC [75]

RAL-LA [76]

RPV-LA [39, 77]

siCCR5 LFA-1 I-tsNP [78]

TNV gel [79–81]

VRC01 bNAb [82]

FTC, TAF [83]

FTC, TDF [36, 43, 84, 85]

TAF, EVG [86]

b12, VRC01, VRC07 G54W bNAbs [87]

Latency-reversing agents (LRAs) AZD5582 [88]

panobinostat [89]

SUW133 (bryostatin analog) [90]

Vaccines PLGA-Gag microparticles [49, 91]

Recombinant GP140∆683 [49, 91]

Proviral excision saCas9/sgRNA [92]

T cell engineering CCR5 shRNA [93, 94]

CD4 CAR​ [95]

3TC, lamivudine; AsiCs, aptamer-siRNA chimeras; AZT, zidovudine; bNAb, broadly neutralizing antibody; CCR5, C–C chemokine receptor type 5; CAR, 
chimeric antigen receptor; CD4, cluster of differentiation 4; CD4mc, CD4 mimetic compound; Cc, Caulobacter crescentus recombinant expressing; 
dCA, didehydro-Cortistatin A; ddI, didanosine; DTG, dolutegravir; DTG-ultra LA, long acting dolutegravir; EFdA, 4′-ethynyl-2-fluoro-2′-deoxyadeno-
sine; EVG, elvitegravir; FTC, emtricitabine; IDV, indinavir; IFNα14, interferon α suptype 14; IgA, immunoglobulin A; LFA-1 I-tsNP, lymphocyte func-
tion–associated antigen-1 integrin-targeted and stabilized nanoparticle; mAb, monoclonal antibody; MVC, maraviroc; PCD, polyanionic carbosilane 
dendrimers; PD-1, programmed cell death protein 1; PLGA, poly(lactic-co-glycolic) acid; RAL, raltegravir; RAL-LA, long-acting raltegravir; RPV, rilpiv-
irine; RPV-LA, long acting rilpivirine; saCas9/sgRNA, Staphylococcus aureus CRISPR-associated protein 9/single-guide RNA; shRNA, short hairpin RNA; 
siCCR5, small interfering RNA CCR5; TAF, tenofovir alafenamide; TDF, tenofovir disoproxil fumarate; TNV; tenofovir
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strategy, is to incorporate the requisite human second-
ary lymphoid tissue (i.e. spleen) microenvironment for 
robust human immune cell (e.g. B cells, macrophages) 
development and response [5].

Bone marrow–liver–thymus–spleen (BLTS)‑humanized 
mouse model
To address the limitations of the BLT-humanized mouse 
model, namely, poor development of secondary lymphoid 
tissue and modest macrophage reconstitution, we incor-
porated human spleen into the BLT-humanized mouse 
model, and termed these animals, Bone marrow–liver–
thymus–spleen (BLTS)-humanized mice [5] (Fig.  2). 
BLTS-humanized mice exhibit significant improvement 
over the BLT-humanized mice by addressing several limi-
tations [5]. Successful spleen growth dramatically low-
ers the incidence of GvHD in BLTS-humanized mice, 
thus allowing for experimental studies that extend up to 
9 months post-transplantation [5]. We speculate that the 
decreased GvHD in BLTS-humanized mice results from 
appropriate modulation of T cell activation by the human 
antigen-presenting cells in the human spleen xenograft. 
The human spleen in the BLTS-humanized mouse model 
recapitulates human adult spleen architecture and facili-
tates better reconstitution of immune cells, including 
human red pulp macrophages, which are poorly recon-
stituted in the BLT-humanized mouse model [5]. It is well 
established that macrophages can serve as a reservoir for 
HIV [106–108]; thus, the BLTS-humanized mouse model 
provides a system for investigating human splenic mac-
rophage-HIV interactions [5]. Additionally, the spleen 
is a major lymphoid tissue reservoir, with B cell follicles 
in the white-pulp serving as an immune privilege site 
for anti-HIV T-cells [109]. The human spleen in BLTS-
humanized mice provides a model for investigating anti-
HIV immune response within the white-pulp and the 
role of B cell follicle in mediating HIV persistence. The 
BLTS-humanized mouse model supports cART-medi-
ated HIV load suppression, and replication competent 
HIV reservoirs can be detected in human spleen tissues 
[5]. Lymphoid tissue fibrosis is an immuno-pathogenic 
feature associated with HIV infection and plays a major 
role in mediating chronic inflammation and abrogating 
the development of a robust immune response [110]. A 
major advantage of the BLTS-humanized mouse model 
is that HIV infection results in lymphoid tissue fibro-
sis; this disease manifestation is absent in HIV-infected 
BLT-humanized mice [5]. Although the BLTS-humanized 
mouse model exhibits more robust immune reconstitu-
tion compared to its BLT counterpart, the two models 
share some limitations. The transplantation of the human 
tissues under the renal capsule requires an individual 
with advanced surgical skills. The BLTS-humanized 

mouse model uses human fetal tissues, which introduces 
logistical and operational constraints. The use of frozen 
fetal tissues and HSCs can alleviate some of those con-
straints (unpublished data). Demonstrating robust anti-
HIV immunity in HIS-humanized mouse models has 
been a long-term goal in the field because said system 
would allow robust evaluation of HIV vaccine candidates 
against circulating viral strains. The incorporation of 
human primary and secondary lymphoid tissues in HIS-
humanized mice brings us closer to this goal. At present, 
we are actively investigating the anti-HIV human immu-
nity in the BLTS-humanized mouse model to deter-
mine if this system provides a means for evaluating HIV 
vaccines.

Emerging human immune system (HIS)‑humanized 
rat model
Prior to the development of genetic engineering tech-
nologies for creating transgenic and knockout mice, rats 
were the predominant specie of rodents employed in bio-
medical research [6]. Advantages of using rats include 
their longer lifespans (~ 3.5 years) and larger size (~ 350 
grams), which facilitates longer experimental window 
and larger sampling volumes compared to the short lifes-
pan (< 1  year) and small size (< 25 g) of mice [6]. Rats 
provide a more ideal platform for in vivo imaging of dis-
eases, as the larger size of rats provides better resolution 
[111]. Additionally, rat models exhibit advanced cogni-
tive skills and critical physiological parameters (e.g. heart 
rate, drug metabolism) that more closely mimic humans 
[112–115]. Recent advances in genetic engineering, such 
as the CRISPR/Cas 9 technology has enabled the devel-
opment of several immunodeficient rat models for trans-
planting and regenerating human tissues and cells [7, 
116–118]. Similar to currently used immunodeficient 
mouse models, immunodeficient rat models carry muta-
tions in Rag1/2 and IL2rγ genes, with or without SIRP1α 
transgene [7, 116–118]. A recent study demonstrated that 
these immunodeficient rats can be reconstituted with a 
myriad of human immune cells following transplantation 
with human-fetal liver-derived HSCs and autologous thy-
mus tissues [7] (Fig. 2). These HIS-humanized rat models 
could provide a means for robust longitudinal studies on 
the safety and efficacy of therapeutic agents targeting the 
HIV reservoir. Additionally, HIS-humanized rats could 
provide a means for modeling HIV-associated end organ 
diseases, such as cardiovascular, neurocognitive and lung 
diseases.

Conclusions
Despite successful prevention of HIV transmission with 
antiviral drugs, it is likely that an effective vaccine pro-
vides the only means of ending the HIV epidemic [2]. 
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Over the past decades, several promising vaccine candi-
dates have failed in large-scale safety and efficacy clini-
cal trials [2]. The failure of those clinical trials suggests 
that improved “gate keeper” animal modeling systems are 
needed for better prediction of vaccine candidate out-
comes in human clinical trials [119]. Currently, the sur-
rogate SIV-NHP model is the sole “gate keeper” animal 
model for determining potential of vaccine candidates 
[119]. Candidate HIV vaccines selected using this gate-
keeper system have been unsuccessful in human clinical 
trials [119]; suggesting, major improvements in animal 
modeling are needed. Although significant advancements 
are still needed in improving HIS-humanized models, 
several recent advances, such as improved human-sec-
ondary lymphoid tissue development, along with the 
previously developed, robust primary lymphoid tissue 
development has made it possible to evaluate human 
immune responses to vaccines [5, 27]. Ideally, these 
“improved” HIS-humanized mouse models will comple-
ment NHP models in addressing critical gaps, such as 
vaccine-induced immune responses against circulating 
HIV strains, vaccine safety in the context of HIV trans-
mission, and human-correlates of immunity. Although 
cART has significantly reduced the morbidity and mor-
tality associated with chronic HIV infection, the HIV 
reservoir persists in people living with HIV (PLHIV) 
and is associated with chronic inflammation, lymphoid 
tissue damage, and a myriad of end-organ diseases [1]. 
Therefore, eradicating the HIV reservoir and associated 
chronic inflammation and end organ diseases remains a 
major challenge. The mechanisms of HIV persistence in 
PLHIV, despite robust cART-mediated suppression of 
the virus, are thought to be multifactorial. These factors 
include persistence in transcriptionally quiescent rest-
ing memory CD4+ T cells in the peripheral blood and 
lymphoid tissues, infection of long-lived resident tissue 
macrophages in lymphoid tissues and immune privilege 
organs (e.g. brain, testes, B cell follicle, etc.), and dysregu-
lation in anti-HIV immunity. By virtue of the multitude of 
factors that play a role in HIV persistence, in vivo models 
that recapitulate human host-HIV interactions are nec-
essary for determining the safety and efficacy of thera-
peutic agents for eradicating HIV reservoirs. Improved 
HIS-humanized mouse models with systemic reconstitu-
tion of human immune cells and robust lymphoid tissues 
development provide a means of evaluating both direct-
acting and immune-modulatory HIV-cure therapeutics. 
Further advances in improving the human-immune sys-
tem in HIS-humanized mouse and rat models will pro-
vide better in vivo systems for evaluating the safety and 
efficacy of therapeutics and vaccines for HIV prevention 
and cure.
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