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Abstract 

The HIV accessory protein Nef downregulates the viral entry receptor CD4, the Human Leukocyte Antigen (HLA)-A 
and -B molecules, the Serine incorporator 5 (SERINC5) protein and other molecules from the infected cell surface, 
thereby promoting viral infectivity, replication and immune evasion. The nef locus also represents one of the most 
genetically variable regions in the HIV genome, and nef sequences undergo substantial evolution within a single 
individual over the course of infection. Few studies however have simultaneously characterized the impact of within-
host nef sequence evolution on Nef protein function over prolonged timescales. Here, we isolated 50 unique Nef 
clones by single-genome amplification over an 11-year period from the plasma of an individual who was largely naïve 
to antiretroviral treatment during this time. Together, these clones harbored nonsynonymous substitutions at 13% 
of nef’s codons. We assessed their ability to downregulate cell-surface CD4, HLA and SERINC5 and observed that all 
three Nef functions declined modestly over time, where the reductions in CD4 and HLA downregulation (an aver-
age of 0.6% and 2.0% per year, respectively) achieved statistical significance. The results from this case study support 
all three Nef activities as being important to maintain throughout untreated HIV infection, but nevertheless suggest 
that, despite nef’s mutational plasticity, within-host viral evolution can compromise Nef function, albeit modestly, over 
prolonged periods.
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Background
HIV is an enveloped retrovirus with extensive capacity 
for mutation and within-host genetic diversification [1–
4], which occur as a result of reverse transcriptase errors 
[5], viral recombination [6] and sublethal APOBEC3G-
mediated mutagenesis [7] combined with a short viral 
generation time and high viremia during untreated infec-
tion [4]. In most cases of HIV transmission, a single 
transmitted/founder virus initiates productive infection 

in the new host [8–10], but descendant within-host HIV 
populations rapidly diversify and undergo successive 
genetic bottlenecks under selection pressures by host 
antiviral immune responses [11–15].

Of all the HIV genes, nef displays particularly high 
rates of within-host viral diversification and evolution 
[16–18]. Nef is also a determinant of HIV pathogenesis 
[19], and performs various functions that promote viral 
infectivity, replication and immune evasion [19–21]. 
Nef ’s ability to downregulate CD4 and Human Leukocyte 
Antigen (HLA)-A and -B molecules from the infected cell 
surface represent two of its most widely studied func-
tions [22–24]. Nef-mediated CD4 downregulation pre-
vents cellular superinfection [25], allows infected cells 
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to evade antibody-dependent cell-mediated cytotoxicity 
(ADCC) responses by abrogating CD4-induced Env con-
formational changes required for antibody binding [26, 
27], and enhances Env incorporation into budding viri-
ons [28]. Nef-mediated HLA-A and -B downregulation 
allows HIV-infected cells to evade HLA-restricted CD8+ 
cytotoxic T lymphocyte (CTL) responses [29, 30]. More 
recently, Nef has been found to internalize the trans-
membrane host restriction factor Serine incorporator 5 
(SERINC5), thereby preventing its inclusion into budding 
HIV virions and enhancing viral infectivity [31, 32]. We 
and others have observed that all three of these functions 
are attenuated in Nef clones isolated from HIV elite con-
trollers who spontaneously suppress plasma viremia to 
< 50 RNA copies/mL in the absence of therapy [33–37], 
suggesting that variation in Nef activity contributes to 
biologic outcomes.

Though nef undergoes substantial within-host evolu-
tion [38–41], studies characterizing the relationships 
between primary nef sequences and the functions of their 
corresponding expressed proteins have predominantly 
been cross-sectional, with one or a few nef sequences 
evaluated per participant at a single timepoint [34, 42–
47]. Few studies have simultaneously assessed within-
host genetic [48, 49] and functional Nef evolution over 
long timescales [50, 51], and none to our knowledge have 
investigated Nef-mediated SERINC5 downregulation 
longitudinally. The impact of long-term within-host nef 
evolution on Nef protein function thus remains unclear. 
To address this, we isolated 50 unique Nef clones by sin-
gle-genome amplification over an 11-year period in an 
individual who was largely naïve to antiretroviral treat-
ment, and assessed their ability to downregulate CD4, 
HLA and SERINC5 molecules.

Results
The study participant, a male, was diagnosed with 
HIV in August 1996. Over the following 11  years, he 
did not receive antiretroviral treatment except for a 
short period between August and November 1997, and 
again from August 2006 to July 2007 (Fig.  1a). From 
study entry in 1996 until August 2006, the participant’s 
plasma viral load remained relatively stable at a median 
of 4.1  log10 copies HIV RNA/mL, while his CD4+ T cell 
count declined by an average of 50 cells/mm3 per year 
 (R2 = 0.28, p < 0.0001), reaching a nadir of 230 cells/
mm3 in June 2006. A total of 113 plasma HIV RNA nef 
sequences, sampled at 15 timepoints between August 
1996 and September 2007, were previously isolated from 
the participant by single-genome amplification [40]. 
From this original dataset, we selected a minimum of 3 
nef sequences per year, totaling 50 unique sequences, to 
represent within-host nef genetic diversity and evolution 

over the study period (Fig.  1b and Additional file  1). 
These nef sequences differed from one another at 97 of 
621 (15.6%) nucleotides and 27 of 207 (13%) amino acids 
(Fig.  1c). The selected sequences captured all major 
within-host selective sweeps and represented 70.4% of 
the amino acid diversity within the original dataset of 113 
nef sequences (of these, 71 were unique at the amino acid 
level; we selected 50 for study, yielding 70.4% coverage) 
[40].

Longitudinally-sampled gene sequences can be used to 
infer molecular phylogenies on natural timescales and to 
estimate the location and timing of the tree root, repre-
senting the most recent common ancestor, or MRCA, of 
the dataset [52]. Indeed, analysis of the original plasma 
HIV RNA sequence dataset using Bayesian approaches 
yielded a root date estimate of December 1995 [40], con-
sistent with the participant having been infected in the 
year before diagnosis. For the present analysis, we recon-
structed nef’s within-host evolution by inferring a maxi-
mum-likelihood phylogeny from an alignment of the 50 
selected nef sequences, and identified the ‘best fit’ root 
position using the software package TEMPoral Explo-
ration of Sequences and Trees (TempEst) (Fig.  1b) [52]. 
We observed a significant linear relationship between 
root-to-tip distance, a measure of within-host HIV diver-
gence from the MRCA, and sampling date  (R2 = 0.83, 
p < 0.0001; Fig. 1d). We also observed a significant linear 
relationship between the average patristic (phylogenetic 
tip-to-tip) distance between all clones isolated in a given 
year, a measure of within-host diversity, and sampling 
date  (R2 = 0.77, p = 0.0002; Fig.  1e). These observations 
indicate strong molecular clock signal in the data, and 
are consistent with increases in root-to-tip divergence 
and population viral diversity that typify within-host HIV 
evolution [53, 54].

Each nef sequence was cloned into a reporter plasmid 
that also expressed the green fluorescent protein (GFP) 
from a separate promoter [46], and was assessed for its 
ability to downregulate cell surface CD4, HLA-A*02 (as 
a representative HLA class I allele), and SERINC5 in an 
immortalized CEM-derived CD4+ T-cell line by flow 
cytometry as described in [33, 44, 46] (Fig.  2a–c). The 
function of each Nef clone was normalized to that of the 
HIV subtype B SF2 reference strain  (SF2NEF), such that 
normalized values above or below 100% represented 
downregulation functions that were higher or lower 
than  SF2NEF, respectively. Each Nef clone was assayed a 
minimum of three times in independent experiments 
(Fig. 2d–f). All Nef clones exhibited some level of func-
tion in all three assays, with the exception of clone 
2005_3, which was completely defective for HLA down-
regulation and ranked in the bottom 5th percentile for 
CD4 and SERINC5 downregulation (51.1% and 30.5% 
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Fig. 1 Evolution of within-host nef sequences. a Participant plasma viral load (solid blue line), CD4+ T-cell count (red dotted line) and sampling 
history (colored circles). Grey shading indicates periods on cART. b Maximum likelihood phylogenetic tree inferred from 50 unique within-host nef 
sequences, where the root represents the inferred most recent common ancestor (MRCA). Scale in estimated substitutions per nucleotide site. c 
Within-host Nef amino acid alignment, with sequences ordered according to the phylogeny, where the top sequence denotes the master and 
colored lines in the below sequences represent nonsynonymous substitutions with respect to it. Tickmarks on the X-axis are placed every 20 amino 
acids. d Linear relationship relating root-to-tip phylogenetic distances to sampling time; this analysis quantifies within-host HIV sequence divergence 
from the root over time. e Linear relationship relating average tip-to-tip phylogenetic distances between clonal sequences sampled each year 
to sampling time; this analysis quantifies within-host HIV sequence diversity over time. Colored dots represent the mean tip-to-tip phylogenetic 
distance and error bars show standard deviation
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activity, respectively). Replicate measurements of each 
Nef clone were highly consistent (Fig.  2d–f): standard 
deviations between replicate measurements were, on 
average, 2.3% for CD4 downregulation, 6.2% for HLA 
downregulation and 5.9% for SERINC5 downregulation. 
Each clone’s function was subsequently reported as the 
mean of all replicate measurements (Fig. 3a–c).

Altogether, the 50 within-host Nef clones displayed a 
relatively narrow range of CD4 downregulation func-
tion (median 101% [Q1–Q3 = 99–103%] relative to 
 SF2NEF; Fig.  3a), whereas wider ranges were observed 
for HLA downregulation function (median 86% [Q1–
Q3 = 74–93%], Fig.  3b) and SERINC5 downregulation 
function (median 92% [Q1–Q3 = 82–97%], Fig.  3c). 

Linear models relating each clone’s function to its sam-
pling date revealed that, on average, Nef-mediated CD4 
downregulation function declined by 0.64% per year 
 (R2 = 0.08; p = 0.046, Fig.  3a) while HLA downregula-
tion function declined on average by 1.97% per year 
 (R2 = 0.12; p = 0.013, Fig.  3b). Nef-mediated SERINC5 
downregulation function also declined on average by 
1.29% per year, but this did not achieve statistical sig-
nificance  (R2 = 0.058; p = 0.09, Fig. 3c). Consistent with 
the results of the temporal analyses, we also observed 
strong negative relationships between Nef function 
and divergence from the root (CD4 downregulation 
 R2 = 0.092, p = 0.032; HLA downregulation  R2 = 0.13, 
p = 0.010 and SERINC5 downregulation  R2 = 0.066, 
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Fig. 2 Function of within-host nef clones. a–c Representative flow cytometry plots showing CD4 (blue), HLA (red) and SERINC5 (green) 
downregulation activities of select participant-derived Nef clones and controls. The numbers in bold within each plot denote the median 
fluorescence intensity (MFI) of receptor expression in that gate. The number at the bottom of each plot denotes each Nef clone’s function 
normalized to that of the positive control  SF2NEF. d  SF2NEF-normalized CD4 downregulation activity of the 50 Nef clones. Each clone was 
independently assayed a minimum of 3 times; a total of 189 replicates are represented here. e  SF2NEF-normalized HLA downregulation activity of 
the 50 Nef clones (183 total replicates). f  SF2NEF-normalized SERINC5 downregulation activity of the 50 Nef clones (157 total replicates). Horizontal 
bars show mean normalized function for each clone
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p = 0.072; data not shown), corroborating the notion 
that accumulating substitutions gradually compromise 
Nef function. Recognizing that defective HIV sequences 
can naturally arise in plasma but could confound our 
results, we confirmed that the temporal decreases in 
Nef function remained after exclusion of 2005_3, the 
clone that was defective for HLA downregulation and 
highly attenuated for the other functions. The results of 
this sensitivity analysis were consistent with the origi-
nal findings (CD4 downregulation:  R2 = 0.13, p = 0.01; 
HLA downregulation:  R2 = 0.11, p = 0.02; and SERINC5 
downregulation:  R2 = 0.04, p = 0.16; data not shown).

While the major genetic determinants of Nef func-
tion are genetically separable [55–57], previous stud-
ies of natural nef sequences have demonstrated modest 
correlations between certain Nef activities [33, 35, 46, 
47], suggesting the presence of secondary or shared 
genetic determinants. Consistent with this, Nef-
mediated CD4 and HLA downregulation functions 
of the 50 studied clones correlated weakly (Spear-
man R = 0.35; p = 0.013), as did Nef-mediated CD4 
and SERINC5 downregulation functions (Spearman 
R = 0.24; p = 0.047) (data not shown). No correlation 
however was observed between HLA and SERINC5 
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Fig. 3 Nef functional evolution over time. Nef-mediated CD4 downregulation (a), HLA downregulation (b) and SERINC5 downregulation (c) over 
time. d Western blot of each year’s maximally functioning Nef clone along with cellular β-actin level. Empty pSELECT-GFP (∆Nef ) and pSELECT-GFP 
vector with  SF2NEF served as negative and positive controls respectively. e Nef western blot intensities, normalized to that of cellular β-actin levels, 
over time
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downregulation functions (Spearman R = 0.17, p = 0.12, 
data not shown).

We also undertook exploratory analyses to identify 
residues most associated with Nef functional reductions 
in our dataset, noting of course that, since all sequences 
descend from a common ancestor and substitutions 
accumulate in the population over time, identified resi-
dues correlate with, but do not necessarily individually 
cause, reduced function. The results are presented in 
Additional file  2. Consistent with some shared genetic 
determinants of Nef function, the two residues most 
strongly associated with reductions in CD4 downregula-
tion were E149D and P25X (p < 0.01; q < 0.1), those most 
associated with reductions in HLA downregulation were 
V33A and S8X (p < 0.01; q < 0.1) while those most associ-
ated with reductions in SERINC5 downregulation were 
P25X and M168I (p < 0.01; q < 0.2). Though the extremely 
strong linkage between some codons precluded us from 
performing a reliable multivariable analysis, our dataset 
did include two natural examples where a single substitu-
tion likely abrogated one or more Nef functions. Clone 
2005_3 for example, which was completely defective for 
HLA downregulation and ranked in the bottom 5th per-
centile of clones in terms of CD4 and SERINC5 downreg-
ulation, differed from clone 2005_4, which was functional 
for all three activities, by only the W141L substitution. 
Similarly, clone 2007_2, which ranked in the bottom 
10th percentile for both CD4 and SERINC5 downregu-
lation, differed from clone 2007_3, which was functional 
for all three activities, by only the G41E substitution. 
No other sequences in the dataset exhibited W141L or 
G41E, which are exceedingly rare or nonexistent in natu-
ral isolates (the Los Alamos HIV database reports their 
frequencies as 0% and 0.44%, respectively, in HIV sub-
type B; https ://www.hiv.lanl.gov). Together this suggests 
that these mutations are responsible for the dramatic yet 
highly specific functional defects of these clones.

Finally, we investigated whether steady-state Nef 
expression, measured by Western Blot for each year’s 
maximally functioning clone (defined in terms of nor-
malized Nef-mediated CD4 and HLA downregulation), 
changed appreciably over time (Fig.  3d). After normali-
zation to cellular β-actin levels however, no consistent 
alterations in steady-state Nef expression were observed 
over the study period  (R2 = 0.023; p = 0.66, Fig. 3e).

Conclusions
Our study of within-host HIV nef function over an 
11-year period revealed a number of insights. First, it 
confirmed marked within-host evolution in nef (the 50 
studied clones differed from one another at 13% of Nef ’s 
codons, a value that is comparable to previous reports, 
e.g. [48]). Secondly, it revealed that Nef ’s individual 

activities differed widely in terms of their dynamic ranges 
of function. Nef-mediated CD4 downregulation was par-
ticularly conserved: all but two clones exhibited CD4 
downregulation functions of > 81% (relative to  SF2Nef), 
and the 25th to 75th percentile of clones exhibited CD4 
downregulation functions between 99 and 103%. In con-
trast, Nef-mediated HLA downregulation ranged from 
0 to 99.8% between clones while SERINC5 downregu-
lation ranged from 22.8 to 104.5%. Strong conservation 
of Nef-mediated CD4 downregulation, yet wider ranges 
for other functions mirrors observations from cross-sec-
tional, population-based studies [37, 44, 46] and suggests 
that the latter type of study may benefit from isolating 
multiple Nef clones per participant for better repre-
sentation. Thirdly, despite substantial within-host nef 
evolution, Nef-mediated CD4, HLA and SERINC5 down-
regulation functions and steady-state Nef protein expres-
sion levels were, on the whole, remarkably conserved, 
suggesting that a certain amount of selective pressure to 
preserve these Nef properties is maintained throughout 
infection [58, 59].

Our fourth key observation was that, despite over-
all maintenance of all three Nef functions, all neverthe-
less declined modestly over time. CD4 downregulation 
function declined most slowly (0.64% per year), whereas 
HLA downregulation and SERINC5 function declined 
somewhat more rapidly (1.97% and 1.29% per year, 
respectively, though the latter did not reach statistical sig-
nificance). For reference, CD4 T-cell counts declined by 
5% per year on average (assuming a baseline CD4 count 
of 1000 cells/mm3). The observation that CD4 downreg-
ulation displays the narrowest functional range and the 
slowest temporal decline suggests that, of the three func-
tions, it is the most critical to maintain in vivo. In con-
trast, the broader functional ranges and the faster rates of 
decline observed for HLA and SERINC5 downregulation 
suggest that selective pressure to preserve these func-
tions may wane to some extent during advanced infec-
tion, perhaps because other viral mutations emerge that 
reduce the importance of this function. Indeed, while the 
observed overall ~ 20% reduction in Nef-mediated HLA 
downregulation over the study period would likely com-
promise immune-mediated recognition of infected cells 
(evidence to support this comes from experiments dem-
onstrating that the extent of Nef-mediated HLA down-
regulation on target cells inversely correlates with the 
ability of peptide/HLA-specific effector T cells to recog-
nize them in vitro [60, 61]), the selection and accumula-
tion of immune escape mutations across the HIV genome 
gradually erodes the importance of this function [62, 
63]. In fact, mutational immune escape is readily appar-
ent in the data [40]: analysis of the participant’s earli-
est nef sequences using the epitope-prediction software 

https://www.hiv.lanl.gov
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NetMHCpan4.0 [64] in context of their HLA class I pro-
file (determined to be A*26:01/A*30:01, B*13:02/B*14:01, 
C*06:02/C*08:02) revealed a predicted HLA-B*13-
restricted epitope spanning Nef codons 124–133, 
WNNYTPGPGV, present in all Nef sequences originally 
isolated at the baseline (August 1996) timepoint [40]. 
This sequence rapidly escaped to the B*13-adapted form 
WHNYTPGPGV and subsequently became fixed in the 
population, providing one (of surely many) examples of 
immune escape mutations across the viral genome that 
would, over time, likely reduce the importance of Nef ’s 
continued ability to downregulate HLA-A and HLA-B 
molecules.

The major caveat of this study is that, since only a sin-
gle individual was studied, the results may not be broadly 
generalizable. Furthermore, though we functionally char-
acterized 50 unique Nef sequences that displayed strong 
molecular clock signal and other characteristic proper-
ties of within-host HIV evolution, these do not capture 
all within-host variants that would have emerged during 
the study period. Larger within-host Nef genotype/phe-
notype studies, including those that additionally assess 
proviral Nef sequences persisting during long-term 
cART, will shed further light on the extent to which Nef ’s 
immune evasion and infectivity enhancing functions 
evolve during untreated HIV infection and are preserved 
in the HIV reservoir. Despite these limitations, our case 
study nevertheless reveals that, for all of nef ’s mutational 
plasticity, within-host viral evolution can gradually erode 
its protein function—albeit modestly—over prolonged 
timescales.

Methods
HIV RNA extraction and single‑genome amplification 
of Nef
An individual living with HIV, for whom blood plasma 
had been longitudinally sampled at 15 timepoints over an 
11-year period, was studied (Fig. 1a) [40]. The participant 
provided written informed consent and this study was 
approved by the Providence Health Care/University of 
British Columbia and Simon Fraser University research 
ethics boards.

As described in [40], HIV RNA was extracted from plasma 
using the BioMerieux NucliSENS EasyMag system and nef 
was amplified using limiting-dilution nested RT-PCR such 
that no more than 25–30% of resulting reactions would be 
positive. Amplicons were sequenced on an ABI 3130xl auto-
mated DNA analyzer, and chromatograms were edited in 
Sequencher version 5.0 software (GeneCodes). After excluding 
nef sequences that contained nucleotide mixtures, hypermuta-
tions (identified using HyperMut v2.0 [65]) or other defects, a 
total of 113 intact plasma HIV nef sequences remained. From 
these, 50 unique nef sequences were selected to maximize 

temporal and HIV genetic coverage of the dataset. Genbank 
Accession numbers of the 50 sequences are: MG822918, 
MG822920, MG822921, MG822925, MG822927–
MG822929, MG822934, MG822935, MG822937, MG822938, 
MG822941, MG822943–MG822946, MG822950– 
MG822955, MG822957, MG822959, MG822960, MG822963,  
MG822964, MG822968, MG822971, MG822974, MG822977,  
MG822979, MG822982, MG822983, MG822987, MG822988,  
MG822991, MG822993–MG822995, MG822998–MG823001,  
MG823003–MG823005, MG823007, MG823011 and 
MG823014.

The original first-round RT-PCR amplicons (generated 
using High-Fidelity enzymes as described in [40]) were 
used as templates to generate new second-round ampli-
cons using primers containing restriction enzyme sites, 
as follows. The forward primer was 5′-AGA GCA CCGGC 
GCG CCTCC ACA TAC CTA SAAG AAT MAGA CAR G-3′ 
(the AscI site is in bold; italics denote the HIV-specific 
sequence spanning HXB2 nucleotides 8746 to 8772) 
and the reverse primer was 5′-GCCT CCG CGG ATC 
GAT CAG GCC ACR CCT CCC TGG AAASKCCC -3′ (the 
SacII site is in bold; HXB2 nucleotides 9474 to 9449 are 
italicized). A high-fidelity polymerase was used (Roche 
Expand Hifi System). Amplicons were run on a 1% aga-
rose gel, excised and purified  (Thermoscientific® Gene-
JET Gel Extraction Kit).

Nef amplicons were cloned into a modified pSELECT-
GFPzeo vector containing AscI and SacII restriction 
sites within its multiple cloning site [47]. As described 
in [47], nef amplicons were digested with AscI and SacII, 
ligated into cut pSELECT-GFPzeo (T4 ligase; Thermo 
 Fisher®), and transformed into chemically competent E. 
coli (E. cloni 10G DUOs; Lucigen). Plasmid DNA from a 
minimum of three colonies per transformation was iso-
lated, purified (Thermo  Fisher® OMEGA EZNA plasmid 
minikit) and re-sequenced to confirm identity. All 50 nef 
sequences were identical at the amino acid level to the 
sequence originally generated by single-genome ampli-
fication: 36 (72.0%) were also identical at the nucleotide 
level, while 14 harbored a single nucleotide difference 
that encoded a synonymous substitution.

Within-host nef sequences were aligned using HIV Align 
(options: MAFFT v7 [66]; codon alignment). Maximum 
likelihood phylogenetic inference was performed using 
PhyML v3.0 [67] under a general time-reversible (GTR) 
substitution model. The tree was rooted using TempEST 
v1.5.1, which identifies the root location that minimizes 
the sum of the squared residuals from a regression line 
relating the root-to-tip phylogenetic distances and collec-
tion dates of the sequences in the dataset, where this root 
position represents an estimate of the timing of the MRCA 
of the dataset [52]. The amino acid “highlighter” plot was 
generated in R using the ggtree package [68].
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Nef‑mediated CD4, HLA and SERINC5 downregulation 
assays
Each Nef clone was assayed in at least three independent 
experiments for its CD4, HLA and SERINC5 downregu-
lation capacity using assays as described in [33, 44, 46]. 
Briefly, CD4 and HLA downregulation functions were 
assessed by transfecting nef plasmid DNA into a CEM-
derived CD4+ T-cell line engineered to stably express 
HLA-A*02 (CEM-A*02) [46]. The nef allele from the HIV 
subtype B reference strain SF2  (SF2NEF) served as a posi-
tive control and empty pSELECT-GFPzeo (∆Nef) served 
as a negative control. For each participant-derived or con-
trol nef sequence, 4 μg of nef plasmid DNA was delivered 
into 500,000 CEM-A*02 cells via electroporation (BioRad 
GenePulser MXCell™ instrument) in 96-well plates. One 
positive and one negative control plasmid were included 
for every 6 study samples in each experiment. Cells were 
incubated for 20 to 24 h, and then stained with allophy-
cocyanin-labeled anti-CD4 and phycoerythrin-labeled 
anti-HLA-A*02 antibodies (BD Biosciences). Cell surface 
expression of CD4 and HLA were measured using flow 
cytometry (Millipore Guava 8HT). The CD4 and HLA 
downregulation functions of participant-derived Nef 
clones were normalized to those of the positive control, 
 SF2NEF, using the following equation [47]:

 where MFI is median fluorescence intensity within the 
indicated GFP gate (a surrogate of Nef expression).

To assess Nef-mediated internalization of SERINC5 
from the cell surface, 1 × 106 CEM-A*02 T cells were 
co-transfected with 1  μg of pSELECT-GFPzeo encod-
ing nef and 5 μg of pSELECT-SERINC5-internal HA tag 
(iHA)-∆GFP by electroporation in 150  μL OPTI-mem 
medium (Thermo Fisher), as described in [37]. The 
pSELECT-SERINC5-iHA-∆GFP was sub-cloned from 
the pBJ5-SERINC5(iHA) described in [32]. Cultures were 
incubated for 20 to 24  h and subsequently stained with 
0.5 μg of Alexa  Fluor® 647 anti-HA.11 (BioLegend) and 
analyzed by flow cytometry. Nef-mediated SERINC5 
downregulation was normalized to the positive and nega-
tive controls using the following formula:

where stated MFI measurements correspond to those in 
the GFP + (Nef-expressing) gate.

HLA class I typing
Human Leukocyte Antigen (HLA) class I typing was per-
formed by locus-specific nested PCR followed by bulk 
DNA sequencing as described in [69].

{

1−
[

MFIclone
(

GFP
+
)

/MFIclone
(

GFP
−
)]}

/
{

1−
[

MFISF2
(

GFP
+
)

/MFISF2
(

GFP
−
)]}

,

(MFI�Nef −MFIclone)/(MFI�Nef −MFISF2)× 100,

Western blotting
Western blotting was performed for the maximally func-
tioning clones from years 1996–2000 and 2002–2007. A 
total of 2.5 × 106 CEM cells were transfected with 10 μg 
of participant-derived or control  (SF2NEF) plasmid DNA, 
and cell pellets were harvested following 24 h of incuba-
tion. Cells were lysed with Nonidet P-40 lysis buffer (1% 
Nonidet P-40, 50 mM Tris HCl, 150 mM NaCl) contain-
ing a protease inhibitor cocktail (P8340; Sigma). The lysed 
cells were centrifuged and the resultant supernatants were 
subjected to SDS-PAGE, with the protein electroblotted 
onto a PVDF membrane. Nef was detected using sheep 
polyclonal anti-HIV Nef serum (1:2000 dilution; NIH 
AIDS Research and Reference Reagent Program, USA) 
primary antibody, followed by horseradish peroxidase 
(HRP)-conjugated donkey anti-sheep IgG (1:35,000; GE 
Healthcare). Blots were visualized using an ImageQuant 
LAS 4000 chemiluminescent imager (GE Healthcare). Nef 
intensity was quantified using ImageJ analysis software, 
and was performed by normalizing the intensity of each 
Nef band to its corresponding β-actin control [70].

Statistical analysis
Statistical analyses were performed in PRISM v.8.0.2 
(Graphpad). The phylogenetic tree was visualized using 
the ape package (v5.3) and the ggtree package in R [68, 
71]. Patristic distances were extracted from the maximum 
likelihood phylogeny using the cophenetic.phylo function 
from the ape package (v5.3) in R [71]. Root-to-tip distances 
were extracted from the maximum likelihood phylogeny 
using the node.depth.edgelength function from ape pack-
age (v5.3) in R [71]. The Mann–Whitney U-test was used 
to test for relationships between every amino acid observed 
at every position in the within-host nef alignment and each 
of the three Nef functions. Here, multiple comparisons 
were addressed using q-values, the p-value analogue of the 
false discovery rate, defined as the expected proportion of 
false positives among results deemed significant at a given 
p-value threshold (e.g. at a q ≤ 0.2, we expect 20% of identi-
fied associations to be false positives) [72].
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