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Abstract 

Human T cell leukemia virus (HTLV-1) is an oncoretrovirus that infects at least 10 million people worldwide. HTLV-1 
exhibits a remarkable genetic stability, however, viral strains have been classified in several genotypes and subgroups, 
which often mirror the geographic origin of the viral strain. The Cosmopolitan genotype HTLV-1a, can be subdivided 
into geographically related subgroups, e.g. Transcontinental (a-TC), Japanese (a-Jpn), West-African (a-WA), North-
African (a-NA), and Senegalese (a-Sen). Within each subgroup, the genetic diversity is low. Genotype HTLV-1b is found 
in Central Africa; it is the major genotype in Gabon, Cameroon and Democratic Republic of Congo. While strains from 
the HTLV-1d genotype represent only a few percent of the strains present in Central African countries, genotypes 
-e, -f, and -g have been only reported sporadically in particular in Cameroon Gabon, and Central African Republic. 
HTLV-1c genotype, which is found exclusively in Australo-Melanesia, is the most divergent genotype. This reflects an 
ancient speciation, with a long period of isolation of the infected populations in the different islands of this region 
(Australia, Papua New Guinea, Solomon Islands and Vanuatu archipelago). Until now, no viral genotype or subgroup 
is associated with a specific HTLV-1-associated disease. HTLV-1 originates from a simian reservoir (STLV-1); it derives 
from interspecies zoonotic transmission from non-human primates to humans (ancient or recent). In this review, we 
describe the genetic diversity of HTLV-1, and analyze the molecular mechanisms that are at play in HTLV-1 evolu-
tion. Similar to other retroviruses, HTLV-1 evolves either through accumulation of point mutations or recombination. 
Molecular studies point to a fairly low evolution rate of HTLV-1 (between 5.6E−7 and 1.5E−6 substitutions/site/year), 
supposedly because the virus persists within the host via clonal expansion (instead of new infectious cycles that use 
reverse transcriptase).
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Background
The human T-cell lymphotropic virus (or T-cell leu-
kemia virus) type 1 (HTLV-1), discovered in 1980, has 
been identified as the first human oncoretrovirus [1]. 
HTLV-1 is a member of the Retroviridae family, the 
Orthoretrovirinae subfamily and the Deltaretrovirus 
genus, which includes bovine leukemia virus (BLV) and 

T-lymphotropic viruses infecting primates (PTLV). 
PTLVs consist of simian T-lymphotropic viruses (STLVs) 
type 1 to 4, which infect non-human primates and human 
T-lymphotropic viruses type 1–4.

HTLV-1 is the etiological agent of two main very severe 
diseases: a lympho-proliferative disorder, of mainly 
CD4 T-cells, named adult T-cell leukemia/lymphoma 
(ATL) [2], and a chronic neuromyelopathy named tropi-
cal spastic paraparesis/HTLV-1 associated myelopathy 
(TSP/HAM) [3, 4]. HTLV-1 is also associated with other 
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inflammatory diseases including infective dermatitis, 
some forms of uveitis, myopathies, and bronchiectasis 
[5].

At least 5 to 10  million people are infected with 
HTLV-1 worldwide. The known high endemic areas 
for HTLV-1 are Southwestern Japan, the Caribbean 
region, parts of South America, sub-Saharan Africa, 
some foci in the Middle East, and Australo-Melanesia 
[6–8]. The origin of this puzzling geographical (and 
often ethnic) repartition is likely related to a founder 
effect in isolated groups where elevated viral transmis-
sion rate have persisted. HTLV-1 transmission occurs 
through sexual intercourse, prolonged breast-feeding, 
or blood transfusion. Upon leukoreduction, HTLV-1 
transmission during transfusion is reduced, evidencing 
the importance of cell-associated virus in this case [9, 
10]. HTLV-1 seroprevalence increases with age, is usu-
ally higher in women, and reaches 40% in some highly 
endemic areas [6–8, 11].

HTLV‑1 genotypes: classification and geographical 
distribution
The first HTLV-1 complete sequence (ATK prototype) 
was obtained in 1983 [12]. It originated from a Japanese 
patient with ATL. In the following years, many sequences 
were generated and revealed low genetic variability [13–
16]—when compared to HIV-1 for instance [17]. Inter-
estingly, no evidence for a specific mutation associated 
with TSP/HAM or ATL was found. In contrast, some 
nucleotide substitutions observed among HTLV-1 strains 
were specific to the geographic origin of the patients [18].

Three major molecular genotypes (or subtypes) have 
been successively identified: the Cosmopolitan a-geno-
type, the Central African b-genotype, and the Australo-
Melanesian c-genotype (Table 1, and Figs. 1 and 2). Other 
minor genotypes have also been characterized in Central 
Africa: genotypes -d, -e, -f and -g (Table  1, and Figs.  1, 
2, 3) [6, 8]. There is no definite rule for the definition of 

Table 1 Reference sequences for the different HTLV‑1 genotypes and subgroups

Two strains have been proposed as reference strains for each subgroup within genotypes a and c, and for genotype b. When available, complete sequences are 
presented. Otherwise, historic strains are presented. Due to the limited number of available strains for genotypes d–g, a single strain is presented. Of note, the 
complete sequence HTLVsmm does not belong to a characterized human genotype

GenBank number corresponds to either the complete sequence, or alternatively the LTR sequence. For each strain, the genotype (and subgroup) is presented, 
together with the country of origin. The letter in the subgroup section corresponds to the historic name of the group; the second element corresponds to the current 
denomination of the subgroup
a Partial sequences (The GenBank number corresponds to the complete or partial LTR sequence)

Genotype Subgroup Reference strains Country of origin Genbank number Refs.

a A/Transcontinental (a-TC) BOI France L36905 [13]

TSP1 Japan M86840 [16]

B/Japanese (a-Jpn) ATK Japan J02029 [12]

YS Japan U19949 [145]

C/West African (a-WA) HS-35 Caribbean NC001436 [14]

FrGu1a French Guyana AY324785 [98]

D/North African (a-NA) BOa Algeria U12804 [21]

Pr52a Morocco U12806 [21]

E/Black Peruvian (a-Per) Bl1a Peru Y16481 [22]

RKI4a Peru AF054627 [22]

F Ethio10a Ethiopia KC493410 [23]

Senegalese (a-Sen) BD78883a Senegal DQ235700 [26]

CV21 Cabo Verde KX430030 [136]

b ELa Africa M67514 [146]

SF26 Brazil JX507077 [141]

c Melanesia Mel5 Solomon Islands L02534 [50]

NCP201 New Caledonia KX905203 [52]

Australia Aus-DF Australia KF242505 [53]

Aus-GM Australia JX891478 [53]

d Pyg19a CAR L76310 [27]

e Efe1a DRC Y17014 [54]

f Lib2a Gabon Y17017 [54]

g 2656NDa Cameroon AY818431 [55]

HTLVsmm Liberia KU214243 [147]
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each genotype, but each genotype is supported by phy-
logenetic studies (Fig. 3), and intragenotypic variability is 
lower than intergenotype variability.

The Cosmopolitan a-genotype is the most frequently 
reported clade and is distributed worldwide. Indeed, it 
is present in various areas such as Japan, the Caribbean 
region, Central and South America, West and South 
Africa, the Middle East, and Europe. This genotype can 
be further divided into geographically related subgroups. 
Subgroups are monophyletic clades that can emerge 
within a genotype, but inter-subgroup genetic diversity 
is low thus it cannot be considered as a genotype per se. 
The existence of subgroups suggests that viruses have 
spread with the migration of ancient infected popula-
tions, and have been genetically isolated for centuries or 
thousands of years.

The initial classification comprised the Transcon-
tinental A subgroup, the Japanese B subgroup, the 
West-African C subgroup, and the North African D 

subgroup; they are now referred as a-TC, a-Jpn, a-WA, 
and a-NA, respectively (Table  1, and Fig.  3) [19–21]. 
More recently, the E/a-Per subgroup, comprising 2 
strains from Black Peruvian, was defined [22]; based 
on partial segment of LTR, a F subgroup has also been 
identified, especially in an Ethiopian patient [23]. 
Lastly, we have added in 2006, a Senegalese subgroup 
(a-Sen), which has also been named “Trans-Saharan” or 
clade W within the HTLV-1aD subgroup [24–26].

• The transcontinental (TC) subgroup is present on 
all continents. The overall nucleotide variability 
within subgroup a-TC is low: it can reach 0–2.5% 
in the gp21-env gene and 0–2% in the LTR region 
[27]. It is believed that this low genetic variability 
reflects the recent dissemination of these strains. In 
particular, the slave trade from Africa to America, 
which peaked in the eighteenth century, may rep-

Fig. 1 Geographical distribution of the seven main molecular genotypes of HTLV-1 (a–g) and major pathways for the spread of the virus through 
the movements of infected populations
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resent one of the major paths of recent dissemina-
tion [22, 28, 29]. Indeed, HTLV-1 strains found in 
South Africa, Mozambique, Zimbabwe, Swaziland, 
and Angola cannot be distinguished from strains 
found in Brazil [6, 7, 30–32]. Additionally, in some 
studies, clades within the a-TC subgroup have been 

identified such as South African clusters, Latin-
American clusters, and a Middle Eastern cluster 
[22, 33, 34] (Fig. 4).

• In Japan, strains from the a-TC subgroup coexist with 
Japanese specific strains [35–39]. The ratio between 
these two subgroups differs depending on geographi-
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Fig. 2 Map of Africa showing the general distribution of HTLV-1 genotypes across the continent. The proportion of the different HTLV-1 genotypes 
and subgroups is presented for each African country. This figure incorporates the information from papers of molecular epidemiology available 
on PubMed [20, 21, 23–27, 30, 41, 44–46, 55, 68, 135–144]. It also incorporates results from two manuscripts in preparation (Cassar et al. and 
Filippone et al.), notably concerning the situation in Benin, Sierra Leone, Western Sahara, and Madagascar, where no data were available to our 
knowledge. Countries without indications have no informative published data on HTLV-1 genotypes between 1994 and 2019. The size of the circles 
is proportional to the number of strains identified. The smallest size corresponds to 1 characterized strain, the intermediate sizes to a maximum of 
5 or 29 strains and the largest to a minimum of 30 strains. HTLV-1a-North African (HTLV-1 a-NA), HTLV-1a-Senegalese (HTLV-1 a-Sen), HTLV-1a-West 
African (HTLV-1 a-WA), HTLV-1b and HTLV-1a-Transcontinental (HTLV-1 a-TC) are the most common throughout the continent in North, West, Central 
and the Austral parts respectively. HTLV-1 d, -e, -f and-g have been identified in Central Africa (Cameroon, Central African Republic, and Gabon)
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cal areas and local populations. While the a-TC 
subgroup is highly predominant among the Ainu 
in the North and residents of Okinawa (Southwest 
Japan), the a-Jpn subgroup is predominant among 

the Wajin population in mainland Japan. Ryukyuans 
are infected with strains of both subtypes. The rea-
sons for such ethnic and geographical distribution 
are still under debate. It is believed that the ancestors 

Fig. 3 Phylogenetic representation of the HTLV-1 genotypes and subgroups. An alignment of complete LTR sequences (774-nt long) from 
178 HTLV-1 strains was obtained. The unrooted phylogenetic tree was generated with the neighbor-joining method using the GTR model 
(gamma = 0.4953). Branch lengths are drawn to scale, with the bar indicating 0.01 nucleotide replacement per site. Numbers on each node indicate 
the percentage of bootstrap samples (of 1000 replicates). HTLV-1 genotypes (a–g) and subgroups (within HTLV-1a and HTLV-1c) are presented. 
References strains (presented in the table) are indicated in the tree, except Mel1 and Ethio10 for which the complete LTR sequence is not available

(See figure on next page.)
Fig. 4 Diverse clusters can be identified within the HTLV-1a-TC subgroup. An alignment of LTR sequences (519-nt long) from 91 HTLV-1a-TC strains 
was obtained. Sequences from HTLV-1a-Jpn were used as outgroup. The phylogenetic tree was generated with the neighbor-joining method using 
the GTR model (gamma = 0.4953). Horizontal branch lengths are drawn to scale, with the bar indicating 0.01 nucleotide replacement per site. Values 
correspond to the approximate likelihood-ratio test for each clade
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of the Wajin population were infected when arriv-
ing in Japan, and that this virus then evolved into the 
HTLV-1 a-Jpn. HTLV-1 a-TC may have been intro-
duced more recently in Japan.

• In Côte d’Ivoire and Ghana, the majority of HTLV-1 
strains belong to the West African subgroup (Fig. 2) 
[40, 41]. a-WA strains were also introduced in South 
America via the Slave Trade: a-WA strains are 
found among the Noir-Marron populations living in 
French Guiana and Surinam [42]. Noir-Marrons are 
descendants of the slaves who escaped from plan-
tations in the Dutch colony of Surinam during the 
sixteenth and early seventeenth century. The Noir-
Marron have strong genetic affinities close to African 
populations from the bight of Benin, which is con-
sistent with their predominant HTLV-1 genetic sub-
type [29, 43].

• The Senegalese subgroup represents, by definition, 
the major subgroup present in Senegal (Fig.  2) [25, 
26]. It is also present in neighboring countries such 
as Gambia, Guinea-Bissau, and Mali [24, 44]. In addi-
tion, the a-Sen strains are found, but more rarely, in 
Côte d’Ivoire and Ghana. This is probably a testi-
mony of frequent migrations, some still ongoing, of 
people from Senegal and neighboring countries to 
other parts of West Africa.

• The North African subgroup is mainly present in 
Algeria, Morocco, Mauritania, Western Sahara, and 
Mali (Fig.  2) [21, 41]. It can also be found sporadi-
cally in other West African countries such as Senegal, 
Guinea, Côte d’Ivoire, and Ghana.

The Central African b-genotype is most frequently 
found in Central Africa, i.e. Cameroon, Gabon, CAR, 
DRC, and Nigeria (Fig. 2). It represents more than 90% of 
the strains found in Gabon and DRC [27, 45, 46]. HTLV-
1b strains differ from HTLV-1a by 2–3% at the nucleo-
tide level (compared to the ATK reference strain) [27]. 
As for HTLV-1a, strains can cluster according to the geo-
graphical origin: HTLV-1 strains from DRC are closer to 
each other than to strains found in South Cameroon and 
Gabon, for example [46].

The Australo-Melanesian c-genotype is the most diver-
gent: the genetic nucleotide variability can reach 6–9% 
when compared to the reference ATK prototype. This 
reflects an ancient speciation, with a long period of isola-
tion of infected populations living in the different islands 
of this Pacific region. HTLV-1c was first described in a 
small group of hunter-horticulturalists living in the fringe 
highlands of Papua New Guinea (PNG) [47–49] and 
among people of Melanesian origin living in the Solo-
mon Islands [49, 50]. Since, HTLV-1c strains have also 
been found among residents from Central Australia, 

the Vanuatu Islands, and New Caledonia [51–53]. As 
with other genotypes, genetic clades that mirror geog-
raphy can be identified within the HTLV-1c genotype. 
Phylogenetic analyses indicate the existence of a sub-
group composed of strains from the Solomon Islands, 
the Vanuatu archipelago and New Caledonia (Melanesia 
subgroup), on the one hand, and an Australian subgroup, 
on the other (Fig. 3). The Australian subgroup can be fur-
ther subdivided into two clades (North and South) [53] 
(Fig. 3).

Other genotypes d, e, f and g have been reported in 
Central Africa, mainly in Cameroon, Gabon, DRC and 
CAR [27, 54, 55] (Table 1, and Fig. 2). HTLV-1d can rep-
resent up to 3% of the HTLV-1 strains in this region [45]; 
HTLV-1 e–g strains have been reported sporadically.

The genetic organization differs according 
to molecular genotypes
HTLV-1 is a complex retrovirus: in addition to structural 
and regulatory proteins, it encodes several accessory 
proteins (also called auxiliary proteins). In the HTLV-1a 
genome, two open reading frames (ORFs) encode four 
accessory proteins: p12 is encoded by ORFI and can be 
cleaved into p8; p13 and p30 are encoded by ORFII and 
are obtained by alternative splicing [56]. These proteins 
display functions essential for viral persistence in  vivo: 
p12 facilitates immune escape, p8 enables viral propaga-
tion, p30 is a negative regulator of viral replication and 
favors viral persistence, and p13 modulates the cellular 
response to oxidative stress and allows infected cells to 
survive [57, 58]. It was early found that deletion of acces-
sory ORFs limits the replication capacity of HTLV-1 in 
animal models [59], although in some cases mutation in 
the accessory ORF may have led to disruption of the hbz 
ORF. Valeri et al. [60] generated a virus deleted for ORF 
I, with the conservation of hbz. This virus could persist 
in the rabbit model, but could not persist in Macaques. 
Thus, the importance of accessory proteins may depend 
on the host species. Interestingly, some replication may 
still occur in the latter model as some revertants could 
appear. Some variability of these accessory proteins has 
been reported, particularly with regard to p12. Truncated 
forms of p12 have been described in Japan and South 
America [61–63]. Moreover, two isoforms at position 88 
(R/K), which can be linked to different levels of protein 
expression and degradation, have also been observed 
[64]. However, it is unclear whether this diversity has an 
impact on viral expression and pathogenesis in vivo.

The importance of accessory proteins in vivo has been 
regularly questioned. A HTLV-1a strain deleted for p12 
has been described in 3 siblings, suggesting that this 
virus was transmitted by their mother and is therefore 
capable of transmission, replication, and persistence 
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in vivo [61]. Similarly, in closely related BLV, the muta-
tion of accessory proteins (R3 and G4) attenuates the 
virus; the attenuated virus can still replicate and, in the 
long term, cancers can still appear (although rarely) 
[65]. Finally, a recent in silico study comparing the 
complete PTLV-1 genomes available on GenBank con-
firmed, as expected, that each complete HTLV-1a strain 
has accessory ORFs and encodes for the 4 proteins. In 
contrast, strains of the HTLV-1c and -1b subtypes lack 
some accessory genes [66]. The start codon of ORF I 
is missing from the complete HTLV-1c and HTLV-1b 
sequences. Moreover, the splicing acceptor required to 
generate the mRNA encoding p30 is mutated and may 
not be functional.

The absence of accessory ORFs, as suggested in the in 
silico analysis, may indicate that: (1) the encoded proteins 
are not essential for viral replication in vivo, (2) there are 
compensatory mutations in the HTLV-1b and HTLV-1c 
genomes that turn accessory proteins optional, or (3) 
there are alternative accessory proteins for these viral 
subtypes. The latter hypothesis is the most likely. Indeed, 
although the start codon is absent from the ORFII, the 
ORF contains no additional stop codon. This may suggest 
a selective pressure to keep the ORF open. The Franchi-
ni’s laboratory recently suggested that alternative splicing 
could lead to the synthesis of p16, an alternative protein 
to p12 (personal communication). In conclusion, the 
genetic organization and accessory genes may be differ-
ent between viral genotypes.

HTLV‑1 originates from its simian counterpart 
through interspecies transmission
Many non-human primates (NHPs) are endemic for 
STLV-1, the simian counterparts of HTLV-1: STLV-1 can 
be found in chimpanzees, gorillas, mandrills, baboons, 
several species of African monkey, a wide range of 
macaques, and orangutans [67–74]. Clonal proliferation 
of STLV-1 infected CD4 T-cells has been reported in 
many NHP species [75]. ATLs have also been reported in 
a series of STLV-1 infected NHPs [76–78].

Interspecies transmission can occur, and is currently 
ongoing in Central Africa. STLV-1 can be transmitted to 
humans through infected body fluids, such as saliva and 
blood. Epidemiological studies have recently found that 
a severe bite by an ape or a monkey is a major risk fac-
tor for HTLV-1 infection in NHP hunters (especially Pyg-
mies) in West Central Africa [79, 80].

It is thus believed that the different HTLV-1 genotypes 
have originated from ancient interspecies transmission of 
STLV-1. It is supported by the fact that STLV-1 infect-
ing chimpanzees and gorillas in South Cameroon cannot 
be distinguished from HTLV-1b strains [80–82]. Simi-
larly, STLV-1d is endemic in Mandrills and C. nictitans 

in Central Africa [67, 70, 73], and STLV-1e and -f are 
detected in monkeys in Cameroon [67, 83].

However, the case is different for HTLV-1a and -1c. 
There is no known STLV-1 closely related to these two 
human genotypes. For HTLV-1a, it can be assumed that 
either the simian reservoir has not been described yet, 
or the simian ancestors may have disappeared since the 
virus was transmitted to humans. For HTLV-1c, the case 
is even more complex. Indeed, monkeys have never been 
present in the Australo-Melanesian region. As a result, 
interspecies transmission of STLV-1 to humans could 
not occur on these islands. Therefore, it is proposed that 
HTLV-1c was acquired by proto-Australo-Melanesians 
during their migration through Southeast Asia, and that 
populations that reached the highlands of Papua New 
Guinea were already HTLV-1 infected. The infected pop-
ulations would then have disseminated, together with 
their virus, throughout the Australo-Melanesian region 
[50, 53, 84–87].

In Asia, STLV-1 is found in many species of macaques 
[69, 74]. Macaque STLV-1 forms a paraphyletic clade 
composed of genetically very distant strains [66]. These 
strains are so distinct that some authors have con-
sidered that STLV-1 found in macaca artoides could 
constitute a novel genotype, called STLV-5 [88]. Intrigu-
ingly, zoonotic transmission of STLV-1 has never been 
reported in Asia, despite a high endemicity of STLV-1 
among macaques, and frequent contacts between mon-
keys and humans in Asia (as evidenced by the transmis-
sion of other retroviruses, such as Foamy virus [89, 90]. 
The reasons for such an apparent restriction of Asian 
STLV-1 in humans remain unknown. We have recently 
speculated that STLV-1 from macaques do not express 
any accessory proteins necessary for viral persistence in 
the human host [66].

Mechanisms of evolution of HTLV‑1
Both recombination and point mutations contribute 
to the genetic variation of retroviruses. However, until 
recently, recombination was disregarded when consider-
ing HTLV-1 evolution. Indeed, no recombination event 
had been identified for HTLV-1. The absence of recom-
bination was supported by the fact that no superinfection 
at the cellular level had been described [91]. Recently, we 
have identified the first recombinant HTLV-1 strains [41]. 
We have found that some strains collected from individu-
als in North Africa (a-NA) are the result of a recombina-
tion between HTLV-1 strains related to strains currently 
present in Senegal (a-Sen) and West Africa (a-WA) 
(Fig. 3). The recombination site was located at the U3-R 
junction, suggesting that the recombination event may 
have occurred during reverse transcription (RT). Ongo-
ing studies have confirmed such findings and identified 
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other recombinants among HTLV-1 strains from West 
and North Africa. (Cassar et  al. in preparation). How-
ever, we assume that recombination may be a rare event 
for HTLV-1, and that the main evolution mechanism for 
HTLV-1 would be the accumulation of point mutations.

Some intra-individual viral genetic diversity has been 
reported. Ehrlich et  al. [92] found, when studying a 
173  bp-long fragment of env, that 16 of the 19 samples 
displayed genetic variants. Many mutations could be 
linked to cytidine deaminase activity. Apart from the 
G>A transition, 7 samples (out of 19) were composed 
of multiple strains, suggesting the presence of HTLV-1 
quasi-species (or multiple infection).

The origin of such diversity is often attributed to the RT. 
Indeed, the mutation rate of HTLV-1 RT is estimated at 
7E−6 mutation/site/replication cycle [93], which is quite 
comparable to HIV-1 RT. The magnitude of the mutation 
spectrum in HTLV-1 patients is much lower than what is 
reported for HIV-1 [94], which is often related to the fact 
that the virus propagates in vivo mainly by clonal expan-
sion. Indeed, RT is mainly limited to primo-infection in 
HTLV-1 [95]. Consistently, mutations introduced by cel-
lular polymerase are limited, at least in asymptomatic 
carriers. Gessain et  al. [28] followed infected individu-
als overtime and found no change in the viral sequences 
(i.e. 522 nt-long env segment). Of note, the authors had 
followed only 3 individuals for 6 to 20  months, which 
explain why no mutation emerged. However, by studying 
the viral genetic diversity within (and between) infected 
cellular clones, Mortreux et al. [96] suggested that actu-
ally most of the mutations found in the samples were still 
accumulated during clonal expansion, instead of RT.

In a nutshell, the origin of intra-individual genetic 
diversity is mostly related to genetic instability and muta-
tions that occur during proliferation of infected cells.

HTLV‑1 evolution rate and molecular clock
There are two different methods for estimating the evo-
lution rate of HTLV-1. Such an estimate only takes into 
account single point mutations, and recombinant strains 
should be excluded.

On the one hand, the mutation rate can be estimated 
by studying vertical/intrafamilial transmission chains of 
the virus. In this context, remarkable genetic stability was 
observed: first, a study in the DRC (ex-Zaïre) revealed 
that 10 related individuals carried the same virus, with-
out mutation (in a 755-nt segment of the LTR), although 
one member was also co-infected with a second strain 
that differed in one nucleotide [97]. This latter was either 
the result of a secondary infection, or a mutation that 
had occurred in that particular individual. A follow-
up study, combining this family together with families 
from South America, found only two mutations in the 

LTR (756  bp-long) and three mutations in env (522  bp-
long) within 16 vertical transmission chains [98]. As 
a result, mutation rates were estimated at 3.5E−6 and 
7.3E−6  substitutions/site/year for LTR and env, respec-
tively. In a similar study in Brazil, the estimation was 
found surprisingly high (2E−5 substitutions/site/year for 
LTR), supposedly because it was calculated on the basis 
of 1 mutation on a single mother–child pair [30]. This 
value may be largely overestimated. Indeed, in Melane-
sia, the intra-familial genetic heterogeneity is as low as 
0–0.2% over 931 nt [99]. This method focuses mainly on 
vertical transmission of the virus and generates an esti-
mation of the mutation rate in the short time scale.

On the other hand, the mutation rate can be estimated 
using phylogeny and an anthropological approach, using 
a dating anchor point for a given clade. Such analyses 
are based upon several assumptions: (1) the data set is 
informative, i.e. the genetic variability is not too high and 
the phylogenetic signal is not saturated. Salemi et al. [100] 
found that the data set consisting of each codon of the 
different canonical genes (i.e. gag, pol, env) were informa-
tive for studying all PTLVs (PTLV-1–2 and 3). Similarly, 
when considering PTLV-1 only, the LTR sequences are 
also informative [101]. (2) The mutation rate is quite 
comparable between species (HTLV/STLV) and viral 
types (PTLV-1/2/3). HTLV and STLV are often consid-
ered together in the different analyses. Similarly, PTLV-1 
and PTLV-2 are often joined in the studies [100–102]. 
However, it has been shown that HTLV-2 strains iso-
lated from IDUs evolve significantly faster than HTLV-2 
strains in an endemic context. Thus HTLV-2 strains 
from IDUs should be discarded. (3) Either the molecular 
clock hypothesis is valid or not; in this latter case, a ‘relax 
clock’ model should be used through Bayesian statistical 
analysis. The different published papers diverge on this 
particular point. Salemi et al. [100] found that a data set 
comprising the 3rd codon of the canonical genes could 
support the molecular clock hypothesis, when exclud-
ing the HTLV-2 IVDU strains. Instead, Lemay et al. [102] 
preferred studying the 3 codon altogether, and used a 
Bayesian approach in order to implement a relaxed clock 
model. When studying HTLV-4, Switzer et al. [88] found 
saturation on the 3rd codon, and the data set consist-
ing of the 1st and 2nd codon was not suitable with the 
molecular clock hypothesis. They also had to use a Bayes-
ian approach.

The calibration values for the molecular clock can 
be major points of debate, and are based on strong 
assumptions.

The most commonly used date to estimate the time 
scale for PTLV evolution is the divergence date between 
HTLV-1c and PTLV1a/b, which is estimated between 
40,000 and 60,000 years ago [88, 100–102]. It was at this 
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time that the first populations migrated from Asia to 
Melanesia. As discussed above, since no simians have 
ever been detected in Oceania, populations that trans-
mitted HTLV-1 to Australo-Melanesia are considered to 
have acquired the virus from Indonesian NHPs on their 
migration route [84]. However, recently, Reid et al. [103] 
have challenged this dating. They believe HTLV-1 was 
introduced into Australo-Melanesia much recently, dur-
ing a more massive wave of migration that originates 
from India, about 4000 years ago. This change in dating 
would results in a different and much higher mutation 
rate.

Another possible date is the divergence between 
HTLV-2a and -2c (in studies combining the two types of 
viruses). Indeed, these two clades are composed exclu-
sively of strains present in Amerindian populations. It 
was therefore proposed that they share a common ances-
tor who reached the Americas at the time of human 
migration on the Bering Strait. Thus, the HTLV-2a/c 
node is dated at 25,000 ± 5,000 years ago [100, 104].

In conclusion, depending on the different models and 
assumptions, the estimated mutation rates vary from 
5.6E−7 [102] to 1.5E−6 [101] and 6.2E−6 [103]  subst/
site/year, for the LTR. When considering coding regions, 
the substitution rate is between 2.1E−7 and 8E−7 subst/
site/year (assuming a Bayesian relaxed molecular clock) 
[88, 102].

Conclusions: major unanswered questions 
concerning HTLV‑1 molecular variety
Despite a good understanding of the genetic diversity 
and evolution mechanisms of HTLV-1, many questions 
remain concerning the origins of some groups infected 
with HTLV-1, and the pathogenicity of each genotype.

1. Several European countries (e.g. France, Great Brit-
ain and Spain) regularly report cases of HTLV-1 
infection (among blood donors or pregnant women) 
or HTLV-1 associated diseases [105–107]. In these 
countries, most of the infected individuals come 
from regions where HTLV-1 is highly endemic, such 
as the Caribbean area, sub-Saharan Africa, and South 
America. In contrast, Romania has a high prevalence 
of HTLV-1 infection [108, 109], but there is no evi-
dence of significant migrations from HTLV-1 ende-
micity areas. Thus, Romania seems to be a nucleus 
of endogenous endemicity in Europe. The origins of 
HTLV-1 in Romania are unknown. From a molecu-
lar point of view, the viral strains present in Roma-
nia belong to the TC subgroup of the Cosmopolitan 
a-genotype [110, 111]. Extensive epidemiological and 
molecular studies are being conducted in order to 

get new insights into the origin and dissemination of 
HTLV-1 infection in Romania.

2. HTLV-1 has been found in many native populations 
in the Americas, such as the Inuit in Canada and the 
USA, the Quetchua in Peru, the Mapuche in Chile, 
and indigenous groups from Argentina [112–115]. 
Most strains belong to the large a-TC subgroup; in 
some cases, geographical clusters can be identified 
(small and large Latin American Clusters, Jujuy spe-
cific cluster, etc.) [112–116]. The origin of such infec-
tion is still controversial: either the virus has recently 
been acquired—through contacts with infected indi-
viduals from Africa, following the slave trade for 
example [30–32, 117]—or the virus was introduced 
during the initial settlement of the American con-
tinent, with the migration of infected populations 
through the Behring Strait [118–120].

3. The modes of dissemination of HTLV-1 in the Mid-
dle East and Asia remain to be clarified. Regions of 
the Middle East (e.g. areas of Iran and Kuwait) have 
been found endemic for HTLV-1 [121, 122]. A few 
strains have been characterized, and suggest that 
there is a Middle Eastern cluster within the HTLV-1a 
TC subgroup [33, 34, 123]. Interestingly, some strains 
found in India are closely related to strains from the 
Middle East [124]. Thus, infected populations have 
migrated between these regions. Some suggest that 
the ancient Silk Road, which linked China to Antioch 
(now in Turkey), could also have been a Road for the 
dissemination of HTLV-1.

4. The importance of human migrations in the modern 
area will likely modify the distribution of HTLV-1 
and lead to a mixing of genotypes and subtypes. 
Indeed, the Tokyo metropolitan area may become 
a hotspot of endemicity for HTLV-1 as individuals 
migrate from endemic areas such as the Kyushu-
Okinawa region [125]. In some cases, long-distance 
migrations occur and lead to a wider distribution 
of a previously geographically restricted subtype. 
Thus, a-Jpn strains have been found in other coun-
tries, such as Peru [22], Hawaii USA [126], and South 
Africa [127] (Fig. 2).

5. There is no clear evidence of specific mutations in the 
HTLV-1 genome that would render the virus more 
pathogenic [128, 129]. However, most of the reported 
cases of ATL and TSP/HAM correspond to individu-
als infected with HTLV-1 strains from the a-gen-
otype. Does this mean that this genotype is more 
pathogenic than the others? For instance, it has been 
suggested that Australian HTLV-1c strains might 
be less oncogenic, more likely to induce inflamma-
tory diseases (such as bronchiectasis) than tumors 
[130–132]. Since, ATL cases have been reported in 
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HTLV-1c carriers [133, 134]. One of the reasons why 
the proportion of ATL appears to be lower among 
Indigenous Australians may be related to the fact 
that this population is younger and has a shorter life 
expectancy; it may also be underreported. In order 
to clearly answer this particular point, cohort-based 
prospective studies on HTLV-1b and HTLV-1c pop-
ulations are needed.
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