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Abstract 

Background: The ability of HIV-1 to integrate into the genomes of quiescent host immune cells, establishing a 
long-lived latent viral reservoir (LVR), is the primary obstacle to curing these infections. Quantitative viral outgrowth 
assays (QVOAs) are the gold standard for estimating the size of the replication-competent HIV-1 LVR, measured by 
the number of infectious units per million (IUPM) cells. QVOAs are time-consuming because they rely on culturing 
replicate wells to amplify the production of virus antigen or nucleic acid to reproducibly detectable levels. Sequence 
analysis can reduce the required number of culture wells because the virus genetic diversity within the LVR provides 
an internal replication and dilution series. Here we develop a Bayesian method to jointly estimate the IUPM and vari-
ant frequencies (a measure of clonality) from the sequence diversity of QVOAs.

Results: Using simulation experiments, we find our Bayesian approach confers significantly greater accuracy over 
current methods to estimate the IUPM, particularly for reduced numbers of QVOA replicates and/or increasing actual 
IUPM. Furthermore, we determine that the improvement in accuracy is greater with increasing genetic diversity in the 
sample population. We contrast results of these different methods applied to new HIV-1 sequence data derived from 
QVOAs from two individuals with suppressed viral loads from the Rakai Health Sciences Program in Uganda.

Conclusions: Utilizing sequence variation has the additional benefit of providing information on the contribution of 
clonality of the LVR, where high clonality (the predominance of a single genetic variant) suggests a role for cell divi-
sion in the long-term persistence of the reservoir. In addition, our Bayesian approach can be adapted to other limiting 
dilution assays where positive outcomes can be partitioned by their genetic heterogeneity, such as immune cell 
populations and other viruses.
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Background
HIV-1 persists in individuals, despite fully suppressive 
anti-retroviral therapy (ART), due to the presence of 
resting CD4+ (rCD4) T cells that are latently infected 
with replication competent, integrated copies of the 
virus [1]. These resting cells can reactivate through natu-
ral immunological challenge within the body, and upon 
reactivation will produce progeny virus. In the case of 
discontinuation of ART, this reactivation will lead to full 
viral rebound within a matter of weeks in virtually all 
individuals [2]. The size of this pool of latently infected 
cells, referred to as the latent viral reservoir (LVR), has 
proven difficult to measure as the vast majority of inte-
grated proviral DNA is defective [3, 4]. Therefore current 
methods for quantifying replication-competent provirus 
rely on the production of infectious virus in  vitro; the 
quantitative viral outgrowth assay (QVOA) is presently 
the gold standard for LVR quantification. The QVOA is 
based on the in  vitro reactivation of rCD4 T cells iso-
lated from an infected individual in a limiting dilution of 
replicate wells, with a readout of HIV-1 p24 antigen pro-
duction to identify wells containing at least one latently 

infected cell. However, the QVOA is labor-intensive and 
difficult to scale up to larger numbers of wells. Each well 
is cultured for several weeks with the repeated addition 
of uninfected CD8-depleted lymphoblasts, or the single 
addition of MOLT-4/CCR5 cells, to amplify any viruses 
released so that HIV p24 antigen can be produced at 
detectable levels [5, 6] (Fig. 1). Consequently, it would be 
beneficial to minimize the number of replicate wells that 
need to be cultivated for every patient sample. Sequenc-
ing individual viruses from the positive wells internally 
dilutes each virus population by partitioning the binary 
outcome (p24 antigen positive) into multinomial out-
comes (presence or absence of sequence variants) [7]. In 
other words, the genetic diversity of the virus population 
provides an intrinsic replication and dilution series that 
can enable the investigator to culture a smaller number of 
wells, and has therefore been proposed as a tool for refin-
ing the estimates of infectious units per million (IUPM) 
cells [7], the standard LVR measure.

Additionally, sequencing of outgrowth virus can pro-
vide information on the contribution of rCD4 T cell 
division to persistence of the LVR. The long half-life of 
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Fig. 1 Schematic diagrams of experimental and data analysis procedures. (Left panel) Resting CD4+ T cells sampled from an HIV+ patient are 
serially diluted in replicate culture wells. Uninfected cells are added to the culture wells to amplify viral outgrowth (red). IUPMStats estimates the 
rate parameter �̂ of the single-hit Poisson model from the numbers of positive wells at varying dilutions. (Right panel) HIV-1 RNA is extracted from 
each positive well and amplified for library construction and sequencing. The presence/absence of different sequence variants are tabulated and 
used to fit a multi-target Poisson model by Markov chain Monte Carlo (MCMC) sampling, in which a prior distribution on the IUPM (lower right, grey 
dashed curve) is updated by the data to estimate the posterior distribution (solid curve)
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the HIV-1 LVR that averages several years in duration 
[8, 9], in combination with the presence of clonal pop-
ulations of rCD4 T-cells that contain identical HIV-1 
proviral sequences [10–12], suggests that rCD4 T-cell 
proliferation may play a significant role in maintaining 
the LVR. The role that this phenomenon plays in main-
taining the LVR is of critical importance for HIV-1 cure 
efforts, as it will help direct the ideal path for target-
ing and eventually destroying these latently infected 
cells. To this end, multiple groups have begun using 
viral sequencing of both latent HIV-1 proviral DNA, 
as well as populations derived from viral outgrowth 
assays (such as the quantitative viral outgrowth assay 
[QVOA]), to characterize the contribution of this clonal 
expansion to the maintenance of the LVR [10, 13–15].

The single‑hit Poisson model
The current standard approach for estimating the 
IUPM from QVOA results is based on the single-hit 
Poisson model, which has long been used for the analy-
sis of limiting dilution assays [16]. The expected IUPM 
is estimated by maximizing the likelihood for a bino-
mial distribution:

where N is the number of wells in the QVOA; Y is the 
number of p24-positive wells; and p� = 1− exp(−n�) is 
the probability that a well is positive because one or more 
of the cells within it were infected (hence ‘single-hit’), 
given that each well contained n cells. The rate parameter 
� is the proportion of cells that are infected, from which 
we derive our estimate of the IUPM as �× 106 . This 
model assumes that all cells in the sample population 
have a uniform probability of being infected. It is con-
ventionally assumed that n (the number of cells per well) 
is known without error, so that the maximum likelihood 
estimate (MLE) of p� is a direct estimate of � . Serial dilu-
tion is typically used to vary n across sets of wells, which 
reduces the chance that the wells are either all positive 
or all negative; neither of these extreme outcomes can be 
used effectively to estimate � . Thus, a more general for-
mulation of equation (1) is:

where D is the number of dilution factors, Ni is the num-
ber of wells with the i-th dilution factor, Yi is the number 
of these wells that test positive, and ni is the number of 
cells per well [17].

(1)L(Y |�,N ) ∝ pY
�
(1− p�)

N−Y

(2)L(Y |�,N ) =

D
∏

i=1

(1− exp(ni�))
Yi exp(ni�)

Ni−Yi

Incorporating sequence variation
The defining feature of the single-hit Poisson (SHP) 
model is that each well has a binary all-or-nothing out-
come, in which the well either tests positive or nega-
tive for viral outgrowth (Fig.  1). Estimating IUPM is 
contingent on having a mix of positive and negative 
outcomes, where the probability of each positive out-
come (that a well contains at least one infected cell, 
and therefore p24 is detected) is modulated by dilution. 
However, if we obtain genetic sequences for individual 
viruses within a given well, then we have additional 
information about the number of infected cells per 
well [7]. If two distinct sequence variants are observed 
from a well, for instance, then we can assume that 
the well initially contained at least two infected cells. 
Additionally, we can track the occurrence of specific 
variants across wells to simultaneously estimate the 
relative frequency of variants in the sample population 
of infected cells, which also provides information about 
the clonal expansion of infected cells. For example, 
consider a QVOA where four wells are plated with 106 
cells per well, and p24 ELISA shows that all four wells 
are positive for HIV. From these data, there is no sensi-
ble maximum likelihood estimate for � under the SHP 
model because the likelihood surface asymptotes as 
� approaches infinity. However, suppose there are five 
genetic variants (labeled A through E) with a uniform 
frequency of 0.2 in the sample population of viruses, 
and the true IUPM is 5. Then we can simulate a random 
outcome represented by the following binary (pres-
ence/absence) matrix:

Under these conditions, the probability that all four wells 
are positive is (1− e−5)4 ≈ 0.973 . In other words, there 
is a good chance that we will be unable to estimate the 
IUPM with the SHP model. On the other hand, we expect 
that each variant will be present in a given well only 
1− e−0.2×5 ≈ 0.63 of the time, and all four wells only 
about 0.634 ≈ 16% of the time; the chance that all vari-
ants appear in all wells is only about one-hundredth of 
a percent. Therefore, if we use sequencing to determine 
which variants appear in each well, then it is very likely 
that we can regain the ability to estimate the IUPM in 
an ‘all positive’ scenario. Incorporating sequence infor-
mation constitutes a more difficult problem because we 
need to simultaneously estimate the variant frequencies 
along with �.

Well p24 A B C D E
1 + 0 1 0 1 0
2 + 1 0 0 0 0
3 + 1 1 0 0 0
4 + 0 1 1 1 0
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Recently, Lee et  al. [7] described using a primer ID-
based next-generation sequencing assay (NGSA) to 
sequence the virus populations in positive QVOA wells. 
This QVOA-NGSA method employs a maximum likeli-
hood estimator for IUPM that is the sum of variant-spe-
cific quantities, �̂ =

∑

i − log(1− yi/K ) , where yi is the 
number of K wells containing the i-th variant. This esti-
mator stipulates that every well contains the same num-
ber of cells, such that the estimate �̂ can be rescaled by 
a constant factor to estimate the IUPM; for instance, if 
each well contained 2.5× 106 cells then IUPM = �̂/2.5 . 
Furthermore, this estimator has the same problem as the 
SHP model in that �̂ goes to ∞ if any variant is observed 
in every well ( yi = K  ). This potentially limits the utility 
of the estimator when the number of wells is small, the 
number of cells per well is large, or the actual IUPM is 
large and/or predominated by a single variant (high clon-
ality) [14].

In this study, we developed a Bayesian method (IUPM-
Bayes; Fig.  1) to jointly estimate the IUPM and the fre-
quency distribution of variants from next-generation 
sequence data obtained from the positive wells of viral 
outgrowth assays. We perform an extensive simulation 
study to compare our Bayesian method to the maxi-
mum likelihood estimators developed for the SHP model 
[IUPMStats; 17] and the QVOA-NGSA method [7]. 
Lastly, we compare the performance of these methods 
using next-generation sequencing of two genetic regions 
(pol and gp41) of viral outgrowth populations from posi-
tive wells, derived from peripheral blood samples from 
two ART-suppressed individuals with markedly different 
levels of HIV sequence diversity in the LVR.

Results
Simulation results
We simulated data sets under an experimental design 
in which 12 wells were inoculated with serial dilutions 
of 106 , 2× 105 , 4 × 104 , 8000, 1600 and 320 cells per 
well in duplicate. This design was configured to be rep-
resentative of viral outgrowth assays used in previous 
empirical studies [6, 8]. Next, we used these simulations 
to evaluate the accuracy of IUPMStats, which combines 
a maximum likelihood estimator on the single-hit Pois-
son model with a Bayesian estimator for cases where no 
positive wells were observed, and our Bayesian method 
(IUPMBayes) that utilizes sequence variation in addi-
tion to the number of positive wells. For these experi-
ments, we used the uninformative prior distribution on 
� ∼ U(0,∞) . Our results are summarized in Fig. 2. First, 
we observed that the relative errors associated with esti-
mates from IUPMStats were relatively consistent across 
the IUPM values used to simulate the data sets, with an 
overall median relative error of about 0.49. When the 

true IUPM was low (0.2 per million cells), then similar 
estimates were obtained using either method. However, 
the overall relative error decreased significantly with 
increasing IUPM (log-link gamma generalized linear 
model, GLM; t = − 9.0 , P < 10−15 ). If we assumed that 
the sample population contained only two variants at 
equal frequencies (1:1), then we observed no significant 
improvement in IUPMBayes above IUPMStats (paired 
t-test, t = −1.05 , P = 0.29 ). However, IUPMBayes 
gained a significant advantage with increasing virus 
sequence diversity and IUPM (interaction term t = −4.5 , 
P = 6.0× 10−6 ; Fig.  2), where we converted the variant 
frequency distributions into Shannon entropy values to 
quantify diversity [18]. Adding this interaction term to 
the gamma GLM conferred a significant improvement in 
fit (likelihood ratio test, LRT; df = 2 , P = 1.8× 10−5).

Why do we observe significant differences in accuracy 
between IUPMStats and our Bayesian method? First, the 
maximum likelihood estimator (MLE) used in the IUPM-
Stats can only assume a finite number of values because 
the outcome space is discrete. When there are a large 
number of wells in which a positive outcome is likely to 
occur, then there is a high probability that the true value 
is close to the MLE. As the expected number of posi-
tive wells declines, however, the distribution of poten-
tial MLEs becomes increasingly sparse. For example, 
the most frequent IUPMStats estimates when the true 
IUPM was set to 1 were 0.51 and 1.61 (Fig. 3), which cor-
respond respectively to the outcomes where one or both 
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Fig. 2 Relative error in estimating IUPM for data simulated under 
the standard experimental design. We calculated the relative 
error of an estimate x̂ given true value x as |(x̂ − x)/x| . Each set of 
box-and-whisker plots summarizes the relative errors for estimates 
obtained by IUPMStats (red) and IUPMBayes under three different 
sets of variant frequencies (see inset legend) for a given true value of 
IUPM (0.2, 1, 5 and 25 per million cells). We used a log-transformation 
of relative errors and rescaled the y-axis to clarify differences between 
methods and simulation conditions; 25 outliers with relative errors 
below .03 were excluded from this plot region
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of the wells with 106 cells plated were positive. The next 
two most frequent MLEs corresponded to the outcomes 
where both 106 wells were positive and either one or both 
of the wells with 2× 105 cells were positive. In contrast, a 
Bayesian approach attempts to generate a random sample 
from a continuous posterior distribution over the IUPM 
parameter.

Second, the wells with high cell counts become less 
informative with increasing IUPM, since they will 
nearly always be positive when the IUPM is sufficiently 
high. For example, a well with 106 cells has a probability 
1− exp(−5) = 0.993 of being positive when the IUPM 
is 5. Sequencing the outgrowth variants in positive 
wells can restore the information content of these wells, 
because these additional data partition the outcomes 
into variant-defined types. Thus, the accuracy of IUPM-
Bayes improves with increasing IUPM but only when the 
sequence variants are present at informative frequen-
cies. For instance, the advantage of utilizing sequence 
information deteriorates as the frequency distribution is 
skewed toward a single predominant variant (Additional 
file 1: Fig. S1), which also reduces the Shannon entropy. 
In this extreme case, most of the variants are so rare that 
they are seldom sampled in the positive wells.

Reducing the number of wells
We conducted an additional set of simulation experi-
ments in which the same number of cells ( 106 ) were 
plated in replicate wells. This configuration facilitated 
the comparison of our method to the QVOA-NGSA 
maximum likelihood estimator proposed by Lee et  al. 
[7], which requires that the number of cells is constant 
across wells. Moreover, we used these experiments to 
evaluate the sensitivity of the methods to reducing the 
total number of wells to 8, 4 and 2 per experiment. Given 
the sparseness of these data, we employed an informative 
prior distribution on �m ∼ Ŵ(α = 2,β = 1) . Our results 
are summarized in Fig. 4. First, we observed that IUPM-
Bayes tended to overestimate the IUPM relative to the 
other methods when the true value was 0.2, where full 
sets of negative wells were common. The median relative 
error was 1.09, which corresponds to an overestimate of 
about 0.37 cells per million. When the IUPM is set this 
low, many replicate experiments will result in all-negative 
outcomes with probability exp(−0.2× n) , where n is the 
total number of replicates. This lack of information in 
turn results in greater uncertainty in estimating IUPM. 
For this situation, IUPMStats uses the posterior median 
estimate assuming a uniform prior on IUPM from 0 to 1 
cells per million, whereas we used the same prior distri-
bution across the same set of simulations irrespective of 
outcomes.

When the true IUPM was increased to 1.0, we observed 
that both QVOA-NGSA and IUPMBayes tended to have 
lower relative errors than IUPMStats; the difference was 
highly significant for IUPMBayes (Wilcoxon signed rank 
test, P = 2.84 × 10−7 ; Fig.  4). Furthermore, the number 
of ‘all-positive’ cases that resulted in �̂ = ∞ estimates from 
either IUPMStats or QVOA-NGSA became more frequent 
with decreasing sample size. For instance, IUPMStats was 
unable to generate a meaningful estimate of IUPM for 46% 
of replicate simulations with 2 wells. Even though QVOA-
NGSA utilized sequence variation to ameliorate this effect, 
if any of the variants appeared in all replicate wells, then 
its maximum likelihood estimator similarly resulted in an 
infinite value. This effect became severe when we increased 
the true IUPM to 5.0; IUPMStats yielded valid estimates 
of IUPM in only 2% of replicates irrespective of sample 
size, and QVOA-NGSA produced estimates for no more 
than 12% (Fig. 4). In contrast, IUPMBayes was surprisingly 
robust to reductions in sample size, with relative errors 
increasingly only slightly with decreasing numbers of wells 
when the true IUPM was 1.0 or greater.

We also observed that the 95% confidence intervals 
generated by the IUPMStats method tend to be slightly 
broader than the analogous Bayesian credibility inter-
vals we obtained from the empirical 95% intervals. For 
instance, when the true IUPM was 1 and we simulated 
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simulations given IUPM = 1. We used a barplot to summarize the 
distribution of IUPMStats estimates, which makes clear that these 
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are negative. The distributions of estimates from IUPMBayes under 
two sets of variant frequencies (1:1 and 1:1:1:1:1) are summarized with 
Gaussian kernel densities (curves). Unlike the IUPMStats estimates, 
these distributions were unimodal and centred near the true value. 
We obtained similar results under varying conditions and IUPM values
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four replicate wells, there were five possible outcomes 
ranging from zero to 4 positives. The IUPM estimates and 
confidence/credibility intervals obtained by IUPMStats 
and IUPMBayes for the respective outcomes are sum-
marized in Table 1. The most frequent outcome was that 
3 of 4 wells were positive: for this outcome, the IUPM-
Stats estimate was 1.39 with a 95% CI from 0.41 to 4.72, 
while the median IUPMBayes estimate was 1.36 with a 
narrower 95% CI from 0.52 to 2.87. Note that these inter-
vals describe the confidence within a single experiment, 
as opposed to the variance in estimates across replicate 
experiments. Some of this difference could be attributed 
to using a prior distribution on � . However, we obtained 
similar results in the simulation experiments with dupli-
cate serial fivefold dilutions and a uniform prior on � 
(Fig.  2). For example, when the IUPM was set to 1, the 
most frequent outcome was a single positive well with 106 
cells; the 95% C.I. around the IUPMStats estimate of 0.51 
was 0.07 to 3.70, while the median IUPMBayes estimate 
(assuming five variants with frequency ratio 8:4:2:1:1) 
was 0.91 with a 95% C.I. = (0.14, 3.06). The next most 
frequent outcome was two positive wells with 106 cells, 
and the respective results for IUPMStats and IUPMBayes 
were 1.61 (0.34, 7.51) and 1.91 (0.53, 4.63). Thus, the 
incorporation of additional information from the pres-
ence or absence of specific variants in the QVOA aug-
ments our precision in estimating �.

Computing time
Since we employ Bayesian sampling to estimate the 
model parameters, including IUPM, our method is more 
time-consuming than methods based on maximum like-
lihood estimators such as IUPMStats. We evaluated the 
time required to generate IUPM estimates by measur-
ing run times for IUPMBayes on 10 replicate data sets 
simulated under the first set of conditions (previous sec-
tion). On a single core of an Intel E5-1620v2 processor, 
it required an average of 358.8 seconds (roughly six min-
utes) to run a chain sample for one million steps, which 
we have found to be adequate for convergence under a 
variety of simulated conditions. In contrast, our imple-
mentation of IUPMStats in R used only 208.3 microsec-
onds on average to process the same data in the same 
computing environment.

Empirical data
We applied both the IUPMStats and IUPMBayes meth-
ods to actual experimental results derived from two 
patients (106 and 111). These patients had been selected 
from a larger study in progress because the overall 
sequence diversity in viral outgrowth wells derived from 
the latent reservoirs of the respective individuals were 
characterized by either very high (106) or very low (111) 
levels of clonality. We use the term ‘clonality’ to refer to 
the scenario where the virus population is dominated by 
a variant or variants that are repeated, such that most 
sequences in a random sample will be identical or have 
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another well containing that same variant. Based on this 
prior information, we adjusted the hyperparameters of 
the Dirichlet prior distribution to α1 = 10,αi �=1 = 1 for 
patient 106 and αi = 1 for patient 111. We assessed the 
sensitivity of our results to these prior distributions in 
Additional file 2: Fig. S2. The dilution series for allocating 
numbers of cells per well was the same as experimental 
design 1 ( 106 , 2× 105 , 4 × 104 , 8000, 1600, 320). How-
ever, the number of wells carrying 106 cells was varied 
with 8 wells for patient 106 and 18 wells for patient 111.

We generated ML estimates under the SHP model using 
both our implementation of this method in R and the 
online calculator at http://silic ianol ab.johns hopki ns.edu. 
These experimental data and results are summarized in 
Table 2. Our implementation of SHP model estimation in 
R produced numerically identical estimates to the online 
calculator for both patients. The IUPMStats estimate was 
significantly higher for patient 106 (8.2 per million) than 
111 (1.6 per million). Additionally, we observed fewer dis-
tinct sequence variants in well samples from patient 106 
than 111 for both the gp41 and pol regions.

Results from our Bayesian analysis of the same data 
sets under the MTP model are summarized in Fig. 5. To 
facilitate evaluation of convergence, we ran three rep-
licate Markov chain samples per data set with different 
initial parameters. We found that for both patients and 

genes, the median posterior estimates of IUPM were sub-
stantially lower than the ML estimates obtained under 
the SHP model. For patient 106, the median estimates 
were 5.28 (95% C.I., 3.19, 9.26) per million for gp41 and 
3.03 (1.60,  5.54) for pol. This difference was driven in 
part by the occurrence of the predominant gp41 variant 
in all eight wells carrying 106 cells, whereas the predomi-
nant pol variant occurred in only seven of these eight. 
Combining these estimates, we predict that the IUPM in 
patient 106 was about 3.8 infected cells per million—sub-
stantially lower than the IUPMStats estimate, but within 
its 95% confidence interval (Table  2). The discrepancies 
between these estimates was consistent with the levels 
of absolute error we observed with simulated data. In 
contrast, we obtained more concordant IUPMBayes esti-
mates between gene regions for patient 111; the median 
posterior estimates were 1.13 (95% C.I., 0.66,  1.74) per 
million for gp41 and 1.36 (0.85, 2.00) for pol, respectively.

Discussion
Maximum likelihood (ML) is a powerful technique for 
estimating the rate parameter of the single-hit Pois-
son model [19, 20]. However, there can be issues with 
ML estimation that are exacerbated with small sample 
sizes. First, the single-hit Poisson estimator becomes 
infinite when all the wells are positive [21]. We have 

Table 1 Comparison of estimates and 95% confidence/credibility intervals for IUPMStats and IUPMBayes

We summarized the results of each method on 100 simulations of 4 replicate wells with 106 cells each, where the true IUPM was set to 1.0 with five sequence variants 
of equal frequency (1:1:1:1:1). We obtained results for the IUPMStats method directly from the online calculator. Entries for IUPMBayes were averaged across replicate 
simulations for each number of positives. *IUPMStats uses a median posterior estimate instead of the maximum likelihood estimate (0) when none of the wells are 
positive

Positives n IUPMStats IUPMBayes

Estimate Lower 95% Upper 95% Median Lower 95% Upper 95%

0 3 0.17* 0 0.75 0.34 0.05 1.10

1 16 0.29 0.04 2.06 0.61 0.15 1.68

2 28 0.69 0.17 2.85 1.04 0.36 2.41

3 37 1.39 0.41 4.72 1.36 0.52 2.87

4 16 ∞ Undefined 1.85 0.80 3.63

Table 2 Summary of outgrowth assay results for two patients

For each dilution (number of cells per well), we report the number of positive wells (total number of wells). IUPM estimates and 95% confidence intervals (CIs) under 
the single-hit Poisson model were generated using the JavaScript calculator at http://silic ianol ab.johns hopki ns.edu (last access date: June 23, 2017). The final column 
reports the number of sequence variants that were observed in regions within HIV gp41 and pol, respectively, when HIV RNA was extracted, amplified and sequenced 
from the positive wells

Patient Positive wells (total wells) IUPMStats # variants

106 2× 105 4× 104 8000 1600 320 cells (95% CI) (gp41, pol)

106 8 (8) 2 (2) 0 (2) 0 (2) 0 (2) 0 (2) 8.148 10, 4

(1.863, 35.635)

111 13 (16) 0 (2) 0 (2) 0 (2) 0 (2) 0 (2) 1.551 13, 20

(0.851, 2.825)

http://silicianolab.johnshopkins.edu
http://silicianolab.johnshopkins.edu
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demonstrated here that this issue can even affect estima-
tors that partition the outcomes by sequence variants, 
i.e., QVOA-NGSA [7]. Methods that reject data sets 
where all wells are positive may systematically underes-
timate the IUPM when the actual value is high, because 
the investigator is required to perform additional experi-
ments until one or more negative outcomes are obtained. 
However this scenario is unlikely when the experimental 
design utilizes a wide-ranging dilution series and can also 
be mitigated by increasing the number of replicate wells. 
Second, ML estimators based on discrete outcomes can 
take only a finite number of values, which we have shown 
can limit the estimator’s accuracy when the number of 
informative observations is small (Fig.  3). Both issues 

are exacerbated by reducing the number of wells used in 
the experiment. On the other hand, there are significant 
practical benefits to reducing the number of replicate 
wells required to estimate the IUPM, not only because 
the assay requires weeks of culturing cells, but also 
because scaling up these experiments to large numbers 
of samples is necessary to detect statistical associations 
between the IUPM and clinical variables [9, 22].

Our results support the concept of applying Bayesian 
methods to sequence diversity to overcome the limita-
tions of maximum likelihood for small samples (fewer 
wells). Although previous studies have implemented 
Bayesian methods to parameterize the single-hit Pois-
son model [23], we are not aware of another study taking 
this approach to incorporate sequence information for 
estimating the number of infectious units. Additionally, 
the Bayesian approach designed here could be adapted 
to more properly incorporate viral sequence data in 
other LVR assays that estimate the size of inducible or 
intact proviral HIV infected cell populations, and thereby 
improve their accuracy and usefulness in HIV cure stud-
ies [24, 25]. Using simulations, we have demonstrated 
that our Bayesian method becomes more accurate than 
current methods as the true IUPM increases above 1, and 
that this advantage is greater with increasing sequence 
diversity in the latent HIV reservoir (Fig. 2). The emerg-
ing consensus from empirical evidence is that, on aver-
age, slightly less than one in a million resting CD4+ T 
cells contain replication competent latent HIV. If actual 
IUPM values tended to be tightly clustered around this 
expectation, then there would be limited use in incorpo-
rating sequence variation for quantifying the latent res-
ervoir. However, empirical evidence indicates that there 
is substantial variability in IUPM around the mean. For 
example, Crooks et  al.  [9] recently reported estimates 
from 37 patients that ranged by more than two orders 
of magnitude around a mean of 0.42 per million (about 
0.02 to 20 IUPM). Similarly, Eriksson et al. [22] reported 
a geometric mean of 0.64 IUPM among 30 patients on 
suppressive therapy with a range also spanning about two 
orders of magnitude. Therefore it is reasonable to expect 
a substantial fraction ( ∼10%) of individuals to have an 
IUPM that is measurably greater than 1.

A core assumption of our method is that detecting 
more than one sequence variant in a culture well indi-
cates the presence of at least that number of latently 
infected cells. It is possible that a cell is multiply infected 
with two or more integrated HIV DNA variants [26]. 
This scenario would cause our method to overestimate 
the IUPM. However, recent work determined that over 
85% of infected CD4+ T cells in peripheral blood carried 
only a single integrated HIV DNA molecule [27], and the 
majority of these proviruses are defective [4]—thus, the 
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Fig. 5 Summary of IUPM estimates obtained by a Bayesian analysis 
of experimental data from subjects 106 (high clonality) and 111 
(low clonality). IUPM was estimated separately using sequence data 
obtained for HIV regions pol (red) and gp41 (blue, hatched). Three 
replicate chains were combined for each patient and gene after 
assessing that the chains had converged to the posterior distribution 
over the IUPM parameter. Median estimates are indicated by vertical 
line segments within each density plot. Grey bars represent the 
maximum likelihood estimate and 95% confidence interval obtained 
by IUPMStats [17]. In the case of patient 106, the upper confidence 
limit from IUPMStats extends to 35.6 cells per million
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generally low prevalence of replication competent virus 
in the LVR (see above) supports this simplifying assump-
tion of the model. In addition, our method assumes that 
any variant that is present in a particular well will be 
detected by next-generation sequencing, irrespective of 
its frequency in the initial sample population. In other 
words, we assume that viral outgrowth is completely 
efficient; the other methods for analyzing QVOA data 
require this same assumption irrespective of genetic 
variation.

The considerable depth at which next-generation 
sequencing samples templates from the outgrowth popu-
lation makes it unlikely that variants present in the well 
are unobserved. However, the rapid evolution of HIV-1 
means there may be an unknown number of rare genetic 
variants in the LVR that fail to become sampled from the 
source population into any replicate wells of the QVOA 
experiment, immediately precluding these variants from 
outgrowth and sequencing. In fitting the multi-hit Pois-
son model, we have out of necessity restricted the model 
to the observed variants in the experiment by marginal-
izing out the number of unobserved variants, M∗ , which 
is exceedingly difficult to estimate from these data. This 
raises a potential issue in that selecting the prior distri-
bution on variant frequencies, P(f|M), becomes directly 
influenced by the number of observed variants in the 
data. Strict adherence to Bayesian principles discourages 
this repeated use of the data, but there is growing rec-
ognition that such ‘data-dependent priors’ are routinely 
used for empirical Bayesian inference and can retain 
statistically desirable properties, e.g., [28]. For example, 
IUPMStats employs a data-dependent prior that is a uni-
form distribution over the interval �m = (0, 1) if all wells 
in the QVOA experiment are negative, and �m = (0,∞) 
otherwise. There are fully hierarchical Bayesian methods 
available to accommodate the uncertainty in M∗ , such as 
the Dirichlet process prior, which describes a distribution 
over the different Dirichlet prior distributions for varying 
numbers of variants. However, MCMC sampling under 
the Dirichlet process prior is not trivial to implement 
and can be slow to converge, in part because the num-
ber of prior distributions is infinite [29]. Furthermore, we 
are pessimistic that the presence-absence matrix derived 
from sequencing QVOA experiments can sustain such an 
expansion of the model parameter space.

Although our method was developed for the spe-
cific purpose of measuring the latent HIV reservoir, it 
can be adapted to other applications of limiting dilu-
tion assays where the target has genetic variation. For 
example, limiting dilution has been used to measure the 
frequency of reactivation in cells latently infected with 
human cytomegalovirus [30]. It could also be adapted 
for the quantitation of nucleic acids by dilution and 

amplification-based assays, which have been developed 
for viruses such as hepatitis C virus [31], and modernized 
with high-throughput technologies that rely on the same 
underlying statistical model, such as digital PCR [32]. 
Finally, limiting dilution and the single-hit Poisson model 
have historically been deployed in the study of immuno-
competent cell populations [19] and continues to play a 
fundamental role in ongoing studies of the diverse cellu-
lar subsets of the immune response [33].

Conclusions
The existence of the latent viral reservoir is a key barrier 
to curing HIV-1 despite highly effective drug treatments. 
In this study, we demonstrate that sequencing individual 
viruses from the positive wells of a viral outgrowth assay 
can provide a more robust and accurate measure of the 
latent reservoir. Furthermore, this approach can facili-
tate scaling up the assay to large numbers of samples by 
reducing the number of wells necessary to measure the 
latent viral reservoir.

Methods
Models
To facilitate batch processing on simulated and experi-
mental data sets, we re-implemented the SHP model in 
the R programming language. For brevity, we will use the 
notation �m = �× 106 for IUPM. We obtained a maxi-
mum likelihood estimate ( ̂�m ) given equation (2) using 
Brent’s root-finding method [34] with a lower bound of 
�m > 0 and an arbitrary upper bound (default �m < 103 ). 
Further, we confirmed that our implementation yielded 
results consistent with the web-based IUPMStats cal-
culator (http://silic ianol ab.johns hopki ns.edu/, version 
1.0). We estimated the 95% confidence interval from the 
likelihood function using numerical root-finding [34] 
to solve the equality L(�m)/L(�̂m) = 0.147 on the inter-
vals �m = (10−3, �̂m) and �m = (�̂m, 10

3) ; this approach 
assumes the sample size is sufficiently large that the log-
likelihood ratio can be approximated by the χ2-distribu-
tion. When the data comprise entirely of negative wells, 
the MLE for � in the SHP model is zero. In this case, the 
IUPMStats calculator substitutes the posterior median 
estimate given a uniform prior distribution over the 
interval �m = (0, 1) [17].

Suppose that an experiment has K wells and M 
sequence variants. Let vk ,i = {0, 1} be the binomial out-
come for the presence or absence of the i-th sequence 
variant in well k. Let fi be the frequency of the i-th vari-
ant in the population of infected cells in the undiluted 
QVOA wells. The likelihood that at least one cell in a par-
ticular well was infected with the i-th variant is described 
by combining the Bernoulli and Poisson distributions:

http://silicianolab.johnshopkins.edu/
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where fink� is the expected number of cells infected by 
variant i in well k. Following standard practice such as 
the single-hit Poisson model [17], we assume that nk are 
known without error. Equation (3) is similar to equation 
(2), except that (3) accommodates variation in the rela-
tive frequencies of sequence variants in the infected cell 
population. The likelihood for the data set is calculated 
by taking the product across all K wells and M variants:

where v is a binary K ×M matrix with entries {vk ,i} . This 
model is similar to the two-target Poisson models used in 
immunology to accommodate subsets of cells with differ-
ent frequencies [35]—accordingly, we will refer to equa-
tion (4) as the multi-target Poisson (MTP) model.

HIV-1 can become highly diverse within hosts [36] and 
not all variants in the population are necessarily observed 
in the experiment, especially those at very low frequen-
cies. The number of unobserved variants, which we 
denote by M∗ , is an uncertain quantity and not feasible 
to estimate from the QVOA data. We will express this by 
expanding equation (4) as follows:

where M now refers to the observed number of vari-
ants instead of the total number. Our objective is use 
this likelihood to estimate � where f, M and M∗ are nui-
sance parameters. The viral outgrowth intrinsic to this 
assay precludes the use of next-generation sequencing 
to directly estimate variant frequencies f, which become 
obscured by the highly stochastic nature of viral ampli-
fication. Thus, we used Bayesian inference to estimate 
the posterior distribution  of � while accommodating 
the uncertainty in the other model parameters. Let the 
total number of variants be represented by an unspeci-
fied prior distribution P(M,M∗) that ranges from 1 to ∞ . 
We used the standard Dirichlet prior distribution for the 
variant frequencies f given M +M∗ variants:

where the hyperparameters αi can be interpreted as the 
respective counts of the variants in a hypothetical sample 

(3)
L(vk ,i|�, fi) =

(

1− exp(−fink�)
)vk ,i exp(−fink�)

1−vk ,i

(4)L(v|�, f ,M) =

K
∏

k=1

M
∏

i=1

L(vk ,i|�, fi)

(5)

L(v|�, f ,M,M∗) =

K
∏

k=1

(

M
∏

i=1

L(vk ,i|�, fi)

M+M∗
∏

i=M+1

L(0|�, fi)

)

(6)P(f |M,M∗) = Ŵ

(

∑M+M∗

i=1
αi

)M+M∗
∏

i=1

f
αi−1
i

Ŵ(αi)

a priori. By default, we set αi = 1 for all i to obtain a flat 
uninformative prior distribution over all possible val-
ues of f. We evaluated different prior distributions for � : 
first, we omitted � from our calculation of prior prob-
ability, which was equivalent to an unbounded uniform 
prior; second, we used a gamma distribution with shape 
parameter α = 2 and rate parameter β = 1 , which yields 
a median of 1.68 and 95% interval of (0.24, 5.6). The pos-
terior probability of the multi-hit Poisson model can 
thereby be written:

Rather than sample over possible values of M∗ for which 
we have no information, we exclude the unobserved 
variants from the data matrix and marginalize out this 
parameter:

where v
+ excludes all M∗ columns in v where 

∑K
k=0 vk ,· = 0 , f is renormalized so that 

∑M
i=1 fi = 1 , and 

L(v+|�, f ,M = Mv+) is the likelihood conditioned on 
observing Mv+ variants in the data. Since this conditional 
likelihood and the priors P(�) and P(f|M) are assumed to 
be independent of M∗ , they can be moved outside of the 
sum, which becomes a constant term that drops out of 
the proportionality relation. Note that in equation (8), 
M is set to the observed number of variants in the data 
( Mv+ ) instead of being inferred as a model parameter. We 
will revisit these assumptions in the “Discussion” section.

Markov chain Monte Carlo (MCMC) samples were 
propagated over the model parameters � and f by 
Metropolis–Hastings sampling. The chains were arbi-
trarily initialized at the parameter values �m = 5 and 
fi = 1/M for all i. We used a Gaussian proposal function 
for � with a mean centred at the current value of � and 
standard deviation σ = 0.1 , i.e., �′ ∼ N (�, 0.1) . Because 
� has a lower bound of zero, we took the absolute value 
of the proposed � ; the resulting proposal distributions 
retain the important property that q(x|x′) = q(x′|x) . 
We proposed new variant frequencies from the uniform 
distributions (fi − δ, fi + δ) where δ was set to 0.005, and 
normalized the results so that 

∑M
i=1 fi = 1 . Again, these 

proposal distributions were reflected at zero so that all 
fi > 0 . The MCMC sampler was implemented in R.

(7)P(�, f ,M,M∗|v) ∝ L(v|�, f ,M,M∗)P(�)

P(f |M,M∗)P(M,M∗)

(8)

P(�, f |v+) ∝

∞
�

M∗=0

L(v+|�, f ,M = Mv+)

P(�)P(f |M = Mv+)P(M
∗|M = Mv+)

∝





K
�

k=1

M
v+

�

i=1

L(vk ,i|�, fi)



P(�)P(f |M = Mv+)
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Method validation
To evaluate the performance of different methods to 
estimate IUPM, we simulated virus outgrowth data sets 
in R by first sampling the number of infected cells per 
well, Y ∼ Poisson(n�) . Next, the infected cells were par-
titioned among N sequence variants by drawing from the 
multinomial distribution defined by the frequency vector 
f = (f1, . . . , fN ) (note we changed notation to avoid con-
fusing this parameter with M and M∗ ). If a sequence vari-
ant was completely absent from the simulated data, then 
we omitted the corresponding column of zero counts 
from the data set (subsetting v to v+ as above) as a neces-
sary part of calculating the conditional likelihood (Eq. 8). 
Put another way, if a particular variant was not observed 
any wells, then we assumed that there was no way of 
inferring that variant’s presence in the source population.

To systematically evaluate the impact of dif-
ferent simulation conditions, we con-
ducted simulations for all combinations of rate 
parameters �m = {0.2, 1, 5, 25 per million cells} and vari-
ant frequencies f = {(0.5, 0.5), (0.2, 0.2, 0.2, 0.2, 0.2), )

(0.5, 0.25, 0.125, 0.0625, 0.0625) }, which we denote more 
concisely as ratios 1:1, 1:1:1:1:1 and 8:4:2:1:1. For each 
combination of model parameters, we generated 100 rep-
licate data sets and applied the maximum likelihood and 
Bayesian methods to estimate the IUPM. Each MCMC 
sample was propagated for 106 steps with the first 105 
steps discarded as burn-in; the remaining chain sam-
ple was thinned at regular intervals of 1000 steps. We 
chose these settings based on our analysis of the con-
vergence behaviour and autocorrelation of preliminary 
runs (Additional file  3: Fig. S3). To reduce computing 
time, all simulations and model analyses were run on an 
Intel Xeon-based computing cluster using the R module 
parallel. The concordance of model estimates and actual 
values was visually assessed with density plots and quan-
tified by the relative error, which was calculated as the 
absolute difference between the actual and true values, 
normalized by the true value.

Data collection and processing
Actual HIV-1 sequence data was obtained from QVOA 
previously performed on a population of HIV-individu-
als recruited through the Rakai Health Science Program 
in Uganda, originally enrolled to examine the size of the 
HIV-1 LVR [37]. Participants were HIV-1-infected adults 
( ≥ 18 years) on ART who had been virally suppressed for 
> 1 year at the time of enrollment (two historical plasma 
HIV-1 RNA measurements < 40 copies/mL, obtained 
10–18 months apart with no intervening detectable viral 
load result).

p24 positive viral outgrowth wells derived from 
QVOA of rCD4 T cells from these Ugandan subjects 

were collected and stored at − 80◦ C. HIV viral RNA was 
extracted from 140 μL of outgrowth media, amplified 
with a directed nested RT-PCR assay for both gp41 ( ∼
350 bp) and pol ( ∼530 bp). Paired-end libraries (2 × 300 
bases) were generated from the amplicons and barcoded 
as previously described [38] for sequencing on an Illu-
mina MiSeq system. Adapter sequences were trimmed 
from the short read data using cutadapt (version 1.8) [39] 
and mate pairs were merged using AdapterRemoval [40] 
with a minimum read overlap of 15 nucleotides. Merged 
sequences containing ambiguous nucleotide calls were 
filtered out and clustered using USEARCH (ver.10) with 
an identity threshold of 0.98 to generate a consensus 
sequence. The number of times each sequence variant 
was observed in the data was recorded in the sequence 
label. Any sequence variant representing <  2.5% of the 
total number of sequences was excluded from further 
analysis [7]. The remaining sequence variants were man-
ually screened for large internal deletions.

Wells containing three or more sequence variants (that 
were greater than 2.5% of the total number of sequences) 
were manually examined for evidence of recombina-
tion as a result of ex  vivo recombination in the well or 
crossover events during library preparation and sequenc-
ing, by visually inspecting a Highlighter plot [41] gener-
ated from all variant consensus sequences. Any potential 
recombinant was removed from the data unless the 
same sequence appeared in another well from the same 
patient, which implied that the sequence represented a 
true recombination event within that patient’s virus pop-
ulation (Additional file  4: Fig. S4). A multiple sequence 
alignment (MAFFT ver. 7) was generated from the result-
ing set of sequence variants and used to reconstruct a 
phylogenetic tree using the implementation of the neigh-
bor-joining method [42] in R for visual inspection. Each 
unique sequence variant was assigned a unique number 
and the presence/absence of the variant was recorded for 
each well.

Empirical data analysis
We used the SHP (IUPMStats) and Bayesian MTP 
(IUPMBayes) methods to analyze sequence data from 
viral outgrowth assays for samples derived from two indi-
viduals (denoted 106 and 111) from the Ugandan study 
cohort. There were two sequence data sets per patient 
corresponding to the pol and gp41 amplicons, for a total 
of four data sets. The clonal prediction scores, which 
quantify the proportions (maximum 100) of unique 
sequence variants that would be correctly identified by 
a particular subsequence [43], were 90 ( ± 14 ) and 83 
( ± 26 ) for these regions due in part to the relatively small 
amplicon size required for targeted NGS of the Illumina 
system. Since we were analyzing a much smaller number 
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of data sets than the simulation study, we ran three rep-
licate chain samples per data set to evaluate convergence. 
Each chain was initialized with random parameter val-
ues; specifically, �m was drawn from a uniform distri-
bution spanning 1 to 10, and f  was drawn from a flat 
Dirichlet distribution ( αi = 1 ∀ i ). We ran each chain 
sample for 107 steps with the first 5× 105 steps discarded 
as the burn-in interval. Chain sample states (log posterior 
probability and model parameter values) were written to 
log files at regular intervals of 5000 steps. Convergence 
was assessed using the Gelman-Rubin diagnostic imple-
mented in the R package coda.

Additional files

Additional file 1. Fig. S1. Relative errors in IUPM estimates for simulated 
data with highly skewed variant frequencies. The composition of this 
figure is similar to Fig. 2.

Additional file 2. Fig. S2. Effect of misspecified prior distributions on 
posterior estimates of IUPM from real data sets. The filled curves represent 
the same posterior distributions as in Fig. 5, where the prior distributions 
on variant frequencies were set to α = {10, 1,… , 1} for patient 106 and 
α = {1,…, 1} for patient 111. The dashed curves represent the posterior 
distributions obtained when these priors were swapped between the 
patient data sets. These results illustrate that misspecification of the prior 
distribution on variant frequencies can have a measurable effect on 
posterior estimates of IUPM where the underlying variant frequencies are 
skewed toward a single common variant (patient 106). However when 
the virus population has low clonality and there is a mixture of positive 
and negative wells at the lowest dilution of the QVOA (patient 111, see 
Table 2), the posterior estimates are more robust to the prior settings.

Additional file 3. Fig. S3. Summary of convergence properties for MCMC 
sampling. The plots display results for three replicate Markov chain sam-
ples (black, red, blue) on the same simulated data set, where there were 
eight wells with 106 cells, four wells with 4 × 104 cells, and four wells with 
320 cells; the true IUPM was set to λ = 1; and the variant frequencies were 
set to f = {0.5, 0.25, 0.125, 0.0625, 0.0625}. (left) Decay of autocorrelation 
with increasing lag between samples in the Markov chain. Throughout the 
study, we thinned chain samples at a lag of 1000 steps. (right) Traces of 
posterior probability for the first 10,000 steps of the three replicate Markov 
chains, which corresponds to the length of the burn-in period used in 
this study. Based on these results, the rate of approach to the posterior 
distribution was fairly rapid: on the order of 1000 steps.

Additional file 4. Fig. S4. Prominent species identification and elimina-
tion of potential outgrowth derived recombinant sequences. a All Pol 
derived consensus sequences with amplicon totals greater than 0.02% of 
the total amplicon number for well 5M4 (1,000,000 rCD4+ cells plated) 
from patient 111 were aligned and viewed in a Neighbor-Joining (NJ) phy-
logenetic tree. Prominent species were defined as those with amplicon 
totals > 2.5% of the total amplicon read number for well 5M4 and are 
indicated with red arrows. b Since the number of prominent species in 
well 5M4 were ≥ 3 the prominent sequences were aligned and viewed 
in a highlighter plot. The probable outgrowth derived recombinant 
sequence is indicated with a red X and was removed from the analysis 
(probable recombination area highlighted in red box). c All Pol prominent 
outgrowth sequences for patient 111 were viewed in a NJ tree and vari-
ants assigned based on clonality (well 5M4 indicated with red arrows).
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