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Michael Emerman graduated from the Ohio State Uni-
versity in 1981 with an undergraduate degree in Bio-
chemistry. He began his career in retrovirology when 
he entered the lab of Howard Temin at the University of 
Wisconsin-Madison for his Ph.D. studies. Howard Temin 
won the Nobel Prize in 1975 for his provirus hypothesis 
and the discovery of reverse transcriptase, along with 
David Baltimore and Renato Dulbecco [1].

At the time Emerman joined the Temin lab in 1982, 
the development of retroviruses as vectors for trans-
ducing foreign genes into cells was new technology. The 
lab had made retroviral vectors based on the genome of 
spleen necrosis virus (SNV), a retrovirus of ducks that 
decades later was shown to be a likely contaminant of 
malaria challenge experiments [2]. A previous postdoc 
in the lab had inserted the mouse alpha-globin gene into 
one of these vectors to show they could be used to gener-
ate fully spliced cDNA from a cellular gene with introns 
[3]. Emerman was given the project of showing whether 
or not alpha-globin protein was made. After some ini-
tial excitement based on finding “red cells” that ended 

up being bits of rubber from the disintegrating red pipet 
bulb, he found, instead, that nearly all of the integrated 
proviruses contained deletions involving the internal 
promoter as well as point mutations [4]. In subsequent 
studies, he designed retroviral vectors to more directly 
test the effects of integration on promoter activity, and 
found that often either the promoter in the long terminal 
repeat (LTR) or the internal promoter was silenced in an 
epigenetic and reversible fashion [5, 6]. This finding has 
current implications for the epigenetic control of latent 
proviruses in HIV Cure research. Another of the major 
outcomes of his thesis work was the realization that one 
could use single cycle retrovirus vectors to precisely 
measure the rates of mutations, recombination, and 
other genetic events in retroviruses—used with increas-
ing levels of sophistication by following generations of 
Temin labmates, e.g. [7–9].

During the time of his thesis work, 1981–1986, the 
first AIDS cases were described in California and New 
York, and the retrovirus now known as HIV-1 was iso-
lated. Emerman decided to do his postdoc in the lab of 
Luc Montagnier, who was awarded the Nobel Prize in 
2008 along with Francois Barrie-Sinoussi and Harald zur 
Hausen. When he arrived at the Pasteur Institute in Paris 
in the summer of 1986, HIV-2 had recently been identi-
fied [10], and the group was making full-length molecular 
clones of HIV-2 and he participated in work to compare 
their sequence and biology to HIV-1 [11, 12]. In other 
work from that time, he and his colleagues mapped a site 
in gp120 necessary for binding to CD4 [13], showed that 
the Vpx protein had a phenotype in primary cells [14], 
and showed that the rev gene was involved in nuclear 
export of viral RNA [15]. This last work was done about 
the same time that Mike Malim in Bryan Cullen’s lab 
made a similar observation [16].

Emerman started his own lab at the Fred Hutchinson 
Cancer Research Center in Seattle, Washington in 1989 
where they had recently been awarded a program project 
grant to build a BL2/3 lab to work with infectious HIV. In 
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those days, assays determining viral titers for HIV or count-
ing infected cells were neither quick nor easy. One of the 
first things his lab did was to create an indicator cell line 
called the MAGI cells (multinuclear activation of (beta)-
galactosidase cells) that allowed one to count infected cells. 
They also used this assay to obtain the first measures of the 
particle to infectivity ratio of HIV-1 [17]. While this was not 
the first indicator cell line made, it was the most widely used 
for many years because it was distributed without restric-
tions through NIH AIDS Reagent Program to over 500 labs 
in over 30 countries, although now mostly supplanted by 
newer and better versions based in similar technology [18].

One paradox of retrovirus research was the ability of 
HIV (and other lentiviruses such as Visna virus) to infect 
terminally differentiated macrophages [19, 20] because it 
contrasted with much earlier work from Howard Temin 
showing that other retroviruses required cell division 
[21]. Emerman’s lab used their MAGI cell assay to dem-
onstrate that ability of HIV to infect non-cycling cells was 
not limited to macrophages [22], and that the difference 
between lentiviruses and most other retroviruses is due 
to the need for other retroviruses to pass through mito-
sis while HIV infection is independent of mitosis [23, 24]. 
Such findings have been of utility in the development of 
lentiviral vectors for gene transfer into non-dividing or 
slowly dividing cells such as stem cells.

Emerman’s lab, as well as several many others, put forth 
evidence for different viral factors that could mediate the 
ability of HIV to infect non-cycling cells. These included 
MA, IN, Vpr, and the cPPT, although eventually, none of 
theses factors could be reproduced when more sensitive 
and quantitative assays came around, e.g. [25, 26]. How-
ever, Masahiro Yamashita, a postdoctoral fellow in the 
Emerman lab, used chimeric HIV/MLV viruses to show 
that the CA protein of HIV was the dominant viral fac-
tor necessary for entry of HIV into the nucleus in the 
absence of mitosis, and later followed this up by identify-
ing particular CA mutations that affected this phenotype 
[27–29]. These findings led to others to exciting ongoing 
work focusing on the role of CA in HIV nuclear import 
and its targeting by host cell factors, e.g. [29–34].

During the course of mapping phenotypes of HIV that 
could be attributed to its accessory proteins, Emerman 
had started some long term cultures of T cells infected 
with HIV either wt virus or virus mutated in its vpr gene. 
Nearly all of the cells in wells infected with wt virus died, 
while those in the wells with a vpr mutant went on to 
establish chronic infections. Eventually, a few cells grew 
out of the wt infected cultures (after he had forgotten 
about them in the incubator for a few weeks), and, by 
sequence analysis, he found that all of them contained 
a mutation in vpr. This led to the realization that Vpr 
caused an arrest in the cell cycle in the G2 phase [35]. 

Similar work was published soon after by other labs [36–
38]. While Vpr appears to modestly increase LTR activity 
due to its cell cycle effects [39, 40] and its ability to cause 
a DNA damage response is conserved among lentiviral 
homologs [41], the role of Vpr in the HIV-1 lifecycle is 
still an area under exploration.

The Fred Hutchinson Cancer Research Center has a tra-
dition of very interactive faculty talks where preliminary 
work and ideas are discussed. It was at one of these retreats 
that Emerman talked about the relatively recent discov-
ery by the Malim group of the host factor antagonized 
by HIV-1 Vif, APOBEC3G [42]. Harmit Malik was a new 
faculty hire whose research focus was on “genetic conflict”, 
or the process by which different genetic elements try to 
gain an advantage over each other. Malik suggested that 
the Vif-APOBEC3G interaction would be a great system to 
look for signs of this genetic “arms race” between viruses 
and host proteins. Malik and Emerman enlisted Malik’s 
first postdoc, Sara Sawyer, in this project to look for evi-
dence of positive selection (a signature of genetic conflict) 
in APOBEC3 proteins. The results were very dramatic—
there was positive selection in APOBEC3G throughout 
primate evolution including very ancient signs of this arms 
race [43]. This work led Emerman and Malik to the devel-
opment of the concept of “paleovirology” as a means to 
discover the effects of ancient pathogenic challenges on 
modern innate immunity [44].

Despite finding much evidence of a genetic arms race 
in APOBEC3G, the first study did not find any evidence 
to support the initial assumption that Vif had driven this 
evolution [43]. It was later discovered this was due to the 
fact that the initial study did not look in the right species 
of monkeys when a graduate student in the Emerman lab 
found evidence for ongoing genetic conflicts between 
APOBEC3G and Vif in the African Monkeys who are 
infected with SIVagm [45]. The Emerman lab subse-
quently found additional instances of positive selection in 
APOEC3G that were escape mutations from antagonism 
from Vif proteins [46]. This approach allowed the Emer-
man and his colleagues to conclude that primate lentivi-
ruses are much older than the oldest date that had been 
previously calculated [47] being at least 5–10 million years 
old [46, 48]. A parallel study by Welkin Johnson’s group 
came to a similar age using the genetic conflict between 
SIV CA and the host restriction factor Trim5 [49].

Since their initial study on APOBEC3G, Harmit Malik 
and Michael Emerman have collaborated on over 20 other 
papers together where they have used their evolutionary 
approach to study host antiviral genes. They have used 
positive selection to identify sites of interaction between 
restriction factors and viral proteins, identify novel activi-
ties of known restriction factors, and find additional 
evidence for ancient pathogens that drove selection on 
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restriction factors, in particular using Trim5 and other 
Trim proteins [50–54], Tetherin [55], Zinc Antiviral 
Protein [56], Mx proteins [57, 58], APOBEC3 proteins 
[59–61], and SAMHD1 [62]. They have also used human 
polymorphism data and comparison between primates 
to understand “holes” in the human innate immune sys-
tem where some, most, or sometimes all, humans are ill-
adapted to cope with lentiviral infections. These include 
functionally important human polymorphisms in Trim5 
[63], APOBEC3D [59, 64], APOBEC3C [64, 65], and 
APOBEC3H [60, 66–68]. Finally, the Emerman lab has 
used this approach to understand forces that underlie the 
ancient evolutionary history of lentiviral lineages lead-
ing to HIV-1 including the adaptation of SIV to hominid 
APOBEC3 proteins that involved the loss of SAMHD1 
antagonism [69], the gain of SAMHD1 antagonism by Vpr 
and Vpx proteins [62] (as well as changes in specificity of 
SAMHD1 antagonism in lentiviral evolution [70, 71]) and 
the adaptation of HIV-1 to human Tetherin [55]. Addi-
tional work has focused on restriction factors that protect 
hominids from other lentiviral infections [72].

Emerman has been an editor for Virology since 2002 
and the Editor-in-Chief since 2013. He is also an Asso-
ciate Editor for PLOS Pathogens. He teaches a graduate 
course in Virology every other year called “Human Path-
ogenic Viruses” which focuses on replication, evolution/
ecology, and pathogenesis of major human virus fami-
lies. He was awarded the Ohio State University Center 
for Retrovirus Research Distinguished Career Award, an 
NIH Merit Award, and Elected Fellow in the American 
Academy of Microbiology. He has trained over 30 gradu-
ate students and postdocs in retrovirology, and the prize 
of which he is most proud is the James McDougall Men-
toring Award nominated by his former trainees.
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