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Paul Bieniasz graduated from the University of Bath, 
UK in 1990, and began his career in retrovirology with 
Jonathan Weber and Myra McClure at St. Mary’s Hospi-
tal Medical School in London. Initially, he worked HIV-1 
entry, and the early development of PCR-based assays 
to quantify HIV-1 burden in patients [1]. For his Doc-
toral degree, Bieniasz shifted his focus and worked with 
McClure on the foamy viruses. In particular, he charac-
terized novel foamy virus isolates from apes, in so doing 
demonstrating a close relationship between ‘human’ 
and chimpanzee viruses [2]. He also developed some of 
the first foamy virus-based gene transfer vectors [3] and 
showed that foamy virus infection was dependent on cell 
division [4].

After graduating, Bieniasz joined Bryan Cullen at 
Duke University as a postdoctoral fellow, from 1996 to 
1999, and returned to HIV-1 research. For his first set of 
experiments, he exploited sequence differences between 
the newly identified human and mouse CCR5 proteins 
to determine sites that were key for strain-dependent 
interactions with the HIV-1 envelope [5]. In a second set 
of studies he again used functional differences between 
human and proteins to show that a single amino-acid 

difference in the cyclin T1 underlay the differential abil-
ity of Tat:P-TEFb complexes to bind TAR and, thus, the 
species-dependent activity of HIV-1 Tat [6]. Bieniasz 
and Cullen also made a key finding that artificial P-TEFb 
recruitment to a promoter proximal RNA element was 
sufficient to stimulate that transcriptional elongation 
activity in the absence of Tat [7].

Bieniasz started his own lab at the Aaron Diamond 
AIDS Research Center and Rockefeller University in 
late 1999. Since then he has worked on many and var-
ied aspects of retrovirus replication. Initially, building 
on work that he began with Cullen, Bieniasz found that 
rodent cells engineered to express human CD4, CCR5 
and cyclinT1, could support early but not late steps in 
HIV-I replication [8]. His characterization of these 
novel host range restrictions sparked a long-standing 
interest in HIV-1 assembly and budding. Indeed, among 
the Bieniasz lab’s early findings was the demonstration 
that the matrix domain of Gag exerted an auto-inhibi-
tory effect on Gag-membrane interactions that contrib-
uted to the apparent block to HIV-I assembly in rodent 
cells [9, 10].

A key set of studies from the Bieniasz lab helped to elu-
cidate the mechanisms by which so-called ‘late-budding’ 
domains enable enveloped virus particle release. Specifi-
cally, Bieniasz and colleagues contributed to the discov-
eries of key roles for Tsg101, ALIX and HECT-ubiquitin 
ligases and ubiquitin in the budding of HIV-1, Ebola and 
other viruses [11–14]. These proteins interacted with 
numerous components of the then newly discovered 
ESCRT pathway which the Bieniasz lab showed were 
important for retrovirus particle release [12, 15, 16].

For a time, the subcellular location at which HIV-1 
particle assembly occurs was controversial. The Bie-
niasz lab resolved this question, demonstrating clearly 
that it occurs at the plasma membrane [17]. Build-
ing on that work, Bieniasz collaborated with Sanford 
Simon to develop imaging techniques that, for the first 
time, allowed the genesis of individual virus particles to 
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be visualized in living cells [18]. This advance enabled 
unprecedented studies of the dynamics of the assembly 
and budding of individual HIV-1 virions. In particu-
lar, elaborations of this technique allowed Bieniasz and 
Simon to visualize and quantify the dynamics of viral 
genomic RNA movement and encapsidation [19], as well 
as the recruitment of ESCRT proteins to sites of virion 
release [20].

More recently, the Bieniasz lab developed new 
biochemical and crosslinking-nextgen sequencing 
approaches to reveal, in unprecedented detail, how viral 
proteins and RNA interact during particle assembly [21, 
22]. This new work has redefined the rules that govern 
how HIV-1 packages its genome, and suggests that the 
unusual A-rich nucleotide composition of the HIV-1 
genome helps to drive viral RNA interaction with Gag 
molecules as they assemble into virions [22]. These new 
approaches have also uncovered a striking and specific 
interaction between the HIV-1 matrix domain and tRNA, 
specifically in the infected cell cytoplasm, that may con-
tribute to the ability of HIV-I matrix to auto inhibit, and 
thereby delay, HIV-1 virion assembly [22, 23].

A second major area of interest for Bieniasz has been 
the discovery and characterization of intrinsic and innate 
cellular antiviral defenses. A significant part of this work 
has been done with his wife and colleague, Theodora 
Hatziioannou. The Bieniasz lab’s first work in this area 
revealed that primate cells possessed an antiviral activity 
that could block HIV-I infection at a post entry step, tar-
geting the incoming viral capsid [24]. Notably, the speci-
ficity of this novel antiviral activity varied dramatically 
in a species-dependent manner and could inhibit very 
diverse retroviruses [25, 26]. The protein responsible for 
this activity was later identified (by the Sodroski lab) as 
TRIM5, and the Bieniasz lab performed key studies of its 
activity against diverse retroviruses [27], mapped deter-
minants of specificity in the viral capsid and in TRIM5 
[28, 29], and provided insights into TRIM5’s mechanism 
of action [30, 31].

Bieniasz’s interests in HIV-1 assembly and in antiviral 
proteins have sometimes overlapped. For example, his 
group showed that RNA recruited APOBEC3 into virons 
through apparently sequence-nonspecific interactions 
[32]. A seminal contribution by the Bieniasz lab was a col-
lection of studies on the HIV-I Vpu protein. Initially, they 
showed that Vpu antagonized the action of an unknown 
interferon-induced protein that could apparently tether 
divergent enveloped viruses at the surface of infected 
cells [33, 34]. These studies led directly to the discovery of 
Tetherin [35], and a series of papers on Tetherin function. 
For instance, The Bieniasz lab showed that Tetherin could 
inhibit the release of remarkably diverse viruses [36] and 
generated a Tetherin knockout mouse to demonstrate the 

antiviral action of Tetherin in vivo [37]. Bieniasz’s group 
also delineated the molecular mechanism by which Teth-
erin inhibits particle release, demonstrating that Tetherin 
inserted itself into the lipid envelope of virions to cause 
their entrapment, and that its overall protein structure 
and not primary sequence are required for activity [38, 
39]. In other studies with Hatziioannou, Bieniasz showed 
that SIVs lacking a Vpu protein often employ another 
viral accessory protein, Nef, as a Tetherin antagonist [40, 
41]. Bieniasz and colleagues found that both of these viral 
antagonists work in a host species restricted manner [40, 
42], as governed by Tetherin sequence variation They 
also revealed key aspects of the molecular mechanisms 
by which these viral antagonists function [43, 44].

The finding that an interferon-induced protein could 
directly inhibit HIV-1 replication inspired Bieniasz to 
search, in collaboration with his colleague Charles Rice, 
for additional interferon induced genes (ISGs) that might 
contribute to the antiretroviral activity of interferons [45, 
46]. One result of this search was the co-discovery that 
Mx2 exhibits anti-HIV-1 activity during the post entry/
preintegration steps of HIV-1 replication [47]. The Bie-
niasz group also showed that Mx2 apparently blocks cap-
sid-dependent entry of HIV-1 preintegration complexes 
into the nucleus, and exhibits signatures of diversifying 
selection in it N-terminal domain that governs nuclear 
pore localization and antiviral activity and specificity [47, 
48].

By exploiting knowledge of specific host-range restric-
tions imposed by antiviral proteins, Bieniasz, Hatziio-
annou and their collaborators, Jeff Lifson and Vineet 
KewalRamani have engineered HIV-1 to overcome bar-
riers to HIV-1 replication in monkeys [49], allowing the 
generation of new animal models of HIV-I infection 
[50]. In particular, Bieniasz and Hatziioannou identified 
a second example of a TRIM5-CypA fusion protein in 
pig-tailed macaques that, remarkably, could not inhibit 
HIV-1 infection [51]. This discovery enabled the use of 
viral engineering and adaptation to develop an HIV-1 
strain that, for the first time, can cause AIDS in a non-
hominid species [52]. This team has also devised a pro-
cedure for generating pathogenic SHIVs that promises to 
expand the range of challenge viruses available for HIV-I 
vaccine studies [53].

In addition to these core interests, Bieniasz has a broad 
interest in the function and evolution of a range of viral 
and host proteins that are involved in retrovirus replica-
tion [54–58]. The Bieniasz group has also pioneered the 
field of paleovirology. His group showed that an extinct 
retrovirus (HERV-K) could be resurrected in functional 
form from molecular fossils that are present in modern 
genomes [59] and uncovered evidence of ancient interac-
tions between APOBEC3 proteins and retroviruses in the 
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form of hypermutated endogenous proviruses in humans 
and chimpanzees [60, 61]. They also completed the first 
identification of an entry receptor for a presumptively 
extinct virus (CERV-2) using a reconstituted ancestral 
envelope protein [62].

Bieniasz has served on several review and advisory 
board including the NIH AIDS Molecular and Cellular 
Biology study section (2004–2009) including as Chair 
(2007–2009) and on the NCI Board of Scientific Counse-
lors (2010–2014). He has been an investigator of the How-
ard Hughes Medical Institute since 2008. Bieniasz was 
a 2003 recipient of the Elizabeth Glaser Scientist Award 
from the Elizabeth Glaser Pediatric AIDS Foundation and 
the 2010 recipient of the Eli Lilly and Company Research 
Award. He was elected to the American Academy of 
Microbiology and received an NIH MERIT award in 2011, 
and was awarded the Ohio State University Center for 
Retrovirus Research Distinguished Career award in 2015.
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