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Abstract 

Background: HIV infection has been reported to alter cellular gene activity, but published studies have commonly 
assayed transformed cell lines and lab‑adapted HIV strains, yielding inconsistent results. Here we carried out a deep 
RNA‑Seq analysis of primary human T cells infected with the low passage HIV isolate HIV89.6.

Results: Seventeen percent of cellular genes showed altered activity 48 h after infection. In a meta‑analysis including 
four other studies, our data differed from studies of HIV infection in cell lines but showed more parallels with infec‑
tions of primary cells. We found a global trend toward retention of introns after infection, suggestive of a novel cellular 
response to infection. HIV89.6 infection was also associated with activation of several human endogenous retroviruses 
(HERVs) and retrotransposons, of interest as possible novel antigens that could serve as vaccine targets. The most 
highly activated group of HERVs was a subset of the ERV‑9. Analysis showed that activation was associated with a 
particular variant of ERV‑9 long terminal repeats that contains an indel near the U3‑R border. These data also allowed 
quantification of >70 splice forms of the HIV89.6 RNA and specified the main types of chimeric HIV89.6‑host RNAs. Com‑
parison to over 100,000 integration site sequences from the same infected cell populations allowed quantification of 
authentic versus artifactual chimeric reads, showing that 5′ read‑in, splicing out of HIV89.6 from the D4 donor and 3′ 
read‑through were the most common HIV89.6‑host cell chimeric RNA forms.

Conclusions: Analysis of RNA abundance after infection of primary T cells with the low passage HIV89.6 isolate 
disclosed multiple novel features of HIV‑host interactions, notably intron retention and induction of transcription of 
retrotransposons and endogenous retroviruses.
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Background
HIV replication requires integration of a cDNA copy of 
the viral RNA genome into cellular chromosomes, fol-
lowed by transcription and splicing to yield viral mRNA. 
Alternative splicing allows the small 9.1 kb HIV genome 
to generate at least 108 mRNA transcripts encoding at 
least 9 proteins and polyproteins [1–6]. During replica-
tion, HIV also reprograms cellular transcription and 
splicing. For example, the virus-encoded Vpr protein 

arrests the cell cycle [7–10] and the viral Tat protein 
binds to P-TEFb and alters transcription at the HIV pro-
moter and some cellular promoters as well [11–16].

Changes in host cell gene expression have been 
reported during HIV infection [17–29] and differences in 
expression have been observed associated with the stage 
[30] and progression [31] of disease. Multiple studies sug-
gest that cells detect HIV infection, in part through the 
recognition of cytoplasmic DNA in abortive infections 
[32–34], and respond by inducing interferon-regulated, 
apoptotic and stress response pathways [18–22, 25–28]. 
Several studies have also suggested that HIV infec-
tion disrupts normal cellular splicing pathways [28, 35]. 
However, results have varied with many experimental 
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parameters, including target cell type, HIV isolate and 
the duration of infection. Many previously published 
studies have focused on infections with lab-adapted HIV 
strains in transformed cell lines [17, 18, 24, 25, 28, 29, 36], 
and so results may not be fully reflective of infections in 
patients.

HIV infection also appears to induce the expression 
of human endogenous retroviruses (HERVs) [37], par-
ticularly HERV-K [38–42], and retrotransposons [43]. 
Immune responses to HERV proteins appear stronger 
in HIV-infected individuals suggesting candidate mark-
ers of infection and possible vaccine targets [44–47]. In 
contrast, two recent RNA-Seq studies of expression dur-
ing HIV infection did not report increases in HERV RNA 
[24, 25]. The origin of this discrepancy is unclear.

The suggestion that HIV integration may disrupt cellu-
lar cancer-associated genes and thereby promote cell pro-
liferation [48–51] has focused attention on the range of 
novel message types formed when HIV integrates within 
transcription units [52–56]. Chimeric reads containing 
HIV and cellular sequence are also of interest due to the 
potential of lentiviral vectors to trigger oncogenesis in 
gene therapy patients through insertional mutagenesis 
[57–60]. A better understanding of chimera formation 
would help clarify this phenomenon in both HIV infec-
tions and lentiviral vector-based gene therapies.

In this study, we sought to generate data more repre-
sentative of HIV replication in patients by using Illumina 
sequencing to analyze transcriptional responses after 
infection of primary T cells with HIV89.6, a low passage 
patient isolate [61]. This represents a continuation of a 
long term effort to understand HIV-host cell interactions 
at the transcriptional level that began with analysis of 
transcription by HIV89.6 in primary T cells using Pacific 
Biosciences long read single molecule sequencing [6]. 
Our strategy here was to analyze a single time after infec-
tion in depth with over one billion sequence reads from 
HIV89.6-infected and uninfected host cells. These data 
were then combined with 147,281 unique integration 
site sequences from the same infections and the Pacific 
Biosciences data on HIV89.6 transcription to (1) elucidate 

effects of HIV infection on host cell mRNA abundances 
and splicing, (2) characterize viral message structure in 
detail and (3) probe the nature of the chimeras formed 
between host cell and viral RNAs.

Results
Infections studied
Primary CD4+ T cells from a single human donor were 
infected with HIV89.6, a clade B primary clinical isolate 
[61], in three replicates. For comparison, two additional 
replicates from the same donor were mock infected. 
Samples were harvested 48 h after viral inoculation, 
which allowed for widespread infection in the primary T 
cell cultures, though some cells may have been infected 
secondarily by viruses produced in the first round. Thus 
cultures probably were not tightly synchronized but did 
have extensive representation of infected primary T cells. 
From these samples, we obtained 1,161,705,678 101 bp 
reads; 1,021,207,853 were mapped to the human genome 
and 24,783,844 to the HIV89.6 provirus (Table  1). Below 
we first discuss the influence of infection on cellular gene 
activity and RNA splicing, then analyze HIV RNAs and 
lastly identify chimeras formed between HIV and cellular 
RNAs.

Changes in gene activity in primary T cells upon infection 
with HIV89.6
We observed significant expression changes in 3,142 
genes (false discovery rate of q < 0.01), which is 17.1  % 
of expressed cellular genes (Additional file 1). The genes 
with most extreme increases, all > 6× fold higher, during 
HIV infection included IFI44L, RSAD2, HMOX1, MX1, 
USP18, IGJ, OAS1, CMPK2, DDX60, IFI44, IFI6, IFNG 
and CCL3. All of these have been reported to be involved 
in innate immunity [62] or are interferon-inducible [63], 
highlighting a strong innate immune response in the cells 
studied. Genes with the largest decreases, all > 3× fold 
lower, were GNG4, GPA33, IL6R, CCR8, RORC, AFF2 
and CCR2.

Many Gene Ontology [64] categories were significantly 
enriched for differentially expressed genes (Additional 

Table 1 Samples and sequencing coverage

Samples used in this study, their infection rates and sequencing depth. “% HIV in infected” is an estimate based on the assumption that infected and uninfected cells 
contain equal amounts of mRNA

Sample Infection rate (%) Reads Human reads HIV reads % HIV % HIV in infected

Uninfected‑1 – 232,450,106 212,391,460 – – –

Uninfected‑2 – 235,048,212 203,760,783 – – –

Infected‑1 37.5 234,378,088 199,871,662 10,219,315 4.86 13.0

Infected‑2 26 226,078,422 198,436,507 7,322,556 3.56 13.7

Infected‑3 21 233,750,850 205,747,441 7,241,973 3.40 16.2



Page 3 of 19Sherrill‑Mix et al. Retrovirology  (2015) 12:79 

file  2). Notably upregulated with infection were genes 
involved in apoptosis, immune responses and cytokine 
production (all q < 10−4) and downregulated were ribo-
somal protein genes and related pathways (q < 10−15). 
These changes suggest that the cells responded to HIV 
infection with the induction of inflammatory, inter-
feron-regulated and apoptotic responses, patterns pos-
ited from several previous studies [18–22, 24–27, 29, 36, 
65]. Expression significantly increased for several genes 
that are characteristic of other hematopoietic lineages, 
e.g. hemoglobin β, CD8, CD20 and CD117, while sev-
eral CD4+ T cell specific genes, e.g. CD4 and CD3, were 
downregulated, potentially consistent with de-differen-
tiation of infected or bystander cells. We return to this 
point in the discussion.

Comparison of transcriptional profiles from HIV89.6 
infection of primary T cells to data on HIV infection in other 
cell types
We sought to identify the transcriptional responses that 
were most conserved upon HIV infection and so col-
lected and analyzed data from four other studies of tran-
scription in HIV-infected cells (Additional file 3). These 
included two studies of infection of the SupT1 cell line 
[24, 25], a study of ex vivo infection of primary CD4+ T 
cells [26] and a study of lymphatic tissue biopsies from 
acutely viremic patients [30]. Genes were scored as 
increased or decreased in activity in infected cell popu-
lations, and the amount of agreement was compared 
among the different studies.

No gene was called as differentially expressed in all five 
studies. Eight genes were differentially expressed in the 
same direction in 4 out of 5 studies; AQP3 and EPHX2 
were downregulated with HIV infection and CD70, 
EGR1, FOS, ISG20, RGS16 and SAMD9L were upregu-
lated. A full listing is provided in Additional file 4. Several 
of the upregulated genes are known to be interferon-
inducible, again emphasizing the role of innate immune 
pathways.

For each pair of studies, we compared whether they 
agreed on the identities of differentially expressed genes 
and whether they agreed on the direction of change 
(Fig.  1). The responses to infection in primary cells 
showed notable differences to responses in the SupT1 
cell line. The two SupT1 studies were significantly similar 
to each other (odds ratio: 1090, 95 % confidence interval 
(CI) 232–16,400, Fisher’s exact test p < 10−15 for direc-
tion of change in differentially expressed genes) but were 
not significantly associated or were negatively associated 
with data from ex vivo primary cells and from lymphatic 
tissue from acutely infected HIV patients. In contrast, 
our data was significantly associated with the primary 
cell (odds ratio: 75.7, 95 % CI 16.9–701, p < 10−15) and 

lymphatic tissue data (odds ratio: 6.49, 95 % CI 1.52–24.9, 
p = 0.003). This documents significant differences in 
responses to HIV infection between infected primary 
cells and SupT1 cells and suggests that results of infec-
tions in primary cells more closely align with actual acute 
HIV infections in patients. SupT1 cells might be expected 
to respond to infection differently than primary cells 
since they have several nonsynonymous mutations in 
innate immunity genes [66], have blocks in immune sign-
aling pathways [67] and fail to activate many interferon-
stimulated genes during HIV infection [27].

Comparison of the HIV‑infected cell transcriptional profile 
to additional experimental T cell profiles
To investigate the transcriptional changes in more depth, 
we compared the results of the five studies of HIV infec-
tion to transcriptional profiles comparing immune cell 
subsets available at the Molecular Signatures Database 
(MSigDB) [68]. The MSigDB reports genes that are 
increased or decreased in relative expression for 185 pairs 
of transcriptional profiles involving CD4+ T cells. We 
compared the lists of affected genes in each pair to genes 
altered in activity by HIV infection. Those pairs of studies 
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Fig. 1 Comparisons among studies quantifying cellular gene 
expression after HIV infection. For each pair of studies, the associa‑
tion between up‑ and downregulation calls was measured for genes 
identified by both studies as differentially expressed (above the 
diagonal). As another comparison, we also measured the agreement 
between studies for which genes were called differentially expressed 
regardless of direction (below the diagonal). The color scale shows the 
conservative (i.e. closest to 1) boundary of the confidence interval 
of the odds ratio with blue indicating a positive association and red a 
negative association between studies. For confidence intervals over‑
lapping 1, the value was set to 1. Therefore all colored squares indicate 
significant associations
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with the most significant associations with HIV89.6 data 
are shown in Fig.  2a. For comparison, the associations 
with the four other HIV transcriptional profiling studies 
mentioned above are shown as well.

The most significant associations for our data showed 
gene expression in HIV89.6-infected cells moving away 
from typical T cell expression patterns and towards 
patterns more similar to B cells, myeloid cells and bulk 
peripheral blood mononuclear cells (all Fisher’s exact 
test p < 10−15) (Fig.  2a). These changes were also seen, 
although to a lesser extent, in the Imbeault et  al. [69] 
study which also used primary CD4+ T cells.

For comparison, we also extracted those profiles most 
strongly associated with the transcriptional data on lym-
phatic tissue of HIV patients [30]. The profiles showed 
patterns similar to strongly stimulated T cells, autoim-
mune disease and to the Th1 T cell subset (all p < 0.01) 
(Fig. 2b). Our data in primary CD4+ T cells paralleled the 
changes seen in lymphatic tissue. These transcriptional 
changes again highlights the strong immune response 
generated by HIV infection in primary cells.

Intron retention
Cells respond to infection by shutting down macromo-
lecular synthesis at multiple levels [70–74], so we investi-
gated whether cells also showed perturbations in splicing 
efficiency after infection. As a probe, we created a data-
base of cellular genomic regions annotated exclusively 
as exons or introns in all splice forms in the UCSC gene 
database [75] and quantified expression in these regions 
in infected and uninfected cells. We found a significant 
increase in intronic sequences relative to exonic sequence 
(Wilcoxon test p < 10−15) (Fig.  3a). This increase in 
intronic sequence was reproducible between replicates 
in our study (Kendall’s τ = 0.42, p < 10−15) (Fig. 3b). We 
reanalyzed RNA-Seq data from Chang et al. [25] and also 
documented intron retention that correlated with the 
changes seen in our data (Kendall’s τ = 0.12, p < 10−15 ) 
(Fig. 3c).

A possible artifactual explanation for enrichment of 
intronic sequences could involve greater DNA contami-
nation in the infected cells samples. That is, if the relative 
amount of DNA differed between treatments, the amount 
of apparent intronic sequences could also differ due to 
sequencing of contaminating DNA. To examine whether 
DNA contamination was abundant in our samples, we 
compiled a collection of 27 large gene desert regions, 
defined here as (1) regions outside the centrosome and 
first and last cytoband, (2) containing less than 1  % 
unknown sequence, (3) containing no genes annotated in 
UCSC genes [75], (4) containing no repeats annotated in 
the RepeatMasker database [76] and (5) spanning more 
than 100 kb. No reads were mapped to these 41 Mb of 
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of differentially expressed genes from pairs of transcriptional profiling 
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entially expressed in both our HIV study and the comparator immune 
subsets. a The transcriptional profiles with strongest associations with 
changes observed in our study of HIV89.6 infection of primary T cells. 
Blue indicates a positive association between changes seen in HIV‑
infected cells and the first immune subset (text colored blue) while red 
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gene deserts in any sample, arguing against explanations 
based on DNA contamination. Thus these data indicate 
that intron retention was increased in these cell popula-
tions upon HIV infection, revealing a previously undis-
closed aspect of the host cell transcriptional response to 
infection.

Ribosomal protein genes were especially enriched for 
introns with strong increases in expression with HIV 
infection (odds ratio: 55.5, 95  % CI 36.9–81.5, Benja-
mini–Hochberg corrected Fisher’s exact test q < 10−15 
for introns with a Bayesian 95 % credible interval for dif-
ferential abundance of > 2× change). Intron retention 
was not restricted to particular introns but was evident 
in most introns in affected genes (Additional file  5A). 
No other Gene Ontology category had a q < 0.01 after 
excluding introns from ribosomal protein genes.

Intron retention has been linked to intronic character-
istics such as splice site strength, GC content and intron 
width across many cell types [77]. To see if a similar pat-
tern existed in our data, we fit a lasso-regularized logis-
tic regression [78] to predict differential expression of an 
intronic region based on GC content, width and 3′ and 
5′ splice site strength [79] of the introns overlapping the 
region. We also included a term indicating whether the 
intron was in a ribosomal protein gene and, because HIV 
has been reported to induce the expression of HERVs and 
other repetitive elements, a term indicating if the intron 
contained any repeat annotation in the RepeatMasker 
database. The resulting model selected only whether the 
intron contained a repetitive element and whether it was 
in a ribosomal protein gene and reduced cross-validated 

mean square error by only 1 %. Thus, it appears that the 
intron retention induced by HIV infection does not fol-
low the same patterns seen when comparing cell types 
and that much of the variation in HIV-induced intron 
retention remains unexplained.

Induction of transcription from HERVs 
and retrotransposons by HIV89.6 infection
Because some differentially expressed introns appeared 
associated with repetitive elements, we investigated the 
expression of HERVs, transposons and other repeated 
sequences. Figure  4a shows a comparison of the asso-
ciation between changes in expression with HIV89.6 
infection and genomic repeat types annotated in the 
RepeatMasker database [76] over varying levels of dif-
ferential expression. At high levels of expression change, 
ERV-9 (odds ratio: 154, 95 % CI 83.1–262, p < 10−15 for 
LTRs with a Bayesian 95 % credible interval for differen-
tial abundance > 4× change) and its long terminal repeat 
LTR12C (odds ratio: 145, 95 % CI 98.9–210, p < 10−15) 
are the only repeats highly associated with HIV infection. 
Looking at genomic repeats with any significant increase 
during HIV infection, the expression of many recently 
acquired genomic repeats, including L1HS, LTR5_Hs (a 
human specific long terminal repeat of HERV-K), AluYa5, 
AluYg6 and SVA_D and SVA_F, were associated with 
HIV89.6 infection (Fig. 4b).

We saw a relationship between the age of genomic 
repeats and its likelihood of being induced by HIV89.6 
infection. The most highly enriched repeats were asso-
ciated with relatively recent hominid-specific repeat 

Fig. 3 Changes in the abundance of intronic regions with HIV infection. Expression of intronic and exonic regions was quantified as the proportion 
of reads mapping within the intron/exon out of the total reads mapping to the transcription units overlapping that intron/exon. a Comparison of 
the ratios of expression between infected and uninfected replicates in exclusively intronic or exonic regions of transcription units. b Reproducibility 
of intron retention between replicates. Each point quantifies the change in expression with HIV infection for a specific intronic region. The x‑axis 
shows changes in gene activity accompanying infection for one set of replicates (Infected‑1 and Infected‑2 vs. Uninfected‑1) and the y‑axis shows 
the same data for different replicates (Infected‑3 vs. Uninfected‑2). c Reproducibility of intron retention between studies. The plot is arranged as in b 
but with all data from our study combined on the x‑axis and corresponding data from Chang et al. [25] on the y‑axis
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classes as annotated by the RepeatMasker database 
(repeat classes with p < 10−50 odds ratio: 31.6, 95 % CI 
8.88–112, p = 10−7). In HERV-K (HML-2), the most 
recently active endogenous retrovirus in the human 
genome [80–82], we saw that integrations unique to the 
human genome [82] were more likely to be differentially 
expressed than older HERV-Ks (odds ratio: 5.38, 95 % CI 
1.93–16.0, p = 0.0005).

Previous RNA-Seq studies of cellular expression dur-
ing HIV infection in transformed cell lines did not 
report increases in HERV mRNA [24, 25]. To investigate 
this difference, we downloaded and analyzed the RNA-
Seq data from Chang et  al. [25], which quantified gene 
activity in transformed SupT1 cells infected with a lab-
adapted strain of HIV. We found a much higher level of 
HERV expression in their data in both HIV-infected cells 
and uninfected controls than in primary cells (Fig.  4c). 
We suspect that in SupT1 cells, as with many cancerous 
cells [83–87], the baseline expression of transposons and 
endogenous retroviruses is higher than in primary cells, 
masking further induction by HIV infection.

We observed heterogeneous expression among ERV-9/
LTR12C sequences and so investigated the primary 
sequence determinants. We observed that LTR12C has 
variants with differing number of repeated sequence in 
the U3 region just upstream of the transcription start 
site (Fig.  5a), an important region for transcription ini-
tiation [88]. The U3 region of LTR12C also contains mul-
tiple motifs for transcription factors NFY, GATA2 and 
MZF1 [89]. To clarify factors affecting expression levels, 
we counted the number of motifs matching these tran-
scription factors’ binding motifs, checked for a TATA box 
[90] within 50 bp upstream of the transcription start site, 
assigned each LTR12C to the short or long length class, 
counted the number of mutations away from the consen-
sus for that length class and checked for integration in a 
transcription unit. We then applied a logistic regression 
to test the effects of these variables on LTR12C differen-
tial expression. We found that HIV89.6-induced transcrip-
tion was more likely for LTR12C containing the short 
length variant of the 3′ U3 region, located within a tran-
scription unit, containing a TATA box motif and contain-
ing greater numbers of GATA2 motifs (Fig. 5b).

Transcription extending several hundred kilobases 
from several ERV-9/LTR12C has recently been reported 
[91]. In contrast in our data, only 14 LTR12C appeared 
to have continuous transcription more than 1000 bp 
downstream of the LTR and the maximum length of 
continuous transcription was only 9275 bp. Transcrip-
tion from some of these LTR12C does appear to con-
tinue directly into transcription units of cellular genes, 
suggestive of the potential for regulatory function 
(Additional file 5B).
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HIV mRNA synthesis and splicing
Over 24 million Illumina reads mapped to HIV89.6, yield-
ing an average coverage of over 240,000-fold. Reads 
mapping to HIV89.6 comprised between 3.4–4.8  % of 
mapped reads in the infected samples (Table  1). It is 
unclear whether HIV infection increases or decreases 
the amount of mRNA in infected cells but if we assume 
HIV-infected cells contain the same amount of mRNA 
as uninfected cells and adjust for rates of infection rang-
ing between 21–37.5  % (Table  1), we estimate that HIV 
transcripts comprise between 13.0–16.2  % of the total 
polyadenylated mRNA nucleotides in infected cells 48 h 
after initial infection. This parallels previous estimates of 
around 10 % [92] at 48 h postinfection, 38 % at 24 h [25] 
or 30 % after 72 h [18].

Over 47,257 single reads spanned previously reported 
HIV splice junctions, allowing a quantitative assessment 
of donor and acceptor utilization (Fig.  6a). As expected 
from previous studies [4, 6], the most abundant junctions 

were D1-A5 and D4-A7. We confirmed the use of unu-
sual splice acceptors A8c and A5a, previously reported in 
HIV89.6 [6]. In the Illumina sequencing, we saw a higher 
abundance of D1-A1 and D1-A2 splice junctions than 
in PacBio sequencing [6], possibly indicative of recovery 
bias in PacBio sequencing.

A 3′ bias is apparent in our sequencing data (Additional 
file 6A). This could be due to the poly-A capture step of 
the protocol where any break in the RNA would result in 
loss of distal 5′ sequences [93]. We used sequence reads 
from the large unspliced HIV intron 1 to measure this 
bias by regressing the log of the number of fragments 
with a 5′-most end starting at a given position against 
the distance of that position from the viral polyadenyla-
tion site, yielding an estimated probability of break-
age of 0.021  % per base (Additional file  6A). Given this 
rate of truncation, there is only a 14 % chance of reach-
ing the 5′ end of the 9171 nt unspliced HIV genome 
((1− 0.00021)9171).
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Fig. 5 Characteristics of ERV‑9/LTR12C sequences associated with induction upon infection of primary T cells with HIV89.6. a An alignment of the 
3′ end of the U3 region of repeats annotated as ERV‑9/LTR12C. Each row is a section of the long terminal repeat sequence and each column a base 
in that sequence colored by nucleotide identity. For clarity, positions appearing in less than 2 % of sequences are omitted. Two distinct classes are 
visible with a short form and long forms containing varying numbers of repeated sequence. Mutations away from the consensus can also be seen. 
b The proportion of LTR12C regions with significant increases in read abundance after infection with HIV and their 95 % confidence intervals sepa‑
rated by the length class of the LTR, presence in a gene, presence of a TATA box and the number of GATA2 motifs in the U3 region. These variables 
were selected by stepwise regression regression comparing differential expression of LTR12C to the length class of the LTR, the number of muta‑
tions away from consensus, the number of NFY, GATA2 and MZF1 motifs and the presence of a TATA box motif within 50 bp of the transcription start 
site. Variables are labeled with the estimated change in log odds ratio (β) and their Wald test p values
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Ocwieja et al. [6] determined the relative abundance of 
HIV89.6 of similarly sized transcripts using PacBio single 
molecule sequencing, but were not able to estimate the 
relative abundance of all transcripts due to a sequencing 
bias favoring shorter transcripts. For this reason, rela-
tive abundances could only be specified within message 
size classes (i.e. the 4 kb, 2 kb and unexpectedly a 1 kb 
size class as well) and the overall quantitative abundances 
were unknown. Our RNA-Seq data are unable to recon-
struct the multiply spliced messages due to short read 
lengths but do permit estimation of size class abundances 
after correcting for 3′ bias (Additional file  6). Thus the 
PacBio data reported by Ocwieja et  al. [6] and the Illu-
mina data reported here can be combined together to 
determine complete relative abundance of 78 HIV89.6 
transcripts (Fig. 6b).

The most abundant HIV mRNAs were the unspliced 
HIV genome (37.6  %), a transcript encoding Nef 
(D1-A5-D4-A7: 15.5  %), two 1 kb size class transcripts 
(D1-A5-D4-A8c: 10.6  %, D1-A8c: 4.9  %) and two Rev-
encoding transcripts (D1-A4c-D4-A7: 4.2  %,  D1-A4b-
D4-A7: 3.1 %).

Using these abundances, we can estimate the number 
of HIV89.6 genomes in these primary T cells 48 h after 
infection. To determine the proportion of the mRNA 
nucleotides from viral transcripts, we multiplied the esti-
mated abundances by their transcript lengths. Unspliced 
genome transcripts appear to form 79  % of the mRNA 
nucleotides from HIV89.6 transcripts. Assuming T cells 
contain at least 0.1 pg of mRNA then an infected cell 
should contain at least 0.011 pg of unspliced HIV tran-
script (0.1pg× 0.14HIV mRNA nt

cell mRNA nt
× 0.79

unspliced mRNA nt
HIV mRNA nt

 ) 
or, assuming 9171 bases of RNA weigh about 5× 10−6 
pg, at least 2200 HIV genomes at 48 h post infection. This 
estimate roughly agrees with previous estimates of HIV 
production per cell [92, 94, 95].

Human‑HIV chimeric reads
In our data, 80,045 reads contained sequences matching 
to both HIV and human genomic DNA. For a baseline 
measure of HIV89.6 integration patterns, we used liga-
tion-mediated PCR to recover provirus-human junctions 
from the same infected cell populations, yielding 147,281 
unique integration sites [96].

Comparison between these two datasets revealed 
abundant RNA-Seq chimeras formed between HIV and 
mitochondrial sequences while no proviral integrations 
into mitochondria were observed (Additional file 7A) or 
have been previously reported [53]. This likely indicates 
significant contamination with chimeras formed during 
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the preparation of libraries for sequence analysis [97–
104]. Potential mechanisms include template switching 
between sequences with shared similarity during reverse 
transcription [105–107] and priming off incomplete 
transcripts during DNA synthesis [97, 98, 108, 109]. To 
account for these artifacts, we retained only the 605 reads 
with no overlap and no unknown intervening sequence 
between human and HIV portions (Additional file  7B) 
where the HIV sequence bordered the 3′ or 5′ end of HIV 
or an HIV splice donor or acceptor (Additional file 7C).

Chimeric messages composed of HIV and cellular RNA 
sequences can be formed by cellular gene transcription 
reading into the integrated provirus, by HIV transcrip-
tion reading out through the viral polyadenylation site or 
by splicing between human and viral splice sites. In our 
filtered data, the predominant forms appear to be derived 
from reading through the HIV polyadenylation signal 
into the surrounding DNA (78 %), splicing out of the viral 
D4 splice donor to join to human slice acceptors (17 %) 
and reading into the HIV 5′ LTR from human sequence 
(4.0  %) (Fig.  7). No splice site other than D4 had more 
than two chimeric reads observed.

The filtered chimeric reads had many traits consistent 
with biological chimera formation. The reads containing 
HIV D4 joined to human sequences had the character-
istics expected of splicing—72.1 % of the chimeric junc-
tions mapped to known human acceptors and 96.1  % 
mapped to a location immediately preceded by the AG 
consensus of human mRNA acceptors. The reads con-
taining the 5′ or 3′ LTR border were almost exclusively 
(93 %) found in transcription units, with odds of being in 
a gene 2.3-fold (95 % CI 1.6–3.2, p = 10−7) higher than 
integration sites from the same sample. The readthrough 
chimeras were also more likely to be located in an exon 
than integration sites (odds ratio: 2.1, 95  % CI 1.6–2.6, 

p = 10−7 only considering integration sites and chimeras 
in transcription units).

Chimeric sequences have the potential to alter the 
expression of proto-oncogenes leading to proliferation 
of the host cell [57–60]. We investigated possible effects 
of integration on cell proliferation by asking whether chi-
meric RNAs were more common at proto-oncogenes. 
HIV has been reported to integrate near oncogenes more 
often than expected by chance [110] and here integra-
tions were more frequent in genes annotated as proto-
oncogenes by the Uniprot Knowledgebase [111, 112] 
than in matched random controls [113] (odds ratio: 3.84, 
95 % CI 3.72–3.97, p = 0.0005). To account for this pref-
erence, we compared the locations of RNA-Seq chimeras 
to those of integration sites from the same samples. In 
these data, we saw no significant enrichment for chimeric 
mRNA to originate in transcription units annotated as 
proto-oncogenes relative to integration sites (Fisher’s 
exact test p = 0.15). This lack of significant enrichment 
might be expected since cells were infected for only 48 h 
and there would be little time opportunity for selection to 
occur during cell growth.

We next compared whether the human and viral seg-
ments of chimeric reads agreed or disagreed in orienta-
tion (i.e. strand transcribed) for reads with the human 
portion mapped within annotated transcription units. 
The sequencing technique used here does not preserve 
strand information, but we can check whether the strand 
of a sequence read agrees or disagrees with the annotated 
gene strand and compare this to the observed strand of 
the HIV portion of the read. Chimeras involving HIV 
splice donor D4 were highly enriched for matching ori-
entations (odds ratio: 52.5, 95 % CI 12.1–307, p = 10−11 ) 
suggesting that pairing with human splice acceptors con-
strains the orientation of D4 chimeric reads. We also 
found a strong association between the orientation of the 
human and HIV portions of chimeric reads within 3′ and 
5′ chimeras (odds ratio: 6.2, 95 % CI 3.9–10.2, p < 10−15 ). 
This highly significant enrichment of HIV and human 
genes in the same orientation might indicate that anti-
sense HIV RNA is rapidly degraded by a response to 
double-stranded RNA or that polymerases oriented in 
opposing directions interfere with one another during 
elongation.

Based on these data, we can propose a lower bound 
on the relative abundance of chimeras. If we assume that 
our filtering removed nearly all artifacts so that we have 
few false positives, then our estimate should be lower 
than the true proportion of chimeras. In our data, only 

604
12,689,879 = 0.0048% of reads containing sequence map-
ping to HIV also contained identifiable chimeric junc-
tions. However, this is an underestimate because in an 
HIV-derived mRNA, any fragment of the sequence will 
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be mappable to HIV, while for a chimeric sequence only 
a read spanning the HIV-human junction will allow 
identification of a chimera. If we assume that 25 bases 
of sequence are necessary to map to human or HIV 
sequence, then, with the 100 bp reads used here, only 
read fragments starting between 75 and 25 bp down-
stream of the chimeric junction will be identifiable. If 
we assume the average chimeric mRNA sequences is at 
least 2 kb long, then a read from a chimeric sequence has 
at most a 50

2000 = 2.5% chance of containing a mappable 
junction. Thus, a lower bound for the proportion of HIV 
mRNA that also contain human-derived sequences is 
0.2 % (0.0048%2.5% ). Looking only at splicing from HIV donor 
D4, we saw 16,843 reads containing a junction from D4 
to an HIV acceptor and 104 reads from D4 to human 
sequence. Thus, in our data, 0.6 % of D4 splice products 
form junctions with human acceptors instead of HIV 
acceptors.

Discussion
Here we used RNA-Seq to analyze mRNA accumula-
tion and splicing in primary T cells infected with the 
low passage isolate HIV89.6. We did not carry out dense 
time series analysis, compare different human cell donors 
or compare different perturbations of the infections—
instead, we focused on generating a dense data set at a 
single time point. We analyzed replicate infected cell and 
control samples to allow discrimination of within-con-
dition versus between-condition variation and assessed 
differences using a series of bioinformatic approaches. 
Many previous studies have used microarray technology 
or RNA-Seq to study gene activity in HIV-infected cells 
[17–22, 24–28, 36], usually analyzing infections of trans-
formed cell lines or laboratory-adapted strains of HIV-1. 
Here we present what is to our knowledge the deepest 
RNA-Seq data set reported for infection in primary T 
cells using a low passage HIV isolate.

This RNA-Seq data set was paired with a set of 147,281 
unique integration site sequences extracted from the 
same infections, which were critical to our ability to 
quality control chimeric reads. An advantage of studies 
using cell lines and laboratory-adapted strains is that a 
high proportion of cells can be infected, whereas in this 
study we achieved only ∼30% infection. However, we 
report distinctive features of the transcriptional response 
not seen in studies of HIV infections in cell lines. Novel 
in this study are (1) identification of intron retention as 
a consequence of HIV infection, (2) the finding of acti-
vation of ERV-9/LTR12C after HIV infection, (3) gen-
eration of a quantitative account of the structures and 
abundances of over 70 HIV89.6 messages and (4) clarifi-
cation of the predominant types of HIV-host transcrip-
tional chimeras. These findings are discussed below.

Broad changes in host cell mRNA abundances were 
evident after infection, with over 17 % of expressed genes 
changing significantly in activity. Changes included 
response to viral infection, apoptosis and T cell activa-
tion. Although it is not possible here to separate the 
response of infected and bystander cells, this study high-
lights the drastic changes in cellular expression caused by 
HIV-1 infection. In a meta-analysis including four previ-
ously published studies, no gene was detected as differ-
entially expressed in all five studies and only a handful of 
genes appeared in four out of five studies. Further analy-
ses showed that expression changes appear to be cell type 
specific, raising concerns that studies using cell lines may 
not fully reflect host cell responses in in vivo infections.

Unexpectedly, intronic sequences were more common 
in the RNA-Seq data from cells after HIV89.6 infection 
than in mock infected cells. The mechanism is unclear. 
It is possible that the splicing machinery is reduced in 
activity after 48 h of infection, perhaps as a part of the 
antiviral response of infected and bystander cells. HIV 
infection does appear to alter expression and localiza-
tion of some splicing factors [35, 114, 115] and genes 
involved in RNA splicing were more likely to be differ-
entially expressed in our study (Benjamini–Hochberg 
corrected Fisher’s exact test q = 2× 10−5). Alternatively, 
fully spliced mRNAs might be more rapidly degraded 
after infection, possibly by interferon-mediated induc-
tion of RNaseL [116, 117] or off-target binding of viral 
protein Rev might mediate export of incompletely spliced 
cellular transcripts [118, 119]. A speculative possibility is 
that HIV89.6 encodes a factor that alters cellular splicing 
or promotes mRNA degradation to optimize splicing and 
translation of viral messages.

Ribosomal protein genes were particularly affected 
by intron retention. Several of these genes have been 
reported to autoregulate protein abundance through a 
feedback loop where the protein represses splicing of its 
own mRNA transcripts to generate unproductive splice-
forms [120–122]. HIV infection can cause a decrease in 
fully processed ribosomal RNA [29] likely through the 
interferon-activated RNaseL pathway [123, 124]. Here, 
we do not have a direct measure of rRNA abundance 
due to the poly-A selection but we did see an apparent 
decrease in total RNA yield in HIV-infected samples. 
Decreased rRNA might lead to more free ribosomal pro-
teins which could suppress splicing of ribosomal gene 
transcripts during HIV infection. However, previous 
reports of alternative splicing in ribosomal protein genes 
have involved specific introns rather than the broad 
intron retention seen here perhaps indicating that both 
the intron retention and the general decrease of expres-
sion of ribosomal genes may be part of an innate immune 
response repressing translation [125, 126].
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Infection resulted in increased expression of specific 
cellular repeated sequences. HERVs, in particular HERV-
K, have previously been observed to show increased RNA 
accumulation with HIV infection [37–42, 47] and pos-
sibly represent vaccine targets because of their produc-
tion of distinctive proteins [44–47, 83, 127]. Here, though 
we saw modest increases in HERV-K expression, ERV-9 
had the greatest changes in expression (33 LTR12C and 
14 ERV-9 annotated regions with greater than 4× change 
in expression). Previous RNA-Seq studies of HIV infec-
tion in cell lines did not report increases in HERV expres-
sion [24, 25] but this difference is likely due to a much 
higher baseline expression of HERVs in transformed cell 
lines. We also observed increases in LINE and Alu ele-
ment transcription, as has been reported previously [43], 
and expression changes in ERV-9/LTR12C expression 
associated with the density of transcription factor bind-
ing motifs within specific U3 variants.

Many of the repeated sequence elements that were 
induced by HIV89.6 infection are relatively recently inte-
grated in the human genome. The reason for this pat-
tern has been unclear. It may be that older elements have 
accumulated more mutations, resulting in an inactiva-
tion of transcriptional signals. Alternatively, perhaps the 
elements that are induced have been recruited for tran-
scriptional control of cellular functions, so that their 
transcriptional activity is preserved evolutionarily [90, 
91, 128–131].

Comparison of the results of sequencing HIV89.6 mes-
sages using long-read single molecule sequencing (Pacific 
Biosciences from Ocwieja et al. [6]) and dense short read 
sequencing (Illumina data reported here) allowed a full 
quantitative accounting of more than 70 HIV89.6 splice 
forms. The full length unspliced HIV RNA comprised 
37.6 % of all messages, corresponding to more than 2000 
genomes per cell. Notably abundant messages included 
the full length genome and spliced transcripts encoding 
Nef and Rev transcripts. The full set of messages is sum-
marized in Fig. 6b.

Our previous analysis using PacBio sequencing [6] 
revealed an unusually prominent 1 kb size class. HIV89.6 
encodes a splice acceptor (A8c) within Nef responsible 
for formation of the short messages. Our data indicated 
that two members of the 1-kb size class, D1-A5-D4-
A8c and D1-A8c, accounted for 10.6  % and 4.9  % of all 
viral messages. The 1 kb size class as a whole accounted 
for fully 20  % of messages. The function of this large 
amount of 1 kb transcript is unknown. The most abun-
dant 1 kb transcripts do not appear to encode significant 
open reading frames although other 1 kb transcripts can 
encode a Rev-Nef fusion [6]. Most HIV/SIV variants do 
appear to encode an acceptor near this position, sug-
gesting a potential unknown function for these short 

spliced forms [6, 132, 133]. This analysis also suggests a 
lower proportion of 4 kb messages than has been seen 
for another isolate [134] suggesting that these ratios may 
vary with strain, time of infection or other conditions [6].

After filtering, we detected a sizeable number of appar-
ently authentic chimeras containing both HIV and cellu-
lar sequences. Mechanisms of insertional activation have 
been studied intensively in animal models of transforma-
tion and in adverse events in human gene therapy. One 
of the most common mechanisms involves insertion of 
a retroviral enhancer near a cellular promoter, so that 
transcription of a nearby gene is increased [58, 135–
137]. However, another common mechanism involves 
formation of chimeric messages involving both cellular 
and viral/vector sequences [57, 58]. A targeted in  vitro 
study of chimeric message formation by lentiviral vec-
tors showed examples of multiple types of splice-in mes-
sages [59], which may have been more frequent and more 
varied than for the HIV89.6 proviruses studied here. The 
low level of chimeric splicing into and reading into HIV 
in this study may be a reflection of the high rate of HIV 
transcription in these infected cells—because HIV was 
so highly expressed, there would be more opportuni-
ties for polymerase to splice out of or read through the 
HIV genome than to read or splice in. The vast majority 
of HIV proviruses in expanded clones in well-suppressed 
patients appear to be defective [51]—going forward, it 
will be of interest to investigate whether these HIV pro-
viruses are damaged in ways that promote formation of 
chimeric transcripts.

Lastly, we note that several features of the transcrip-
tional response to HIV89.6 infection were suggestive of 
de-differentiation away from T cell specific expression 
patterns. The increase in expression of cellular HERVs 
and LINEs is characteristic of cells in early develop-
ment. Specific HERVs and transposons, including ERV-9/
LTR12C and HERV-K, have been implicated in regulat-
ing gene activity early in development [90, 128, 131, 
138–141]. Several genes related to other hematopoietic 
cell types showed elevated RNA abundance after HIV89.6 
infection. These data are of interest given the finding that 
patients undergoing long term ART can contain long 
lived T cell clones that may contribute to the latent reser-
voir [51, 142–145]. Possibly the transcriptional responses 
seen here in infected primary T cells are reflective of pro-
cesses leading to the formation of latently-infected cells 
with stem-like properties.

Conclusions
Infections of primary T cells with a low passage HIV 
isolate showed several distinctive features compared 
to previously published data using T cell lines and/or 
lab-adapted HIV strains. We found strong changes in 
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expression in genes related to immune response and 
apoptosis similar to studies of HIV infection in patient 
samples and primary cells but different from studies 
performed in SupT1 cell lines. Notable changes after 
infection included intron retention and activation of 
recently integrated retrotransposons and endogenous 
retroviruses, in particular ERV-9/LTR12C. We also 
present complete absolute estimation of over 70 mes-
sages from HIV89.6 and specify the major virus-host 
chimeras as splicing from viral splice donor 4 to cellu-
lar acceptors and readthrough from the 5′ and 3′ ends 
of the provirus.

Methods
Cell culture and viral infections
HIV89.6 stocks were generated by the University of Penn-
sylvania Center for AIDS Research. 293T cells were trans-
fected with a plasmid encoding an HIV89.6 provirus, and 
harvested virus was passaged in SupT1 cells once. Viral 
stocks were quantified by measuring p24 antigen content. 
Primary CD4+ T cells were isolated by the University of 
Pennsylvania Center for AIDS Research Immunology 
Core from apheresis product from a single healthy male 
donor (ND365) using the RosetteSep Human CD4+ T 
Cell Enrichment Cocktail (StemCell Technologies). The 
Immunology Core maintains the IRB-approved proto-
col (IRB #705906) and receipt of these cells is considered 
secondary use of de-identified human specimens.

T cells were stimulated for 3 days at 0.5× 106 cells per 
milliliter in R10 media (RPMI 1640 with GlutaMAX (Inv-
itrogen) supplemented with 10  % FBS (Sigma-Aldrich) 
with 100 units U/mL recombinant IL2 (Novartis) + 5 
µg/mL PHA-L (Sigma-Aldrich)). Here PHA and IL2 
were used for their strong activating effects but further 
investigation using cells activated in a more physiological 
way might provide further benefits. Cells were infected 
in triplicate and mock infections were performed in 
duplicate. For each infection, 6.6× 106 cells were mixed 
with 1.32 µg HIV89.6 in a total volume of 2.25 mL. Infec-
tion mixtures was split into three wells of a 6 well plate 
for spinoculation at 1200 g for 2 h at 37  °C. Cells were 
incubated an additional 2 hr at 37  °C. Cells were then 
pooled into flasks and volume was increased to a total of 
12 mL. Spreading infection was allowed to proceed 48 hr 
at 37 °C, after which cells were harvested. 106 cells were 
harvested for flow cytometry, and 6× 106 cells were pel-
leted following two washes in PBS for nucleic acid extrac-
tion. Genomic DNA and total RNA were isolated from 
6× 106 T cells per infection using the AllPrep DNA/
RNA Mini Kit (Qiagen) with Qiashredder columns (Qia-
gen) for homogenization according to the manufacturer’s 
instructions. DNA was eluted in 140 µL elution buffer. 

RNA samples were treated with DNase prior to elution 
in 40 µL water.

Analysis of HIV89.6 integration sites in primary T cells
Integration site sequences were determined for DNA 
fractions from the above infections after ligation medi-
ated PCR [96]. A total of 147,281 unique integration site 
sequences were determined. An analysis of integration 
site distributions for these samples was reported in Berry 
et al. [96].

mRNA sequencing
Messenger RNA was isolated and amplified from purified 
total cellular RNA (3 µL or approximately 9 µg from each 
uninfected sample, 25 µL or approximately 3 µg from 
each infected sample) using the Illumina TruSeq RNA 
sample preparation kit according to manufacturer’s pro-
tocol. SuperScript III (Invitrogen) was used for reverse 
transcription. Each sample was tagged with a separate 
barcode and sequenced on an Illumina HiSeq 2000 using 
100 bp paired-end chemistry.

Flow cytometry
To assess percent infected cells, 106 cells per infection 
were stained for flow cytometry. All staining incuba-
tions were at room temperature. Cells were first washed 
in PBS and then twice in FACS wash buffer (PBS, 2.5 % 
FBS, 2 mM EDTA). Cells were fixed and permeabilized 
with CytoFix/CytoPerm (BD) for 20 minutes and washed 
with Perm-Wash Buffer (BD) before staining with anti-
HIV-Gag-PE (Beckman Coulter) for 60 min. Finally cells 
were washed in FACS wash buffer and resuspended in 
3 % PFA. Samples were run on a LSRII (BD) and analyzed 
with FlowJo 8.8.6 (Treestar). Cells were gated as follows: 
lymphocytes (SSC-A by FSC-A), then singlets (FSC-A by 
FSC-H), then by Gag expression (FSC-A by Gag).

Analysis
Reads were aligned to the human genome using a com-
bination of BLAT [146] and Bowtie [147] through the 
Rum pipeline [148]. Estimates of fragments per kilobase 
of transcript per million mapped reads and changes in 
expression for cellular genes were calculated by Cufflinks 
[149]. Reads found to contain sequence similar to the 
HIV genome using a suffix tree algorithm were aligned 
against the HIV89.6 genome using BLAT [146]. All statis-
tical analyses were performed in R 3.1.2 [150]. RNA-Seq 
reads from Chang et al. [25] were downloaded from the 
Sequence Read Archive (SRP013224) and aligned using 
the Rum pipeline.

Gene lists were obtained from the supplementary mate-
rials of four other studies of differential gene expression 
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during HIV infection [24–26, 30]. We called genes differ-
entially expressed in Li et al. [30] if they had a reported 
p < 0.01 or in Lefebvre et al. [24], Chang et al. [25] and 
Imbeault et al. [26] if they had an adjusted p < 0.05. We 
called genes as differentially expressed in our own study 
if the adjusted p < 0.01. For the comparison of differ-
entially expressed genes regardless of direction in Fig. 1 
(below the diagonal), it was unclear exactly how many 
genes were studied in each study so we assumed a back-
ground of the 14,192 genes (the number of genes that 
could be tested for significance in our data).

We obtained transcriptional profiles comparing 
immune cell subsets from the Molecular Signatures 
Database [68]. MSigDB set names from the MSigDB 
used in Fig. 2a were GSE10325 LUPUS CD4 TCELL VS 
LUPUS BCELL, GSE10325 CD4 TCELL VS MYELOID, 
GSE10325 CD4 TCELL VS BCELL, GSE10325 LUPUS 
CD4 TCELL VS LUPUS MYELOID, GSE3982 MEM-
ORY CD4 TCELL VS TH1, GSE22886 CD4 TCELL 
VS BCELL NAIVE, GSE11057 CD4 CENT MEM VS 
PBMC, GSE11057 CD4 EFF MEM VS PBMC, GSE3982 
MEMORY CD4 TCELL VS TH2 and GSE11057 PBMC 
VS MEM CD4 TCELL and in Fig.  2b were GSE36476 
CTRL VS TSST ACT 72H MEMORY CD4 TCELL 
OLD, GSE10325 CD4 TCELL VS LUPUS CD4 TCELL, 
GSE22886 NAIVE CD4 TCELL VS 12H ACT TH1, 
GSE3982 CENT MEMORY CD4 TCELL VS TH1, 
GSE17974 CTRL VS ACT IL4 AND ANTI IL12 48H 
CD4 TCELL, GSE24634 IL4 VS CTRL TREATED NAIVE 
CD4 TCELL DAY5, GSE24634 NAIVE CD4 TCELL VS 
DAY10 IL4 CONV TREG, GSE1460 CD4 THYMOCYTE 
VS THYMIC STROMAL CELL and GSE1460 INTRA-
THYMIC T PROGENITOR VS NAIVE CD4 TCELL 
ADULT BLOOD.

We downloaded the RepeatMasker [76] track from the 
UCSC genome browser [151] and used the SAMtools 
library [152] to assign reads to the repeat regions. HERV-
K age estimates were obtained from the supplementary 
materials of Subramanian et al. [82].

We used a Bayesian estimate of the ratio of expres-
sion in uninfected and HIV-infected samples to account 
for sampling effort and differing expression in genomic 
regions. We modeled the observed counts as a bino-
mial distribution with a flat beta prior (α = 1,β = 1) 
separately for uninfected and infected samples. We then 
Monte Carlo sampled the two posterior distribution 
to estimate the posterior distribution of the ratio. For 
introns, the number of binomial successes was set to the 
number of reads mapped to the intron and the number of 
trials was the total number of reads observed in the genes 
overlapping that intron. For repeat regions, the number 

of binomial successes was set to the number of reads 
mapped to that region and the number of trials was the 
total number of reads mapped to the human genome.

Lasso regression was performed using the R package 
glmnet [153]. The � smoothing parameter of the lasso 
regression was optimized by finding the � with lowest 
mean squared error in a 500-fold cross validation and 
picking the simplest model with misclassification error 
within one standard error.

To estimate determinants of ERV-9/LTR12C expres-
sion, we fit a logistic regression for which LTR12C 
increased in expression with HIV89.6 infection (95  % 
Bayesian credible interval > 2× change) on to charac-
teristics of the LTR12C regions. We extracted all the 
LTR12C regions from the human genome and deter-
mined the U3-R boundary using a ends free alignment 
of the previously reported U3-R border [88–90, 154, 
155] against the sequences. Regions less than 1,000 
bases long were discarded. Previous studies disagreed 
about the location of the LTR12C transcription start 
site and it appears that transcription may start in sev-
eral places [88, 155]. We took the 5′ most site that had 
agreement between studies (transcription starting with 
TGGCAACCC). We split the sequences into short and 
longer length classes based on repeated sequences about 
70 bases upstream from the transcription start site. For 
the short and 3 subtypes within the long length class, we 
generated a consensus sequence and counted the Leven-
shtein edit distance between the consensuses and each 
corresponding sequence. We also counted the num-
ber of NFY motifs (CCAAT or ATTGG), MZF1 motifs 
(GTGGGGA) and GATA2 motifs (GATA or TATC) 
in the entire U3 region and checked if a TATA box 
(AATAAA) [90] was present in the 50 bases upstream 
of the TSS. A final regression model was selected using 
stepwise regression with an AIC cutoff of 5. For display, 
the LTR12C sequences were aligned with MUSCLE 
[156].

The abundance of the HIV RNA size classes was esti-
mated as described in Additional file 6. These estimates 
were then multiplied by the within size class proportions 
estimated by Ocwieja et al. [6] using PacBio sequencing 
of HIV89.6 to yield proportions over 78 measured HIV89.6 
RNAs.

Availability of supporting data
RNA-Seq reads from this study are available at the 
Sequence Read Archive under accession number 
SRP055981. The integration site data is available at 
the Sequence Read Archive under accession number 
SRP057555.
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