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Abstract

Background: Dolutegravir recently became the third integrase strand transfer inhibitor (INSTI) approved for use in
HIV-1–infected individuals. In contrast to the extensive dataset for HIV-1, in vitro studies and clinical reports of
dolutegravir for HIV-2 are limited. To evaluate the potential role of dolutegravir in HIV-2 treatment, we compared
the susceptibilities of wild-type and INSTI-resistant HIV-1 and HIV-2 strains to the drug using single-cycle assays,
spreading infections of immortalized T cells, and site-directed mutagenesis.

Findings: HIV-2 group A, HIV-2 group B, and HIV-1 isolates from INSTI-naïve individuals were comparably sensitive to
dolutegravir in the single-cycle assay (mean EC50 values = 1.9, 2.6, and 1.3 nM, respectively). Integrase substitutions
E92Q, Y143C, E92Q + Y143C, and Q148R conferred relatively low levels of resistance to dolutegravir in HIV-2ROD9
(2- to 6-fold), but Q148K, E92Q + N155H, T97A + N155H and G140S + Q148R resulted in moderate resistance
(10- to 46-fold), and the combination of T97A + Y143C in HIV-2ROD9 conferred high-level resistance (>5000-fold).
In contrast, HIV-1NL4-3 mutants E92Q + N155H, G140S + Q148R, and T97A + Y143C showed 2-fold, 4-fold, and no
increase in EC50, respectively, relative to the parental strain. The resistance phenotypes for E92Q + N155H, and
G140S + Q148R HIV-2ROD9 were also confirmed in spreading infections of CEM-ss cells.

Conclusions: Our data support the use of dolutegravir in INSTI-naïve HIV-2 patients but suggest that, relative to
HIV-1, a broader array of replacements in HIV-2 integrase may enable cross-resistance between dolutegravir and
other INSTI. Clinical studies are needed to evaluate the efficacy of dolutegravir in HIV-2–infected individuals,
including patients previously treated with raltegravir or elvitegravir.
Findings
Human immunodeficiency virus type 2 (HIV-2) infection
is a significant public health problem in West Africa and
has been reported in other countries with socioeconomic
ties to the region [1]. Dual HIV-1/HIV-2 infection also
occurs in areas where the viruses co-circulate [2-6]. His-
torically, clinical outcomes of antiretroviral therapy in
HIV-2 and HIV-1/HIV-2 dually positive patients have
been poor, with high rates of immuno-virologic failure
and emergent multidrug resistance [7-11]. Newer classes
of antiretrovirals (ARV) with anti–HIV-2 activity could
represent substantial improvements to the current thera-
peutic picture [12,13].
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A growing body of evidence suggests that integrase
strand transfer inhibitors (INSTI) might be particularly
useful for HIV-2 treatment. Raltegravir and elvitegravir
are both potent inhibitors of HIV-2 replication in culture
[14-18], and case reports and small case series (primarily
involving ARV-experienced individuals) indicate that ral-
tegravir and elvitegravir can reduce HIV-2 viral loads
when combined with other suppressive ARV [19-32]. As
with HIV-1, changes at integrase residues Y143, Q148 or
N155, together with other secondary replacements in
the integrase protein (i.e., E92Q, T97A, G140S, and pos-
sibly others), confer resistance to raltegravir in HIV-2
[26,28-35]. The emergence of resistance to elvitegravir
has not yet been reported in HIV-2-infected individuals
but will likely involve these same three pathways based
on studies of HIV-1 [36-50] and the extensive cross-
resistance seen between raltegravir and elvitegravir in
HIV-2 in culture [15,17]. Clinical trials of raltegravir- and
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elvitegravir-containing regimens for first-line HIV-2 treat-
ment are now underway and are expected to yield data
within the next few years (NCT01605890, NCT02150993,
NCT02180438).
A third strand transfer inhibitor, dolutegravir, was re-

cently approved by the United States Food and Drug
Administration (FDA) for use in both INSTI-naïve and
INSTI-experienced HIV-1 patients. Although dolutegra-
vir has been extensively evaluated for HIV-1 treatment,
few studies have examined its potential use in HIV-2–
infected individuals. Charpentier and colleagues reported
that HIV-2ROD, HIV-1BRU, and eight HIV-2 isolates from
INSTI-naïve patients were comparably susceptible to
dolutegravir in spreading infections of peripheral blood
mononuclear cells (PBMC) (EC50 = 0.2–4 nM) and that
three HIV-2 isolates from raltegravir-treated individuals with
consensus integrase genotypes G140S +Q148R (group A),
G140T+Q148R +N155H (group A), and T97A+Y143C
(group H) were 63-, 9-, and 5-fold resistant to dolutegravir,
respectively, in PBMC [51]. In addition, the manufac-
turer of dolutegravir (ViiV Healthcare) reported that
EC50 values against three clinical isolates of HIV-2
ranged from 0.09 nM to 0.61 nM in PBMC assays, and
that combinations of substitutions A153G +N155H +
S163G and E92Q +T97A+N155H + S163D in HIV-2
integrase conferred 4-fold decreases in dolutegravir sus-
ceptibility, while E92Q+N155H and G140S +Q148R re-
sulted in 8.5-fold and 17-fold decreases, respectively [52].
The ability of dolutegravir to inhibit strains resistant

to other INSTI is of particular importance–in HIV-1,
mutations Q148H/K/R, together with secondary changes
in the integrase protein, confer resistance to dolutegravir
in cell culture [38,47,53-55], and other mutations associ-
ated with diminished in vitro susceptibility to dolutegra-
vir have been reported [56-61]. In contrast, dolutegravir is
fully active against HIV-1 variants bearing Y143 or N155
mutations (with or without secondary changes) in both
single-cycle and spreading infection assays [38,47,53-55], al-
though it should be noted that Y143 and N155 mutants
have been observed in raltegravir-experienced patients who
subsequently failed dolutegravir-based regimens [62,63].
In the VIKING-3 trial, dolutegravir response rates (<50
HIV-1 RNA copies/ml at week 24) declined from 79%
(n = 100/126) for patients without Q148 mutations at
baseline (including those with N155H, Y143C/H/R, T66A,
E92Q, or historical evidence of INSTI resistance), to 58%
(21/36) for patients with Q148 plus one additional second-
ary mutation, to 24% (5/21) for those with Q148 plus two
or more secondary mutations [64]. Importantly, drug
resistance testing is not widely available in West Africa,
and thus, dolutegravir usage in many HIV-2–infected
patients, including INSTI-experienced individuals, will
depend on an algorithmic approach to treatment. To date,
there are only two reports of dolutegravir treatment for
HIV-2 infection ([65,66]; n = 2 and 13 patients, respect-
ively), with limited duration of follow-up.
In the present study, we examined the activity of

dolutegravir against wild-type and INSTI-resistant HIV-
2 strains using an indicator cell assay that restricts viral
replication to a single cycle [15]. This methodology
enables a direct comparison of HIV-1 and HIV-2 drug
susceptibility while avoiding potential confounders such
as differences in replication rates, infectivity, cytopathic
potential and cell-to-cell spread.
We initially compared the dolutegravir sensitivities of

viruses derived from two prototypic full-length molecu-
lar clones: pNL4-3 (HIV-1 group M, subtype B) and
pROD9 (HIV-2 group A). In head-to-head single-cycle
assays, these two strains showed nearly identical dose-
response profiles (Figure 1A). Over multiple assays
runs, the mean EC50 values for dolutegravir (± standard
deviation) were 1.5 ± 0.6 nM for HIV-1NL4-3 and 2.3 ±
0.7 nM for HIV-2ROD9 (n = 14 and 24 determinations,
respectively). Dolutegravir was 3.6-fold more potent
than raltegravir and 9.1-fold more potent than elvitegra-
vir against HIV-2ROD9 (Figure 1B). Other isolates from
ARV-naïve individuals displayed levels of dolutegravir
sensitivity comparable to HIV-1NL4-3 and HIV-2ROD9

(Figure 1C). The aggregate EC50 values for HIV-1, HIV-
2 group A, and HIV-2 group B were 1.3 ± 0.2 nM, 1.9 ±
0.5 nM, and 2.6 ± 0.9 nM, respectively. When subjected
to a one-way ANOVA, only the comparison between
HIV-1 and HIV-2 group B reached statistical signifi-
cance (p < 0.05); this modest difference was attributable
to the slightly higher EC50 for HIV-2EHO (3.6 ± 1.9 nM)
(Figure 1C). Notably, HIV-2EHO integrase contains a
glutamate at position 146, whereas other HIV-2 isolates
(as well as HIV-1) encode glutamine at this site [67,68].
Substitutions at Q146 have been observed in HIV-1
following in vitro selections with elvitegravir and other,
investigational INSTI [18,69,70]. To our knowledge,
Q146 mutations have not been observed in HIV-2 vari-
ants selected in culture, nor have they been reported in
HIV-2 patients treated with INSTI-based regimens.
To examine potential resistance pathways in HIV-2,

we tested the activity of dolutegravir against a panel of
site-directed mutants of HIV-2ROD9 using the single-
cycle assay. These variants contained amino acid re-
placements in the integrase protein that are associated
with raltegravir and elvitegravir treatment; their pheno-
types with respect to raltegravir and elvitegravir suscep-
tibility have been reported elsewhere [14,15]. Single
amino acid changes T97A, G140S, Q148H and N155H had
no significant effect on dolutegravir sensitivity (p > 0.05,
ANOVA; Figure 2A). In contrast, mutants E92Q, Y143C,
E92Q + Y143C, Q148K, and Q148R were resistant to
dolutegravir, with EC50 values 2.3–9.3-fold greater than
that of the parental strain (Figure 2A), and variants
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Figure 1 Susceptibility of wild-type HIV-1 and HIV-2 isolates to dolutegravir in the single-cycle assay. (A) Representative dose-response
profiles for HIV-1NL4-3 and HIV-2ROD9. Virus stocks were generated by transient transfection of chloroquine-treated 293T/17 cultures with plasmids
pNL4-3 and pROD9, respectively. Dolutegravir was obtained from Selleck Chemicals, Inc. Titers are expressed as the percentage of no-drug
(solvent-only) controls and are the means of two independent cultures at each drug concentration. Curve fits were generated using the sigmoid
dose-response function of Prism version 6.0 (GraphPad Software, Inc.). (B) Comparison of the activity of dolutegravir (DTG), raltegravir (RAL),
and elvitegravir (EVG) against wild-type HIV-2ROD9. Values for RAL and EVG include data from two previously-published studies of HIV-2 from our group
[14,15] plus additional determinations; all data were obtained using the single-cycle assay. Bars indicate mean 50% effective concentrations (EC50); the
number of independent determinations (n) for each strain is shown below the x-axis. P values were obtained via analysis of variance (ANOVA)
of log10-transformed EC50 values with Tukey’s post test (Prism v6.0). No cytotoxic effects were observed in dolutegravir-treated MAGIC-5A cultures at
concentrations as high as 10,000 nM. (C) Activity of dolutegravir against wild-type HIV-1 and HIV-2 isolates. Group/subtype designations are shown
in parentheses. HIV-1NL4-3 and HIV-2ROD9 were generated as in panel A. HIV-2EHO was kindly provided by Jan McClure (University of Washington). The
remaining isolates were obtained from the National Institutes of Health AIDS Reagent Program (www.aidsreagent.org). *, significantly greater
than HIV-2ROD9, HIV-2MVP15132, HIV-2CBL20, and all HIV-1 isolates listed (p < 0.05, ANOVA with Tukey’s post test). In all panels, error bars indicate
standard deviations.
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E92Q + N155H, T97A + N155H and G140S + Q148R
exhibited 11–33-fold resistance to the drug (p < 0.05,
ANOVA; Figure 2A and B). In experiments with T97A +
Y143C HIV-2ROD9, dolutegravir concentrations as high as
10 μM failed to reduce viral replication by 50% (Figure 2A
and C; EC50 > 10 μM), although modest dose-dependent
inhibition was apparent at doses ≥100 nM (Figure 2C).
Altogether, nine of the 13 HIV-2 integrase mutants tested
were resistant to dolutegravir in the single-cycle assay
(Figure 2A).
We also evaluated the dolutegravir sensitivities of E92Q+

N155H, T97A + Y143C, and G140S + Q148R HIV-2ROD9

in three-day spreading infections of immortalized T cells
(CEM-ss). These assays were preformed as previously

http://www.aidsreagent.org
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Figure 2 Antiviral activity of dolutegravir against site-directed mutants of HIV-1 and HIV-2 integrase in the single-cycle assay. (A) EC50
values for wild-type (WT) HIV-2ROD9 and HIV-2ROD9 integrase mutants generated in the full-length pROD9 molecular clone. Shaded bars indicate
strains that are significantly different from wild-type (p < 0.05, ANOVA of log10-transformed EC50 values with Tukey’s post test; Prism v6.0). The
number of independent determinations (n) for each strain is shown below the x-axis. (B) and (C) Representative dose-response profiles for WT,
E92Q+N155H, G140S +Q148R and T97A + Y143C HIV-2ROD9. Data are the means of three independent cultures at each dose of dolutegravir (DTG).
Curve fits were generated as described in Figure 1A. (D) Comparative analysis of equivalent site-directed mutants of HIV-1 and HIV-2 integrase. Each
point is the result of a single dose-response assay performed as described in Figure 1A. Horizontal bars indicate the mean EC50 values for each strain.
Red arrows and text indicate fold increases in the mean EC50 values for HIV-2 relative to HIV-1. ANOVA results for these data are described in the main
text. In all panels, error bars represent standard deviations.

Table 1 Compilation of EC50 and fold change values for
site-directed mutants of HIV-2ROD9 and HIV-1NL4-3 integrase

HIV Type Strain EC50 for DTG (nM)a nb Fold Changec

HIV-2 Wild-type 2.3 ± 0.7 24

E92Q 7.7 ± 1.2 3 3

T97A 3.2 ± 0.8 3 1

G140S 3.2 ± 0.8 3 1

Y143C 7.7 ± 2.2 3 3

Q148H 3.5 ± 1.4 4 1

Q148K 23 ± 10 4 10

Q148R 5.7 ± 2.1 4 2

N155H 5.0 ± 2.4 3 2

E92Q + Y143C 15 ± 10 5 6

T97A + Y143C >10000 13 >5000

G140S + Q148R 108 ± 54 7 46

E92Q + N155H 25 ± 17 7 10

T97A + N155H 27 ± 13 3 12

HIV-1 Wild-type 1.5 ± 0.6 14

T97A + Y143C 1.5 ± 0.4 4 1

G140S + Q148R 6.8 ± 2.7 4 4

E92Q + N155H 3.6 ± 0.7 4 2
a50% effective concentration of dolutegravir (DTG) as measured in the MAGIC-5A
single-cycle assay. Values were compiled from the data used to generate
Figures 2A and 2D and are expressed as means ± standard deviations. Numbers
shown in bold type are significantly greater than the values for the corresponding
wild-type strains (p < 0.05; ANOVA of log10-transformed EC50 values with Tukey’s
post-test; performed in Prism version 6.0, GraphPad Software, Inc.).
bNumber of independent determinations for each strain.
cFold change in EC50 relative to the corresponding wild-type strain.
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described for the MT-2 T cell line [14]. The resultant EC50

values for the parental strain, E92Q +N115H, and G140S
+Q148R were 0.24, 2.1 and 73 nM, respectively, indicating
8.8-fold resistance to dolutegravir for E92Q +N115H and
300-fold resistance for G140S +Q148R. Despite repeated
attempts using high multiplicities of infection (≥0.1) and
prolonged incubation times (up to seven days), CEM-ss
cultures inoculated with T97A + Y143C HIV-2ROD9 failed
to produce detectable levels of infectious virus, indicating
a severe fitness defect. This result is consistent with the
poor replication capacity previously reported for T97A +
Y143C HIV-2ROD9 [15].
Lastly, we performed a head-to-head comparison of

the phenotypes conferred by E92Q +N155H, G140S +
Q148R, and T97A + Y143C in HIV-1NL4-3 and HIV-
2ROD9 in the single-cycle assay. G140S +Q148R resulted
in slight resistance to dolutegravir in HIV-1NL4-3 (3.5-
fold; p <0.01, ANOVA), whereas E92Q +N155H and
T97A + Y143C had no statistically significant effect in
the HIV-1NL4-3 background (Figure 2D). These data are
entirely consistent with previous studies of HIV-1
[38,47,53,54]. In contrast, HIV-2ROD9 mutants E92Q +
N155H, G140S +Q148R, and T97A + Y143C were all
resistant to dolutegravir (p < 0.0001, ANOVA) and showed
EC50 values 4-, 21- and >5000-fold greater than those
seen for equivalent mutants of HIV-1NL4-3, respectively
(Figure 2D). EC50 and fold change values for all HIV-1NL4-3
and HIV-2ROD9 integrase mutants tested in this study,
together with the corresponding EC50 values for the
parental wild-type clones, are compiled in Table 1.
Taken together, our results indicate that prototypic

HIV-1 and HIV-2 strains, as well as HIV-1 and HIV-2
isolates from INSTI-naïve individuals, are comparably
sensitive to dolutegravir in a single cycle of viral replica-
tion in MAGIC-5A indicator cells (Figure 1). These find-
ings complement previous data from spreading infections
of PBMC [51]–using a different methodology and target
cell type–and suggest that dolutegravir would be an
appropriate treatment choice for INSTI-naïve HIV-2
patients when combined with other HIV-2–active ARV.
We also report the effects of raltegravir-associated mu-
tations on dolutegravir susceptibility using site-directed
mutagenesis of genetically-defined HIV-1 and HIV-2
molecular clones (pNL4-3 and pROD9, respectively).
Our analysis shows that equivalent amino acid changes
in the integrase proteins of HIV-1 and HIV-2 can have
differing effects on dolutegravir susceptibility (Figure 2D)
and that, in HIV-2ROD9, integrase changes Q148K, T97A +
Y143C, E92Q +N155H, T97A +N155H, and G140S +
Q148R confer moderate to high levels of dolutegravir
resistance (≥10-fold; Figure 2A–C and Table 1). We
cannot exclude the possibility that the resistance levels
observed in our site-directed HIV-2 mutants are specific
to the ROD9 molecular clone, as the genetic context
within integrase can have a substantial impact on the
phenotypic expression of INSTI resistance [71,72]. For ex-
ample, in the aforementioned study by Charpentier et al.
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[51], a group H HIV-2 isolate with T97A + Y143C was
only 5-fold resistant to dolutegravir (this isolate differs
from HIV-2ROD9 at 24 of 293 amino acid sites in the
integrase protein). In addition, the roles of novel INSTI-
associated changes (i.e, H51Y, G118R, F121Y, E138A/K,
and R263K; [26,34,57-61,63,73]) remain to be deter-
mined in HIV-2, and the level of dolutegravir resistance
in vitro that correlates with virologic failure in HIV-2–
infected patients is unknown. Nonetheless, our findings
suggest that, relative to HIV-1, a broader array of amino
acid changes in HIV-2 integrase might facilitate cross-
resistance between dolutegravir and other INSTI. Phe-
notypic drug resistance testing of HIV-2 isolates from
raltegravir- and elvitegravir-treated patients should be per-
formed as these drugs become more widely available in
West Africa, and studies of dolutegravir-based regimens
should be conducted in HIV-2–infected individuals,
including patients previously treated with other INSTI.
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