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Abstract

Background: Recombination is a common feature of retroviral biology and one of the most important factors
responsible for generating viral diversity at both the intra-host and the population levels. However, relatively little is
known about rates and molecular processes of recombination for retroviruses other than HIV, including important
model viruses such as feline immunodeficiency virus (FIV).

Results: We investigated recombination in complete FIV env gene sequences (n =355) isolated from 43 naturally
infected cats. We demonstrated that recombination is abundant in natural FIV infection, with over 41% of the cats
being infected with viruses containing recombinant env genes. In addition, we identified shared recombination
breakpoints; the most significant hotspot occurred between the leader/signal fragment and the remainder of env.

Conclusions: Our results have identified the leader/signal fragment of env as an important site for recombination
and highlight potential limitations of the current phylogenetic classification of FIV based on partial env sequences.
Furthermore, the presence of abundant recombinant FIV in the USA poses a significant challenge for commercial

Natural infection

diagnostic tests and should inform the development of the next generation of FIV vaccines.
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Background

Recombination, together with point mutations introduced
by the error prone reverse transcriptase (RT) [1] and the
activity of host restriction factors [2], is regarded as the
most important mechanism for generating genetic diversity
among retroviruses [3,4]. Two features of the retroviral life
cycle facilitate recombination: 1) the presence of two RNA
genomes within each viral particle and 2) the tendency of
RT to switch between those RNA molecules during pro-
virus synthesis [5,6]. This can result in the synthesis of re-
combinant DNA of mixed ancestry, originating from both
RNA molecules [7]. In HIV-1 infection, recombination oc-
curs between homologous viral variants of similar fitness at
an exceptionally high rate [8,9]. However, its significance in
generating novel variants increases dramatically when a cell
becomes infected with two or more genetically distinct vi-
rions [10]. Recombination can occur between virions of
the same or different subtypes, resulting in the generation
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of intra- or inter-subtype recombinants, respectively [10].
Recombination can have profound implications on the fit-
ness of the generated viral quasispecies and subsequently
on the pathogenesis and clinical outcome of infection [11].
Intra- and inter-subtype recombinants have been identified
in HIV infection and unique recombinant forms (URF)
with limited transmission can be distinguished from com-
monly circulating recombinant forms (CRF), where the
term CRF applies to recombinant viruses sharing identical
mosaic structures that are detected in multiple distinct epi-
demiological areas [12]. CRFs play an important role in the
HIV pandemic, accounting for over 20% of infections in
some countries [13]. In contrast to HIV, much less is
known about natural recombination in other retroviruses,
including important models such as feline immunodefi-
ciency virus (FIV). Although FIV recombinants have been
identified [14-17], the prevalence of recombinant env se-
quences remains poorly quantified. This applies particu-
larly to the open reading frame of the env gene which, in
contrast to primate retroviruses, contains an unusually
long leader/signal region [18].
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FIV is currently assigned to five distinct subtypes, de-
noted A, B, C, D and E, based on the diversity of the
V3-V5 region of the env gene [19]. Subtype A is preva-
lent in the west coast of the USA and Australia and is
the only subtype found in the UK, while subtype B is
most prevalent on the east coast of the USA and central
and southern Europe [20-24]. Subtype C has been iden-
tified in California [20], Canada [14,16] and Taiwan [25]
and subtype D in Japan [19,26], while the putative sub-
type E was reported in Argentina [27]. Hence, despite
extensive movement of humans and their cats and sub-
types A, B and C being found on multiple continents [14],
geographical clustering of FIV (based on the current clas-
sification) is still evident. However, the vast majority of
published env sequences represent a V3-V5 region of ap-
proximately 700 bp, which is too short to enable the reli-
able detection of recombination.

Given that most previous studies focused upon rela-
tively small gene fragments, the occurrence and role of
recombination in natural FIV infection could well have
been underestimated. The aim of this study was to ad-
dress this issue by studying the molecular evolution and
recombination of FIV in two cohorts of cats in the USA
(Memphis, n =27 and Chicago, n = 16) naturally infected
with FIV. By examining FIV env sequences from 43 do-
mestic cats naturally infected with FIV, we aimed to de-
termine a) the prevalence of recombinant env sequences;
b) the subtype composition amongst field isolates; and c)
the site(s) of common recombination break-points.

Results

Phylogenetic inference

A Maximum Likelihood (ML) tree was constructed
using the entire data set [see Additional file 1] and ex-
amined carefully for evidence of non-monophyletic clus-
tering of multiple sequences isolated from each cat.
Intra-host sequences isolated from the majority of cats
(n =40, 93%) clustered together, forming monophyletic
groups. After excluding data from the three cats with in-
consistent phylogenetic assignment, analysis of the tree
revealed that sequences from 24 cats clustered together
with previously published clade B reference sequences,
while sequences from 16 cats were assigned to clade A.
The number of env genes classified as clade A (7/14,
50%) and B (7/14, 50%) were equally distributed in the
Chicago cats, while in the Memphis cohort, a larger pro-
portion of env genes belonged to clade B (17/26, 65%).
Sequences (comprising 7% of the total) from three cats
(M5, P8 and P21) isolated from different time points
showed inconsistent phylogenetic assignments, suggest-
ing that they might have been infected with additional
viruses, perhaps transmitted from cats not sampled for
this study, or that sample sizes at later time points were
insufficient to detect the earlier virus.
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The ML tree from the entire dataset was used to select
a reduced data set for recombination analysis compris-
ing: a) one randomly selected sequence from each cat
where the intra-host sequences formed a monophyletic
cluster, and b) all sequences from non-monophyletic
groups. These sequences were combined with 19 refer-
ence sequences and used to construct a further ML tree
which was rooted on the reference clade C env sequence
[Figure 1].

Recombination

GARD analysis of the data set (n=68) identified 22
recombinants providing evidence for four breakpoints
with significant topological incongruence (p=0.01). A
subsequent GARD analysis was run on the data set com-
prising only reference sequences and previously identi-
fied recombinant sequences (n = 22). This alignment was
spliced by GARD at six breakpoints into seven spans: 1)
1-354; 2) 355-564; 3) 565-1272; 4) 1273-1608; 5) 1609-
1868; 6) 1869-2255 and 7) 2256-2604 [Figure 1]. For each
span, a separate ML tree was created. Examination of
GARD-determined trees [see Additional file 2: Figure S1]
revealed that sequences from 18/26 (69%) of the Memphis
cats showed consistent clade assignment and repre-
sented non-recombinant clade B envs, whereas recom-
binant sequences were identified in the remaining 8/26
(31%) cats. In the Chicago group, sequences from 7/14
cats (50%) were non-recombinant and consistently clus-
tered with the reference clade B env sequences, while
the remaining 7/14 sequences (50%) were identified as
A/B recombinants.

The jpHMM analysis generally supported all of the
previous recombination breakpoints identified in GARD,
but also suggested the existence of seven additional
breakpoints [see Additional file 3: Table S1]. In order to
focus on the most strongly supported recombination
events, we examined in detail the breakpoints identified
by the two methods.

Recombinant sequences had different mosaic composi-
tions and were classified in three groups: 1) sequences
from cats M2, M33, M47, M50, P14, P15 and P18 in
which the first two spans (1-354, 355-564) belonged to
clade B, while the remaining five spans consistently clus-
tered as clade A; 2) sequences from cats M8, P4, P5, P7
and P13 where only the second span (355-564) was
assigned to clade B while the remaining spans clustered
with clade A; and 3) sequences from cats M20 and M48
in which only the last span (2256-2604) was assigned to
clade B, while all other fragments were assigned to clade
A. The remaining two recombinant sequences (from cats
M31 and M41) did not have a recombination pattern in
common with any of the other sequences in the data set
[Table 1]. The locations of the recombination hotspots
between the leader and the stem of the V1/V2 region
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* represents bootstrap values of 100.

Figure 1 Maximum likelihood (ML) tree based on the 708 bp fragment (span 3 as identified by GARD) of the env sequences and their
recombination history as inferred by GARD. The data include 47 entire env nucleotide sequences (representative of a total of 355 sequences
from Chicago and Memphis), 15 full length env sequences derived from GenBank: Aomori 1 [D37816], Aomori 2 [D37817.1], FIV C [AF474246.1],
Dixon [L00608.1], Dutch [X60725], Fukuoka [D37815.1], Sendai 1 [D37813.1], Shizuoka [D37811.1], UK2 [X69494.1], UK8 [X69496.1], USIL2489
[U11820.1], Yokohama [D37812.1], Petaluma [M25381.1], PPR [M36968.1], Leviano [FJ374696.1], three V3-V5 region sequences representing Clade E:
LP3 [D84496], LP20 [D84498], LP24 [D84500] and one shorter 504 bp in length RUS14 [EF447297] sequence. Taxa with inconsistent clade assignment
are represented with an asterisk (P8, P21). Non-monophyletic taxa from cat M5 are marked with a triangle. The tree is based on an HKY model, rooted
on FIV C sequence and is drawn to scale, with branch lengths measured in substitutions per site. Only bootstrap values above 80 are shown.

(approximately position 562-576) were common among
recombinants from both cohorts [Table 1]. A similarity
plot representative of the Memphis and Chicago recom-
binants in relation to reference A and B env sequences is
shown in [see Additional file 4: Figure S2].

RDP software was used to examine putative parents
contributing to the mosaic structure of recombinant se-
quences. RDP consistently identified the clade A, FIV
Dixon strain [GenBank:L00608.1] as a putative major
parent and determined Chicago strains P10 and P2 as
putative minor parents for M2, M31, M33, M47, M50,
P4, P5, P7, P13, P14, P15, P18 and M20, M48, respect-
ively [Table 1].

Recombination analysis of env sequences from three
cats carrying non-monophyletic groups of viruses re-
vealed that sequences from cat P8 at time point C were
non-recombinant clade B, while time point A sequences
were classified as A/B recombinants. It is intriguing that
all time point C sequences in this cat contained prema-
ture stop codons [see Additional file 5: Table S2]. Taken
together with the FIV load data (time point A, 395
genomes/mL; time point C, 1061881 genomes/mL
[see Additional file 6: Table S3]), it is possible that cat P8
became infected with freshly acquired clade B env virus
that outcompeted the recombinant strain. In cat P21, se-
quences at time point B appeared to be entirely clade B,
while those at time point C showed an incongruent assign-
ment and were identified as clade A/B mosaics [Table 1]. A
similar scenario to P8 is possible; in this case, recombinant
virus (time point C FIV load, 1077 genomes/mL) could
have outcompeted the non-recombinant strain from time
point B (FIV load, 45 genomes/mL) [see Additional file 6:
Table S3]. In contrast, all sequences from cat M5 were
non-recombinant [Figure 1]. Examination of their phylo-
genetic assignment, considering the shared housing
conditions, suggests that one-way transmission might
have occurred during the study. Similar to P8 and P21,
the original strain could have been outcompeted by
newly acquired virus by time point C (sequential FIV
load data were not available for this cat).

There was a notable difference in terms of the abundance
of clade A recombinants compared to very few recombin-
ant sequences clustering with clade B sequences [Figure 1].
Based on the ML phylogeny and the recombination

analyses of sequences from both cohorts, we propose
that the following groups of mosaic viruses represent
putative CRFs of FIV: 1) M47, M50 (bootstrap support
96%), 2) M20, M48 (bootstrap support 100%), 3) P14,
P8A (bootstrap support 100%). Given that cats in each
of those three groups could have previously been in-
volved in territorial fights, it is likely that the proposed
CRFs of FIV were transmitted in the field. Although add-
itional clusters of recombinant forms exist, the bootstrap
supports were too low to define them confidently.

Discussion

The phylogenetic relationship of the sequences from
Chicago and Memphis cohorts was in agreement with
previously published data demonstrating the presence of
clade A and clade B viruses in the USA [20]. However,
most previous analyses did not account for potential re-
combination. Our analyses show that env genes with
shared recombination breakpoints and with inconsistent
clade assignment circulated widely in the Memphis and
Chicago cohorts, with over 41% of tested cats being in-
fected with a recombinant form.

Recombination is an important event in retroviral evo-
lution, which, in cases of super-infection, can lead to the
emergence of novel viral variants. Although there was
no evidence of more severe clinical manifestations in
cats infected with recombinant strains [28], newly cre-
ated recombinants could potentially exhibit novel patho-
genicity compared to the parental strains, for example
manifesting more severe clinical outcomes or being trans-
mitted more easily within and among hosts [4]. Cats with
outdoor access, especially in areas where the prevalence of
FIV is relatively high, are likely to acquire viruses during
multiple transmission events. This phenomenon has been
documented in experimental FIV infection [29], with one
study describing recombination following super-infection
[30]. Recombinant sequences in the present study were
consistently identified in subsequent follow up samples,
suggesting that such genotypes did not arise as a result of
either PCR errors or contamination and that the recom-
binant viruses incurred no fitness costs preventing them
from replicating and persisting over several months. In-
deed, the high frequency of clade A/B recombinants in
our study might indicate that these represent widely
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Table 1 Recombination testing of sequences from Memphis and Chicago

GARD determined breakpoints RDP determined recombinants
env S1 S2 S3 S4 S5 S6 S7 CLADE MINOR MAJOR
1354 355-564  565-1272  1273-1608  1609-1868  1869-2255  2256-2604 PARENT ~ PARENT

M1 B B B B B B B B NR NR
M2 B B A A A A A A/B P10 DIXON
M3 B B B B B B B B NR NR
M5AT B B B B B B B B NR NR
M5Ct B B B B B B B B NR NR
M8 A B A A A A A A/B P10 DIXON
M10 B B B B B B B B NR NR
M11 B B B B B B B B NR NR
M12 B B B B B B B B NR NR
M14 B B B B B B B B NR NR
M15 B B B B B B B B NR NR
M16 B B B B B B B B NR NR
M20 A A A A A A B A/B P2 DIXON
M25 B B B B B B B B NR NR
M26 B B B B B B B B NR NR
M28 B B B B B B B B NR NR
M29 B B B B B B B B NR NR
M30 B B B B B B B B NR NR
M31 B B A A A A B A/B P10 DIXON
M32 B B B B B B B B NR NR
M33 B B A A A A A A/B P10 DIXON
M41 B B A A A D B A/B/D P10 DIXON
M44 B B B B B B B B NR NR
M46 B B B B B B B B NR NR
M47 B B A A A A A A/B P10 DIXON
M48 A A A A A A B A/B P2 DIXON
M49 B B B B B B B B NR NR
M50 B B A A A A A A/B P10 DIXON
p2 B B B B B B B B NR NR

P4 A B A A A A A A/B P10 DIXON
P5 A B A A A A A A/B P10 DIXON
P6 B B B B B B B B NR NR

p7 A B A A A A A A/B P10 DIXON
PSAT B B A A A A A A/B P10 DIXON
P8Ct B B B B B B B B NR NR

P9 B B B B B B B B NR NR
P10 B B B B B B B B NR NR

P11 B B B B B B B B NR NR
P13 A B A A A A A A/B P10 DIXON
P14 B B A A A A A A/B P10 DIXON
P15 B B A A A A A A/B P10 DIXON
P17 B B B B B B B B NR NR
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Table 1 Recombination testing of sequences from Memphis and Chicago (Continued)

P18 B B A A A
P21Bt B B B B B
pP21Ct B B A A B
P22 B B B B B

A A A/B P10 DIXON
B B B NR NR
A A A/B P10 DIXON
B B B NR NR

Spans (S1-57) are assigned as clade A, B and D as inferred by GARD analysis. The final clade assignment following recombination testing is shown in the column
“CLADE". Non recombinant sequences are denoted NR. RDP determined major and minor parents for mosaic recombinant sequences are shown in the final two
columns. 1 sequences from the same cat but different time points with previously identified non-monophyletic clustering.

distributed viruses with a significant fitness advantage. A
similar pattern of recombination, with a shared break
point within gag, was reported in a Canadian study, sug-
gesting the existence of enzootic recombinant forms cir-
culating in Ontario [16]. Given the presence of the same
recombinant types in both the Chicago and Memphis co-
horts, we propose that some of the mosaic viruses identi-
fied in this study might represent CRFs of FIV. However,
we cannot exclude the possibility that the same recombin-
ant forms could have arisen independently in distinct epi-
demiological areas on multiple occasions.

It is intriguing that clade A sequences were more likely
to have a mosaic composition than those which were
originally assigned to clade B. It has been proposed that
clade B viruses are evolutionarily older, more host
adapted and less pathogenic [20]. It is possible that the
later emerging clade A viruses were able to superinfect
cats and to recombine with already existing clade B vi-
ruses, resulting in the emergence of multiple Clade A/B
recombinants in which the env gene predominantly
comprised clade A derived sequences. These A/B recom-
binant strains hypothetically possessed equivalent or
greater fitness compared to the parental A strains and
were fixed in the population as CRFs of FIV. In contrast,
A/B recombinants that were predominantly clade B de-
rived were conspicuously rare, suggesting that these
recombinants incurred a fitness cost.

Our analyses revealed the existence of at least one
common recombination break point, located at the stem
of the V1/V2 loop of the SU of FIV Env. Common re-
combination breakpoints, or hotspots, have been re-
ported in both FIV [16] and HIV [5,6,9,31-33] infections.
The identification of common recombination hotspots
was limited since only env sequences were examined
and it is likely that recombination processes within env
were accompanied by recombination events elsewhere in
the genome, such that additional, as yet unidentified,
breakpoints exist [16,17].

Although recombination occurs frequently in vitro
[34-36], it has been suggested that recombination break-
points are driven by selection rather than being hotspots
of RT template switching [4]. The vast majority of re-
combinant viruses display low fitness and do not survive
within the host [37]. The recombinant env variants iden-
tified in our study must therefore have suffered no

fitness cost, or might even have possessed some fitness
advantage, compared to parental sequences.

The results of the present study highlight the risk of
examining partial gene sequences. The detection of re-
combination increases with the nucleotide length screened
and therefore the majority of previous studies (which ex-
amined only short 500-700 bp fragments of the env gene)
underestimated the role of recombination using a simpli-
fied phylogenetic classification. Applying the common ap-
proach of examining the V3-V5 hypervariable regions of
the env gene will likely result in the misidentification of
intra- and inter-subtype recombinants and erroneous sub-
type assignment. For example, the recombinant structure
of viruses such as M2, M33 or P7 would have been mis-
classified if only 700 bp fragments of the env had been ex-
amined. Indeed, previous studies focusing solely on the
V3-V5 region of env [24,38] did not take into account the
possibility of recombination which might have altered the
classification of FIVs [17].

The recombination breakpoint separating the un-
usually long leader region from the remainder of the env
gene is of particular interest. Several recombinant env
sequences were identified in which the leader/signal re-
gion of env clustered with clade B while the other spans
clustered with clade A. Given the location of this recom-
bination breakpoint, together with the relatively high
number of positively selected sites and the highest evo-
lutionary rate of this span [28], the leader region may
have a significant function in the viral life cycle and im-
mune evasion.

Sequences isolated from the majority of animals formed
highly monophyletic groups, suggesting that viruses were
not transmitted between cats. Sequential sequences from
three animals displayed incongruent phylogenetic assign-
ment. Since the cats were housed together with other FIV
infected cats, their shared accommodation may have led
to infection with additional viruses, including transmission
from unsampled cats, resulting in the potential turnover
of the viral population. Given the relatively small number
of sequences isolated following the postulated transmis-
sion event and sampling bias, it is possible that primary
sequences remained but were less abundant than more re-
cently acquired strains.

Potential limitations of this study include PCR sam-
pling and cloning bias [39,40]. However, in contrast to



Beczkowski et al. Retrovirology 2014, 11:80
http://www.retrovirology.com/content/11/1/80

previous studies, a high fidelity DNA polymerase
(Phusion®) was used in place of the error prone Tag
polymerase to avoid mutations arising during the PCR
amplification of env sequences. Furthermore, in order
to minimize template switching during the PCR, three
independent amplifications were set up from each
blood sample. The presence of similar recombinants,
particularly those with shared recombination points,
over a period of 18 months provides strong evidence
that the amplicons identified were indeed circulating
sequences rather than products of PCR-induced errors
or polymerase template switching.

Conclusions

Recombinant env sequences sharing a common breakpoint
separating the leader/signal region from the remaining part
of env were highly abundant in naturally infected cats in
the USA. This finding is intriguing, particularly since the
feline and ungulate lentiviruses possess unusually long
leader/signal sequences compared to primate retroviruses
[18]. The location of the identified recombination break-
point suggests that the leader region of the FIV env could
play an important role in virus biology and immune eva-
sion, as has been described for signal sequences in other vi-
ruses [41]. These findings broaden our understanding of
retroviral evolution and illustrate the significant role of re-
combination in generating viral diversity at the population
level. Here we provide evidence for the existence of CRFs
in two geographically distant American cities. The lack of
information about CRFs of FIV in the field has wider impli-
cations than just the classification of FIV, since it poses sig-
nificant questions about the likely efficacy of the current
FIV vaccine. The degree of protection against recombinant
viruses provided by commercial FIV vaccination is un-
known. Furthermore, the existence of recombinant se-
quences has implications for the molecular diagnosis of
FIV infection. CRFs of FIV, including some as yet unidenti-
fied, may remain undetected by PCR-based diagnostic tests
[42,43] currently in use to distinguish FIV-vaccinated and
FIV-infected cats in countries where the vaccine is widely
available [44]. Further phylogenetic studies, ideally of two
neighbouring genes or the whole genome of various strains
of FIV from diverse geographic locations will be required
to classify the virus more accurately, to optimize diagnostic
protocols and to inform the development of an improved
FIV vaccine.

Methods

FIV ORF env sequences

FIV were isolated from three serial blood samples col-
lected at 6 monthly intervals from naturally infected do-
mestic cats (n=43). Cats were enrolled into the study
based on a history of FIV diagnosis by ELISA (SNAP
FIV/FeLV Combo Test, IDEXX), regardless of breed,
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age, sex or health status. All cats were FeLV antigen
negative (SNAP FIV/FeLV Combo Test, IDEXX). FIV-
positive status was confirmed by virus isolation [45].
Within the study group, 27 cats were homed together
and cared for in a large multi-cat household in Mem-
phis, TN, USA, where FIV-positive and FIV-negative cats
were housed indoors with unrestricted access to one an-
other. The remaining 16 cats were living in single house-
holds in Chicago, IL, USA with exception of five cats:
two cats (P7 and P4) had been rehomed together and were
living in the same household; one cat (P9) had been
rehomed with another FIV-positive cat not enrolled in the
study; and one cat (P13) had been rehomed with another
FIV-negative cat; and one cat (P21) was housed with an-
other two FIV-positive cats in the rehoming centre.

Cats from two cohorts displayed contrasting clinical
outcomes of infection. The clinical signs were mild or
unapparent in the Chicago cohort, while the outcome of
infection in Memphis was dramatically different, with
mortality rate reaching 63% and lymphoma being the
most common cause of death [28].

The study and its aims were reviewed and approved by
the University of Glasgow Ethics Committee and the
Purdue Animal Care and Use Committee. Cat owners
provided written informed consent for their participa-
tion in the study.

Multiple full length FIV env genes (~2500 bp) were
amplified directly from whole blood using a nested PCR
protocol [see Additional file 7: Table S4]. First round
PCR products were amplified by Phusion® Blood Direct
II Polymerase (Thermo Fisher Scientific), followed by
direct nucleic acid sequence determination. The nucleic
acid sequence of the first-round PCR product informed
primer design for the second round PCR, which was
performed using High Fidelity PCR Master (Roche).
Strain-specific primers for second round PCR incorpo-
rated restriction sites for subsequent cloning into the
eukaryotic expression vector VR1012 [46] and transform-
ation into E. coli MAX Efficiency’ DH5a™ Competent
Cells (Invitrogen). Each VR1012-FIV env construct was
sequenced using Big Dye Terminator v1.1 kit (Applied
Biosystems) on an Applied Biosystems 3130xl capillary
sequencer. Special measures were taken to avoid the
possibility of contamination, both in the clinical and
the laboratory settings: cats were double identified prior
to blood sampling; PCR reactions were prepared in a
designated UV treated room; and fresh, unopened re-
agents were used at each separate time point through-
out the 18 month study period.

Multiple sequence alignment

There were 355 serial env sequences from 43 cats available
for analysis from the two cohorts [see Additional file 5:
Table S2]. The number of sequences varied according to
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the availability of follow-up samples, because of the 63%
mortality rate in the Memphis cohort during the study
period [28]. Multiple sequence alignments were con-
ducted using the Muscle algorithm [47] in MEGA5 [48].
Final alignments were curated manually to ensure re-
positioning of incorrect gaps in sequences of variable
lengths.

Phylogenetic trees

Maximum likelihood (ML) trees were constructed in
MEGAS5 [48] under the HKY nucleotide substitution
model, selected through jMODELTEST [49]. Statistical
support for the ML trees was estimated using 1000 boot-
strap replicates [50].

Recombination testing

Sequences from the study group (n=355), together with
reference full-length env sequences obtained from GenBank
(n =19), were subjected to rigorous five-fold recombination
testing: 1) The initial recombination analysis included the
entire data set and was performed with the Datamonkey
webserver [51], employing Single Breakpoint (SBP) and
Genetic Algorithm Recombination Detection (GARD)
methods [52] and using the Pairwise Homoplasy Index in
SPLITSTREE [53]; 2) The mosaic structure of recombinant
sequences was confirmed by subsequent GARD analysis fo-
cussing only on study group sequences identified previously
as recombinants, to achieve higher resolution (maximum
likelihood trees for each recombination span identified by
GARD and assessed by Akaike Information Criterion (AIC)
[54] were constructed on the Datamonkey webserver);
3) The mosaic structure of recombinant sequences was
tested by employing probabilistic approach implemented
in jpHMM [55]; 4) Major and minor parents for mosaic
recombinant sequences were identified by the RDP detec-
tion method [56] and confirmed for the complete dataset
by SPLITSTREE network [53]; and 5) Representative fig-
ures visualizing recombination breakpoints were gener-
ated in SimPlot v 3.5.1 [57].

Additional files

Additional file 1: The Maximum Likelihood (ML) tree constructed
under HKY substitution model using the entire data set. The tree is
saved in the NEWICK format and can be opened in FigTree v 1.3.1
(http://tree bio.ed.ac.uk/).

Additional file 2: Figure S1. ML trees representing phylogenetic
inference of seven GARD determined spans.

Additional file 3: Table S1. Comparison of GARD and jpHMM
identified recombination breakpoints.

Additional file 4: Figure S2. Similarity analysis of: A) Memphis A/B
recombinant sequence (M31) and B) Chicago A/B recombinant sequence
(P210).

Additional file 5: Table S2. Number of sequences isolated from each
time point from the US cats.
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Additional file 6: Table S3. FIV load, (genomes/mL blood).
Additional file 7: Table S4. Primers.

Abbreviations

FIV: Feline immunodeficiency virus; RT: Reverse transcriptase; URF: Unique
recombinant form; CRF: Commonly circulating recombinant form;

GARD: Genetic algorithm recombination detection; AIC: Akaike information
criterion; SBP: Single breakpoint; ML: Maximum likelihood; bp: Base pair.
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