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Abstract
Background: Several lines of research suggest that exposure to cellular material can alter the susceptibility to infection 
by HIV-1. Because sexual contact often includes exposure to cellular material, we hypothesized that repeated mucosal 
exposure to heterologous cells would induce an immune response that would alter the susceptibility to mucosal 
infection. Using the feline immunodeficiency virus (FIV) model of HIV-1 mucosal transmission, the cervicovaginal 
mucosa was exposed once weekly for 12 weeks to 5,000 heterologous cells or media (control) and then cats were 
vaginally challenged with cell-associated or cell-free FIV.

Results: Exposure to heterologous cells decreased the percentage of lymphocytes in the mucosal and systemic lymph 
nodes (LN) expressing L-selectin as well as the percentage of CD4+ CD25+ T cells. These shifts were associated with 
enhanced ex-vivo proliferative responses to heterologous cells. Following mucosal challenge with cell-associated, but 
not cell-free, FIV, proviral burden was reduced by 64% in cats previously exposed to heterologous cells as compared to 
media exposed controls.

Conclusions: The pathogenesis and/or the threshold for mucosal infection by infected cells (but not cell-free virus) can 
be modulated by mucosal exposure to uninfected heterologous cells.

Background
In the early 1990s, immunization against major histo-
compatibility complex (MHC) alloantigens was proposed
as a potential human immunodeficiency virus (HIV)-1
vaccine strategy [1]. Recently, interest in the potential of
alloprotection against HIV-1 transmission has gained
new momentum with the findings that allogeneic mis-
match may be associated with reduced sexual and vertical
transmission.

Animal model vaccine studies suggest that exposure to
heterologous antigens play a role in protection against
lentiviral infection. In simian immunodeficiency virus
(SIV) and feline immunodeficiency virus (FIV) studies,
the efficacy of cell-based vaccines has been shown to be,
at least in part, due to immune responses against the het-
erologous cells [2-8]. In the SIV system, this protective
mechanism has further been delineated as both humoral

and cell-mediated responses against MHC molecules [2-
5,9,10]. Consistent with animal model studies are epide-
miological reports that support a role for alloantigen
driven immune responses in HIV-1 resistance. For exam-
ple, women who have less common human leukocyte
antigen (HLA) types for their region are over-represented
in cohorts of sex workers who remain seronegative
despite repeated high-risk exposure [11].

While more studies are required to ascertain if suscep-
tibility to HIV-1 infection, disease progression, or both
are associated with certain HLA clusters, the protective
role for induced immunoreactivity against HLA antigens
appears to be well established [1,12,13]. Alloimmune
responses can provide both neutralizing antibody [14]
and cell-mediated [14-16] antiviral activity against HIV-1
and alloimmunization of women elicits a dose dependent
decrease in the susceptibility of CD4+ T-cells to in vitro
HIV-1 infection [17]. Similar anti-HLA immune
responses have been identified in exposed seronegative
sex workers [17-19] and infants born to HIV-1-infected
mothers [20].
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Alloantigen exposure can directly modulate the pro-
duction of soluble factors and cell surface receptors.
Alloimmunization has been shown to elicit CD8+ T-cell
anti-HIV-1 activity as well as production of RANTES,
MIP-1α and β [16]. Importantly, sexual contact may be
sufficient to induce alloimunization that alters the
expression of HIV-1 receptors. This was demonstrated by
finding that CD4+ T cells from women with unprotected
sexual activity were highly resistant to binding by either
CCR5 or CXCR4 strains of HIV-1 [21].

Taken together, there is strong evidence that exposure
to heterologous cells and allogenic material alters the sus-
ceptibility of cells to lentiviral infection. However,
whether this translates into reduced host infection or
altered pathogenesis is less well understood. The role of
cell exposure is particularly relevant when considering
mucosal transmission. Not only is mucosa the major
route of cell-free and cell-associated HIV-1 transmission
[22-25], the vaginal and rectal mucosa is commonly
exposed to heterologous cells and allogeneic material
during sexual activity. Ejaculates contain HLA antigen
expressing CD4+ T cells, macrophages, neutrophils,
germ cells, epithelial cells and to some extent spermato-
zoa [26].

Given the reports of seronegativity in cohorts of sex
workers with high-risk exposure [11], we hypothesized
that HIV-1 transmission or progression could be altered
by prior or concurrent immune stimulation by mucosal
exposure to heterologous cells. We addressed this ques-
tion directly using the FIV animal model of vaginal HIV-1
transmission. We repeatedly exposed cats by mucosal
exposure to heterologous cells or media, assayed for lym-
phocyte phenotype as well as proliferative responses
against cellular material, and then vaginally challenged
cats with either cell-associated or cell-free FIV. We found
that prior exposure to heterologous cells induced an
immune response that was associated with reduced viral
burden after mucosal challenge with cell-associated, but
not cell-free, FIV.

Methods
Experimental design
To maximize genetic diversity, 22 female (Liberty Labora-
tory) and 6 male (Harlan Laboratories) SPF cats were
obtained, housed, acclimated, and cared for in accor-
dance with the standards of the American Association of
Accreditation of Laboratory Animal Care and The Ohio
State University Institutional Animal Care and Use Com-
mittee. Peripheral blood mononuclear cells (PBMC) from
each female cat were tested against irradiated cells from
each male cat in a one-way mixed lymphocyte reaction
(MLR). The four male cats whose cells induced the high-
est MLR proliferation were used as sources of heterolo-
gous cells for this study. Female cats (n = 11 per group)

were vaginally exposed once weekly for 12 weeks to lym-
phocyte media (Media) or 5000 male lymphocytes (Cells)
in 50 μl final volume of lymphocyte media. For exposure
inocula, male lymphocyte samples were not pooled.
Female cats were exposed to heterologous cells from a
different male cat each week for four weeks and then the
cycle was repeated. One week after the 12th exposure,
three animals from each exposure group were euthanized
to collect blood and tissue samples to evaluate tissue
immune responses. Tissue samples were collected from
the popliteal lymph node (PLN), mesenteric lymph node
(MLN), medial iliac lymph node (ILN), small intestinal
intraepithelial lymphocytes (IEL), and small intestinal
lamina propria lymphocytes (LPL). One week after the
12th exposure, the remainder of the cats from each group
(n = 8) were vaginally challenged with cell-associated (n =
4) or cell-free (n = 4) FIV NCSU1. At 12 weeks post chal-
lenge (PC), blood, lymph nodes (popliteal, mesenteric,
medial iliac) and gut (both IEL and LPL) were obtained at
necropsy to quantify tissue viral load and examine
immune responses. Mucosal exposure, viral inoculation,
and venipuncture were performed under anesthesia
induced by intravenous tiletamine and zolazepam (Tela-
zol, Fort Dodge Animal Health, Fort Dodge, IA).

Virus inocula
Cats were inoculated with either 5 × 105 FIV-infected
Mya-1 cells (cell-associated challenge) or 50 × TCID50 tis-
sue culture supernatant (cell-free challenge). Both inoc-
ula were infected with FIV-NCSU1 an A-clade FIV. To
obtain cell-associated inocula, Mya-1 T-cells were cul-
tured for three days in complete RPMI 1640 lymphocyte
media containing 20% fetal bovine serum (Atlanta Bio-
logicals, Norcross, Ga.), 1 mM sodium pyruvate, 0.1 mM
Hepes buffer sodium, 5 × 10-5 M β-2-mercaptoethanol,
100 U of penicillin/ml, 100 μg of streptomycin/ml (all
from Invitrogen Life Sciences) and 100 U/ml recombi-
nant human interleukin-2 (IL-2) kindly provided by the
NIH AIDS Research and Reagent Program at 37°C 5%
CO2, and then infected with 20 × TCID50 cell-free FIV-
NCSU1 tissue culture supernatant. At day 5 post-infec-
tion, infected cells were harvested and frozen in liquid
nitrogen until use, with aliquots saved to analyze the
degree of infectivity by real-time PCR, co-culture with
feline CD4+ indicator cells [27], immunocytochemistry
and western blot. For immunocytochemistry, cells were
incubated with 1/1000 of serum from a chronically FIV-
infected cat at 37°C for 30 min, probed with goat anti-cat
IgG-FITC (USB Corporation, Cleveland, OH), and fixed
with 2% paraformaldehyde. Fluorescence was monitored
by confocal imaging system LEICA TCS SP2 AOBS
(Leica Microsystems, Exton, PA) and 98% of the cells
were infected. This correlated with real-time PCR and
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co-culture assays indicating at least one in ten cells was
infected. Cell lysates were probed with 1:1000 anti-gp120
(SU1-30) (Custom Monoclonals International, Sacra-
mento, CA) to confirm expression of FIV Env [28].

Sample processing
PBMC and lymphocytes from the distal jejunum,
popliteal, mesenteric, and medial iliac lymph nodes were
processed as previously described [29-31]. Intraepithelial
lymphocytes (IEL) and lamina propria lymphocytes (LPL)
were isolated from 10 inches of distal jejunum following
excision of Peyer's patches and lymphoid follicles [30,31].
Cells were either used immediately (T-cell phenotype and
proliferation assays) or were washed, treated, and pelleted
(DNA, RNA or protein extraction).

Real time (RT)-PCR
DNA was purified from PBMC and tissue lymphocytes
using DNeasy Tissue Kit (Qiagen, Valencia, CA). A con-
served region (170-bp) of FIV-gag was amplified from
150 ng of each sample with primers GagNCSU1-1247
sense (5'-GCTTAAAGCAATTGACGGCAGAGTAT-
GATCG-3') and GagNCSU1-1417 anti-sense (5'-CCTC-
GAGATACCATGCTCTACACTGCATCC-3') as
previously described [28]. Proviral copies were expressed
as gag copies per million GAPDH copies [31]. The sensi-
tivity of this assay is 10 copies FIV per μg of DNA [32].
Reaction mixtures containing 2 × SYBR-Green master
mix (Qiagen, Valencia, CA), 0.5 μM primers, and 2-5 μl of
each DNA sample were amplified in a 96-well plate
(ABgene, Rochester, NY) using the Mx3000 (Stratagene,
La Jolla, CA) and the following PCR conditions: 15 min at
94°C then 40 cycles of 30 seconds at 94°C; 1 minute at
60°C, and 30 seconds at 72°C, followed by one cycle of 1
minute at 95°C and 30 seconds at 55°C. Standard curves
were generated for primer pairs using serial dilutions of
the following plasmids: pCR2.1-GAPDH and pCR1-gag
[31].

Reverse transcriptase RT-PCR
RNA was extracted from 200 μl of plasma using High
Pure Viral RNA Kit (Roche, Indianapolis, IN). Reverse
transcription RT-PCR was performed in triplicate wells
of a 96-well plate (ABgene, Rochester, NY) as one step
RT-PCR in 25 μl containing 2-3 μl of purified RNA, 0.5
μM QuantiTect RT Mix, 2 × SYBR-Green master mix
(Qiagen, Valencia, CA), and 0.5 μM primers. Following
30 minutes at 50°C for reverse transcription, program
conditions were as described above for RT-PCR. The
detection limit of this assay is ≤ 10 copies per 50 μl of
plasma and is similar to the findings of others [33].

Flow cytometric analysis
Absolute lymphocyte counts were calculated using an
automated white blood cell count (VetSCAN HMT,

Abaxis, Union City, CA) and manual differential. T-cell
subsets were analyzed by FACS Calibur (Becton Dickin-
son, San Jose, CA) as previously described [29,30].

Lymphoproliferation
Lymphoproliferation was assayed in PBMC prior to expo-
sure and in PBMC and tissue lymphocytes at 12 week
post exposure (PE). Cells (1 × 105) were incubated in trip-
licate in one of four conditions: lymphocyte media alone,
5 μg/ml of concanavalin A (Con A), irradiated cells as a
mixed lymphocyte reaction (MLR), or whole cell lysate
(WCL) at 37°C, 5% CO2 for 4 days [34]. Irradiated cells
and whole cell lysate were obtained from male donor
(male), the cat's own PBMC (self ), or the cells used for
cell-associated FIV challenge (Mya-1). Irradiated cells for
the MLR were obtained by irradiating cells in a T-25 flask
or 6 well plates at a final concentration of 1 × 106/mL in
lymphocyte media for 85 minutes @ 7500 rad in a Gam-
macell 40, cs-137 irradiator. Whole cell lysate (WCL) was
prepared by sonicating the cells for 1 minute/5 mL @ 22
μM amplitude. Protein content was quantified using the
Bradford reagent. Wells were pulsed with 1 μCi/well of
tritiated thymidine (MP Biomedicals Corp., Irvine, CA)
for 18 hrs and then harvested using a FilterMate Cell Har-
vester (PerkinElmer Life Sciences, Downers Grove, IL).
Uptake was quantified as counts per minute (CPM) using
a MicroBeta Jet Liquid Scintillation and Luminescence
counter (Wallac, Turku, Finland). Triplicates were aver-
aged and the proliferation index (PI) was calculated: (Ave
CPM at particular time point/Ave background CPM at
same time point)/(Ave. CPM at pre/Ave background
CPM at pre) × 100. Pre exposure data was normalized to
100% for each animal and data presented as change from
baseline.

ELISA
Serum antibody against FIV p24Gag was detected by
adding serial dilutions of serum to microtiter plates
(Immulon 2 HB, Dynex Technologies Inc., Chantilly, VA)
coated with 0.1 μg/well p24Gag fusion protein as previ-
ously described [35]. Titers were expressed as the inverse
of the highest dilution that produced an OD ≥ 0.1 and ≥
3-fold the OD of the animal's pre-study sample.

Statistical analyses
Flow phenotyping results were analyzed using analysis of
covariance for PBMC and multivariate analysis of vari-
ance for tissue samples with separate models for each T-
cell subset. For PBMC, differences between the Heterolo-
gous and Media groups were tested with the baseline per-
centage of the T-cell subset included as a covariate. For
tissue sample results, the endpoints were the percentages
of the T-cell subset in each of the five tissue sources
(PLN, MLN, ILN, IEL, and LPL). Separate residual vari-
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ances were estimated for each tissue source. Contrasts
within the model evaluated differences separately
between Heterologous and Media groups for each type of
tissue.

For MLR and WCL analyses, the endpoint was a cell PI
measuring change from baseline. Linear mixed models
were used to analyze differences in mean cell PI between
the treatment groups and between antigen types (self,
male, Mya-1). Also, for the post-challenge model, the
challenge types (cell-free, cell-associated) were com-
pared. PBMC models included a covariate for the base-
line CPM ratio and a random subject effect. Tissue
sample models were multivariate and estimated separate
residual variances and random subject effects for each
tissue type. Log-transformed PI values were used in the
analyses in order to correct for skewness. All statistical
tests were evaluated at the two-sided alpha = .05 signifi-
cance level. Analyses were performed using SAS® version
9.2 (The SAS Institute, Cary, NC).

Viral loads were used to calculate the arithmetic mean
for different treatment groups and then compared using a
Student's t-test with differences at p < 0.05 regarded as
significant.

Results
Mucosal exposure to heterologous cells induces systemic 
and mucosal lymphocyte phenotype shifts
To determine whether repeated mucosal exposure to het-
erologous cells resulted in shifts of T cell subsets and acti-
vation status, blood and lymphoid tissues were examined
by flow cytometry. No changes were detected in the total
percentage of CD4+ or CD8+ T cells in the blood and
lymphoid tissue (data not shown). L-selectin (CD62L)
was examined as a marker primarily found on naïve lym-
phocytes as well as some central memory T cells [36-39].
Loss of L-selectin expression has previously been shown
to correlate with FIV antiviral activity [40]. Following
repeated mucosal exposure to heterologous cells, the per-
centage of CD4+ T cells expressing L-selectin were
increased in the gut tissue, IEL (p = 0.028) and decreased
in iliac lymph node (p = 0.0031) (Fig 1a). CD8+ T cells
expressing L-selectin were increased in the blood (p =
0.033) and the gut tissue (IEL, p = 0.0008) but were
decreased in the lymph nodes (ILN, p < 0.0001; MLN, p =
0.024) (Fig 1b)

As is seen in other species, feline Tregs are predomi-
nantly CD4+CD25+ cells; and FoxP3 expression has
recently been shown to correlate with dual CD4 and
CD25 expression by lymphocytes [41]. Following
repeated mucosal exposure to heterologous cells, the per-
centage of CD4+CD25+ T-cells was significantly
decreased in the iliac LN (p = 0.0002), popliteal LN (p =

0.0144), and intestinal LPL (p = 0.0102) while no changes
were noted in blood, mesenteric LN, or intestinal IEL (Fig
1c).

Mucosal exposure to heterologous cells induces 
lymphoproliferative responses against heterologous cells
Exposure to heterologous cells for 12 weeks induced a
MLR response against male and/or Mya-1 irradiated cells
in multiple mucosal and systemic sites. Significant
responses against male cells were detected in lympho-
cytes from the ILN, MLN, and LPL (ILN, p = 0.012; MLN,
p = 0.002; LPL, p = 0.01) while significant responses
against Mya-1 cells were only detected in the lymph
nodes (ILN, p = 0.008; MLN, p = 0.003; PLN, p = 0.03)
(Fig 2). Consistent with the naïve (CD62L+) phenotype
found in blood, a significant proliferative response was
not detected in PBMC (data not shown). Proliferation
against whole cell lysate (WCL) of male cells only was
detected in the ILN (p = 0.004, data not shown). Signifi-
cant proliferation to WCL was not detected elsewhere.

Figure 1 Percentage of (a) CD4+, and (b) CD8+ cells expressing L-
selectin; and (c) CD4+25+ cells. Data present comparison of these 
cells in various tissues between media and heterologous cell exposed 
subjects Data presented as arithmetic mean, SD. * Statistically signifi-
cant (p < 0.05) between Media and Heterologous groups for that tis-
sue.
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Provirus burden is reduced following cell-associated 
mucosal challenge after previous exposure to 
heterologous cells
After repeated exposure to either media or heterologous
cells, cats were vaginally challenged with cell-associated
or cell-free FIV and viral load was measured after 12
weeks. FIV-RNA was consistently detected in the plasma
of all cats challenged with FIV (Table 1 &2) and was simi-
lar in animals challenged with cell-associated (Table 1) or
cell-free FIV (Table 2). Provirus was detected in all ani-
mals but in cats challenged with cell-free FIV, copy num-
bers were lower, were not detected in all tissues, and
there were no significant differences detected between
the Media and Heterologous treatments (Table 2).

In contrast, in cats challenged with cell-associated
virus, PBMC and tissue proviral burdens were approxi-
mately a log lower in animals previously exposed to het-
erologous cells (Fig 3) as compared to media controls.
The same trend of reduced viral load was detected in
blood samples taken 8 weeks post challenge (data not
shown).

There was no detectable response to the p24Gag fusion
protein after exposure to heterologous cells (or media)
and prior to challenge. Antibody response was only
detected after viral challenge. IgG against p24 was readily

detected in all cats infected with cell-associated FIV
(Table 1) but was undetectable (n = 4) or minimal (titer of
100-200 n = 3) in the majority of cell-free challenged cats
(Table 2).

Discussion
This study was designed to mimic what might occur in
women exposed to multiple sexual partners and deter-
mine whether prior mucosal exposure to heterologous
cells could alter lentiviral transmission or disease. In the
study described here, cats repeatedly exposed to heterol-
ogous cells had reduced proviral burden when compared
to cats receiving media alone following mucosal challenge
with cell-associated but not cell-free FIV. While the final
numbers of animals in each challenge group were rela-
tively small (n = 4), we and others have demonstrated rel-
evant challenge findings in the FIV and SIV animal
models with final group sizes in this range [42-44]. In
addition, cats mucosally exposed to heterologous cells
had shifts in lymphocyte activation as well as prolifera-
tion against cellular antigens, including cells (Mya-1) that
they had not been previously exposed to. This suggests
that FIV infection was modulated by responses against
the infected cells, not simply FIV, as no differences were
seen between the groups following challenge with cell-
free FIV.

Mucosal exposure to heterologous cells resulted in a
reduced percentage of L-selectin positive in the LNs with
a concurrent expansion of L-selectin positive cells in the
blood and gut. L-selectin (CD62L) is expressed on naive
CD4+ T cells as well as a small subset of memory T cells
and facilitates immune surveillance by enabling the cells
to recirculate and compartmentalize between blood and
lymph node [36-39]. FIV and HIV infections are associ-
ated with progressive immune dysfunction with reduced
capacity to respond due to poor response to recall anti-
gens [45-48]. L-selectin expression may thus affect HIV-1
pathogenesis by altering the ability to recall antigens. It
may also play a role in HIV-1 pathogenesis by enhancing
virus transmission to CD4+ T lymphocytes [49] possibly
due to enhanced expression of surface CXCR4 in lym-
phocytes through L-selectin signaling have been sug-
gested [50]. Hence, changes in L-selectin expressed cells
after mucosal exposure may be responsible for the
observed alteration of susceptibility to FIV infection.

Changes in L-selectin expression after mucosal expo-
sure were most evident in the iliac LN (CD4+62L+, p =
0.0031; CD8+62L+, p < 0.0001) and IEL populations
(CD4+62L+, p = 0.028; CD8+62L+, p = 0.0008). The
marked ILN changes are likely attributable to the site of
exposure as the ILN drains the cervicovaginal mucosa.
Previously, we have shown that the ILN and IEL lympho-
cyte populations are uniquely altered in chronic FIV
infection [51] indicating that the immune function and

Figure 2 Mixed lymphocyte response against (a) male and (b) 
Mya-1 T cells in lymph nodes and gut. The data represent response 
after 12-weeks of repeated mucosal exposure to heterologous cells or 
media alone. Data are presented as arithmetic mean, SD cell prolifera-
tion index measuring change from baseline. * Statistically significant (p 
< 0.05) between Media and Heterologous groups for that tissue.
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interactions at these sites should be further investigated
in multiple model systems.

In the LN, the shift to an activated phenotype occurred
concurrently with functional lymphocyte activation as
measured by proliferation whereas the LPL response was
enhanced without a detectable expansion of activated
cells. This may be related to the high percentage of acti-
vated cells normally present in the gut [52]. Interestingly,
the MLR response that developed following exposure to
heterologous cells was also cross-reactive against cells
that the animals had not been exposed to, namely the
Mya-1 cell line. This cross reactive immune response was

likely responsible for the decrease in viral burden seen
following subsequent challenge with FIV infected Mya-1
cells but not CF FIV.

The shift towards an activated phenotype and concur-
rent proliferative response was also associated with a
reduction in the percentage of CD4+CD25+ cells in the
ILN (p = 0.0002), PLN (p = 0.0144), and LPL (p = 0.0102).
Feline CD4+CD25+ cells have been previously shown to
have regulatory activity ex vivo and in vitro [53]. FoxP3, a
marker of Treg activity, increases in CD4+CD25+ T cells
following FIV infection [41,54]. While we did not mea-
sure regulatory function and FoxP3 reagents were not

Table 1: Cell-associated FIV challenge summary

Cat ID gag copy/million GAPDH gag copy/mL Anti-FIV p24 IgG dilution

Media only PBMC ILN MLN PLN IEL LPL PLASMA SERUM

AMX1 15585 9135 4899 7366 1072 68 73 12800

AMY5 83572 37693 29756 65000 3062 538 69 102400

ANG5 29819 21413 10079 34634 3700 173 63 6400

ANE5 2313 6737 2683 6100 1815 NA 61 400

MEAN 32822 18745 11854 28275 2412 260 67 30500

Heterologous cells

ANZ4 1265 2261 116 887 0 5 44 6400

QNY5 2251 9563 2255 9225 1603 NA 83 800

AMY6 20177 22633 7848 20530 3796 5 70 12800

AMW5 5477 11740 3434 9716 0 44 26 6400

MEAN 7293 11549 3413 10089 1350 18 56 6600

Table 2: Cell-free FIV challenge summary

Cat ID gag copy/million GAPDH gag copy/mL Anti-FIV p24 IgG dilution

Media only PBMC ILN MLN PLN IEL LPL PLASMA SERUM

IMO4 1299 1495 0 762 0 0 51 200

QNV2 1674 7905 0 1544 0 0 50 0

ANC6 1579 3676 0 1153 0 0 62 0

AMW6 2035 2554 0 973 0 0 48 200

MEAN 1647 3907 0 1108 0 0 53 100

Heterologous cells

AMY3 1877 2927 543 2595 285 3 50 6400

AMW3 1372 4514 0 1694 0 0 56 0

AMX3 1554 3767 0 NA NA 0 51 100

QNU6 1606 2551 0 NA 886 0 25 0

MEAN 1602 3440 136 2144 390 1 45 1625
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available at the time of this study, the data suggests that a
reduction of the number of T-regulatory cells within the
environment was associated with the development of an
effector immune response. Tregs may play a crucial role
in immunopathogenesis of many viral infections includ-
ing herpes simplex virus (HSV), hepatitis C virus (HCV),
Friend virus and lentiviruses including FIV [53-58].
These studies suggest that activation of Tregs following
viral infection leads to suppression of CD4+ and CD8+
effector responses resulting in decreased viral clearance
and consequently establishment of infection. In-vitro
studies suggest that Treg cells from HIV-infected subjects
suppress the effector function of CD8+ antigen-specific
HIV gag responses [59,60]. Though mechanisms involved
in suppression of infection by Treg depletion remain
unclear, few studies have suggested granzyme, CTLA-4,
and tumor growth factor (TGF-beta), chemokine and
cytokine regulation [61-63]. Previous allograft studies
suggest the role of Treg cells in inhibiting alloimmune
responses [64,65].

In contrast to the strong MLR response detected
against whole cells at multiple sites, we did not find sig-
nificant proliferation against cell lysate after heterologous
cell exposure except in the ILN. This response was likely
confined to the draining lymph node due to rapid degra-
dation however a unique response against intracellular

antigens cannot be excluded. Taken together, these data
suggest that the immune activation and relative protec-
tion induced by exposure to heterologous cells was due to
responses against cell surface antigens versus intracellular
antigens and is consistent with findings that intact stimu-
lating cells are required for efficacious production of anti-
HIV activity [66]. Whether this is due to conformational
interactions, interaction with secondary molecules, or a
combination has relevance for vaccine and small mole-
cule therapy and remains an area for investigation.

Although neutralizing antibodies were not measured in
this study, previous reports support the potential for a
protective role by the humoral arm of the immune sys-
tem. Vaccination of macaques with uninfected human
cells were found to be protected against SIV grown in the
same cell type and protection was correlated with the
detection of anti-HLA class I antibodies [5]. Because viral
gp120 and HLA share a degree of homology [67] it has
been hypothesized that anti-HLA antibodies may neu-
tralize free virions by binding to HLA or gp120 on the
viral envelope leading to cross-reactive protection. Given
recent detection of antibodies against cell line antigens in
cats vaccinated with commercially available vaccines gen-
erated in this cell line, the contribution of cross-reactive
humoral responses is clearly worth further investigation
[68].

Figure 3 Proviral burden 12 weeks post-challenge with cell-associated FIV in cats previously exposed to heterologous cells/media. Proviral 
burden was approximately 1 log lower in the Heterologous group. # Less than 100 copies detected. In the LPL, one sample in each group was dam-
aged during processing and therefore unavailable. Within the heterologous group, both the IEL and LPL had two different animals with the same copy 
number; for IEL 0 copies were seen in two animals, for LPL 5 copies.
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In this study, cats previously exposed to heterologous
cells and then challenged with cell-associated FIV had
lower tissue proviral burdens than those had been previ-
ously only exposed to media. This was not true for cell-
free FIV, a finding also supported by a recent study [69].
Taken together; these studies strongly suggest that intact
cellular proteins are critical for induction of protective
immune responses against infected cells. As cell-associ-
ated virus appears to have an important role in HIV sex-
ual transmission [70-73], our findings are encouraging as
exposure to heterologous male lymphocytes induced
cross-reactive proliferation against the challenge inocu-
lum cells suggesting that cross reactivity plays a signifi-
cant role in allo-induced antiviral activity. An additional
control could have been to examine the effect of mucosal
exposure to the challenge cells (Mya-1). It is reasonable to
speculate that prior exposure to uninfected Mya-1 cells
would induce the strongest protection to FIV-infected
Mya-1 cells, however it is also possible that exposure to a
uniform cell line may have induced immune responses
that varied markedly from what would be seen following
exposure to a heterogeneous 'normal' lymphocyte popu-
lation as we examined in this study.

Under natural conditions, biting appears to be the most
efficient mode of FIV transmission. Virus is easily iso-
lated from the saliva of infected cats and both experimen-
tal and epidemiological studies suggest that a single bite
exposure is sufficient to transmit the virus from an
infected to a naive cat [74]. Infectious FIV is present in
genital secretions from naturally and experimentally
infected male cats [75-77]. Replication-competent FIV is
found in both the cell-free fraction and cell- associated
fraction of semen and can be transmitted to cats by a sin-
gle uterine artificial insemination [75,77].

As an animal model, mucosal transmission of FIV has
been developed extensively. FIV transmission mimics the
diversity apparent in HIV-1 vaginal transmission and
virus strains representing at least three subtypes of FIV
can be transmitted across the vaginal, rectal, or oral
mucosa by cell-associated as well as cell-free virus [34,78-
83] similar to reported previously [84,85,72], mucosal
exposure to cell-associated FIV resulted in greater virus
burden than did exposure to cell-free FIV, particularly in
the gut. This could be due to dose effect. However, there
is no gold standard to directly correlate in vitro cell-free
and cell-associated titrations with each other or to pre-
dict in vivo outcomes. In addition, a recent study suggests
that mucosal dose alone is not predictive of infection out-
come [86].

While exposure to heterologous cells did not provide
complete protection, the log reduction in proviral burden
after cell-associated challenge is similar to the reduction
in virus burden reported in vaccine studies [2-8]. Because
early viral set point and higher virus burden predict a

more rapid progression of HIV infection [87,88], contain-
ing the virus early on appears to alter the downstream
progression to disease that can have significant effects on
patient health as well as potential transmission to others.
The results reported here are particularly significant
given the high-dose challenge used in this study.
Although high-dose challenges are commonly used in
animal model studies, lower doses more likely mimic
what is seen in HIV-1 exposure, particularly sexual expo-
sure. As mucosal administration of low-dose cell-associ-
ated FIV results in non-progressive infection (Burkhard
unpublished data) or viral latency [28], further reduction
of infection by a log under low-dose exposure circum-
stances may increase the threshold for infection resulting
in local or 'silent' infection as has been reported in certain
high-risk cohorts [89-92].

Conclusion
Multiple mechanisms have been proposed for the lack of
infection in HIV-1 exposed but seronegative individuals
including viral determinants of infection, low-level HIV-1
cellular and humoral immune responses, and genetic
variation. However, the phenomenon remains poorly
understood. Several SIV and FIV vaccine studies, as well
as human epidemiologic data, suggest that alloimmune
responses may be associated with protection against len-
tiviral infection [2-8]. We examined the role of vaginal
exposure to heterologous cells on lentiviral infection by
using the FIV model of mucosal transmission. We found
that repeated exposure of the mucosa to heterologous
cells led to functional and phenotypic activation of
immune system. This suggests that the threshold for
mucosal infection by infected cells or the early pathogen-
esis can be modulated by immune responses against het-
erologous cells. This is further supported by the absence
of differences in viral burden between those challenged
with CF virus. Overall, our data suggests that mucosal
exposure to non-viral antigens may induce cross-reactive
immune responses that can reduce virus burden. While
these may not be completely protective, the ability to
reduce early viral set points has significant implications
for further transmission and disease progression and
hence may provide additional strategies for therapy and
vaccination. Our findings support a need to reexamine
the role that immune responses against heterologous and
allogeneic cells may play in HIV-1 transmission, early
infection, viral dissemination, and progression to disease.
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