## Oral presentation

**Open Access** 

## A U5 repressor of reverse transcription is required for optimal HIV-I infectivity and replication

Luke Meredith<sup>1,2</sup>, Céline Ducloux<sup>3</sup>, Catherine Isel<sup>3</sup>, Roland Marquet<sup>3</sup> and David Harrich<sup>\*1,2</sup>

Address: <sup>1</sup>Griffith Medical Research College, a joint program of Griffith University and the Queensland Institute of Medical Research, QIA, Herston, QLD, Australia, 4006, <sup>2</sup>Queensland Institute of Medical Research, Royal Brisbane Hospital Post Office, Brisbane 402, 21d, Australia and <sup>3</sup>Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, IBMC, 15 rue René Descartes, 67084 Strasbourg cedex, Fra.

\* Corresponding author

from Frontiers of Retrovirology: Complex retroviruses, retroelements and their hosts Montpellier, France. 21-23 September 2009

Published: 24 September 2009 Retrovirology 2009, **6**(Suppl 2):O14 doi:10.1186/1742-4690-6-S2-O14

This abstract is available from: http://www.retrovirology.com/content/6/S2/O14

© 2009 Meredith et al; licensee BioMed Central Ltd.

Here we provide strong evidence that a highly conve' stem loop structure in the U5 region of the HUAL leader harbours a repressor of reverse transcription (RRT) We showed that two sequences in U5, at +143-5 and +151-153, are essential for RRT function. Mutation of either site strongly and unexpectedly increased endogenous reverse transcription, and cell infection assays showed that both mutations dramatically increased negative strand strong stop DNA synthes Sarly, late, 1-LTR and 2-LTR reverse transcintion roducts were present proportionally, indicating t at the downstream reverse transcription events very or anected. In vitro structural probing of the wind type a structure RNA revealed an unexpected des abilities of the mutations on the whole U5 sten loop, which would explain the loss of regverse transcription. This functional effect was ulation of n virlo, where, in the absence of viral pronot observe teips over the RT and cellular factors, all RNA perderivarily. These U5 mutations decreased virus for replicion in Jurkat and primary T-cells, which could be attributed to a marked defect in viral integration. Analysis of 1-LTR and 2-LTR circular DNA isolated from infected cells revealed that substantial deletions were present, indicating that the viral DNA was degraded by cellular nucleases. Together, our experiments suggest that regulated reverse transcription initiation is essential to allow synthesis of the viral DNA in a cellular environment that supports the assembly of a functional HIV-1 pre-integration

complex, which also protects the proviral DNA from celular degradation processes.