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Abstract

Background: APOBEC3 (A3) proteins constitute a family of cytidine deaminases that provide
intracellular resistance to retrovirus replication and to transposition of endogenous retroelements.
A3A has significant homology to the C-terminus of A3G but has only a single cytidine deaminase
active site (CDA), unlike A3G, which has a second N-terminal CDA previously found to be
important for Vif sensitivity and virus encapsidation. A3A is packaged into HIV-I virions but, unlike
A3G, does not have antiviral properties. Here, we investigated the reason for the lack of A3A
antiviral activity.

Results: Sequence alignment of A3G and A3A revealed significant homology of A3A to the C-
terminal region of A3G. However, while A3G co-purified with detergent-resistant viral
nucleoprotein complexes (NPC), virus-associated A3A was highly detergent-sensitive leading us to
speculate that the ability to assemble into NPC may be a property conveyed by the A3G N-
terminus. To test this model, we constructed an A3G-3A chimeric protein, in which the N-terminal
half of A3G was fused to A3A. Interestingly, the A3G-3A chimera was packaged into HIV-1| particles
and, unlike A3A, associated with the viral NPC. Furthermore, the A3G-3A chimera displayed
strong antiviral activity against HIV-1 and was sensitive to inhibition by HIV-1 Vif.

Conclusion: Our results suggest that the A3G N-terminal domain carries determinants important
for targeting the protein to viral NPCs. Transfer of this domain to A3A results in A3A targeting to
viral NPCs and confers antiviral activity.

Background human chromosome 22. These are A3A, A3B, A3C, A3DE,
APOBEC (apolipoprotein B mRNA-editing catalytic =~ A3F, A3G, and A3H. In contrast, only a single A3 gene
polypeptide) proteins are a group of cytidine deaminases, =~ (mA3), which produces a protein with two Zn2+-binding
which include APOBEC1 (A1), AID, APOBEC2 (A2), and  motifs was found in mice [2]. Human A3G has been
a subgroup of APOBEC3 (A3) proteins in humans [1].  shown to be active against vif-defective human immuno-
There are clusters of tandemly arrayed A3 genes presenton  deficiency virus type-1 (HIV-1) [3-13] and other viruses
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such as simian immunodeficiency virus, human hepatitis
B virus, and HTLV1 [14-19]. In contrast, A3A was not
found to inhibit HIV-1 but blocked replication of adeno-
associated virus and retrotransposons such as intracister-
nal A particle (IAP) and long interspersed element 1
(LINE-1) [20-23].

A3G contains two copies of the cytidine deaminase active
site (CDA) HXEX,; ,sPCX, ,C (where X is any amino
acid) while A3A contains only a single CDA domain [1].
The cysteine and histidine residues are believed to coordi-
nate a critical active site zinc ion while the glutamic acid
residue participates directly in the deamination reaction
[24]. Initial research suggested that this deamination
activity was critical for APOBEC3-mediated inhibition of
HIV-1 replication as A3G and A3F caused extensive muta-
genesis of vif-defective HIV-1 proviruses [5-8,25-30].
More recent research has challenged this model based on
the finding that some A3G and A3F mutants that
appeared incapable of catalyzing deamination of deoxycy-
tidine nevertheless retained substantial inhibitory activity
against HIV-1 [31-34]. In addition, A3A mutants lacking
the ability to induce cytidine deamination have been
shown to effectively inhibit the mobility of retrotrans-
posons [21-23].

In this study we wanted to investigate why A3A lacks anti-
viral activity against HIV-1. We observed that A3A was
packaged into HIV-1 virions but did not associate with the
viral nucleoprotein complex (NPC) and had no antiviral
activity. In contrast, we previously reported that A3G,
which exhibits strong antiviral activity, was packaged into
viral NPC [35]. Sequence alignment of A3G and A3A
revealed significant homology of A3A to the C-terminal
region of A3G leading us to speculate that the inability to
assemble into viral NPC may be due to the lack of an N-
terminal CDA domain in A3A. To test this model, we con-
structed an A3G-3A chimeric protein, in which the N-ter-
minal half of A3G was fused to A3A. This resulted in the
creation of an enzyme containing two CDA domains.
Interestingly, the A3G-3A chimera was packaged into HIV-
1 particles and, unlike A3A, associated with the viral NPC.
In support of our model, the A3G-3A chimera displayed
strong antiviral activity against HIV-1 but was also sensi-
tive to inhibition by HIV-1 Vif. These results suggest that
the A3G N-terminal domain confers antiviral activity and
Vif sensitivity to A3A and carries determinants required
for the assembly into viral NPC.

Results

APOBEC3A has no antiviral activity and is insensitive to
degradation by HIV-1 Vif

It has been reported that APOBEC3A (A3A) does not have
antiviral activity towards HIV-1 irrespective of the pres-
ence or absence of Vif [20-22,25,27]. To verify these
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results, we tested the antiviral activity of human A3A and
its sensitivity to HIV-1 Vif by transient transfection of
HeLa cells. We used two different vectors for the expres-
sion of HIV-1 Vif: pNLA-1 Vif, expressing Vif together with
other viral proteins from a proviral backbone [36], and
pcDNA-hVif, expressing codon-optimized Vif [37]. Both
forms of Vif can efficiently counteract the antiviral activity
of A3G. HelLa cells were transfected with DNA encoding
vif-defective HIV-1 and pcDNA-A3A together with either
PNL-A1 (Fig. 1A, lanes 2 & 5) or pcDNA-hVif vector DNA
(Fig. 1A, lanes 3 & 6) or empty vector (lanes 1 & 4). We
found that neither expression of A1-Vif nor hVif reduced
cellular A3A expression relative to the Vif-negative control
(compare Fig. 1A, lanes 1-3). Furthermore, expression of
Vif had no effect on the packaging of A3A into virus parti-
cles (Fig. 1A, compare lanes 4-6). We also compared the
infectivity of viruses produced in the presence of A3A (Fig.
1B, lanes 2-4) to virus produced in the absence of A3A
(Fig. 1B, lane 1) in a single cycle assay as described in
Materials and Methods. Our data were consistent with
previous reports and confirmed that A3A had no antiviral
activity (Fig. 1B, compare lanes 1 & 2). Accordingly, the
presence of Vif did not affect the infectivity of the viruses
(Fig. 1B, lanes 3-4).

Construction of APOBEC3G-3A chimera

It is well documented that APOBEC3G (A3G) has antivi-
ral activity and is sensitive to inhibition by HIV-1 Vif [3-
13]. Moreover, on comparing the amino acid sequences of
A3G and A3A we found that A3A is highly homologous to
the C-terminus of A3G (Fig. 2A). We therefore wanted to
investigate whether the lack of A3A antiviral activity and
the insensitivity of A3A to degradation by HIV-1 Vif were
attributable to the lack of an N-terminal domain. We con-
structed an A3G-3A chimera by fusing the N-terminal
domain of A3G to the N-terminus of A3A using a BamHI
restriction site present in both A3G and A3A genes (Fig.
2A, BamHI). The resulting construct is schematically
delineated in Fig. 2B. Expression of the A3G-3A chimera
was analyzed by immunoblotting (Fig. 2C). For that pur-
pose, Hela cells were transfected with pcDNA-A3A (Fig.
2C, lane 1), pcDNA-A3G-3A (lane 2), or pcDNA-Apo3G
(lane 3) and whole cells lysates were subjected to immu-
noblotting using an A3G-specific peptide antibody.
Because of the high amino acid homology of A3A and
A3G at their C-termini (Fig. 2A), the A3G antibody cross-
reacted well with the A3A and A3G-3A proteins. A3A runs
as a doublet on our gels. The reason for this is unclear but
could be due to covalent post-translational modification
of the protein or to initiation at an internal AUG codon.

The APOBEC3G-3A chimera has antiviral activity

First, we wanted to test whether the A3G-3A chimera dis-
played antiviral activity against HIV-1. We transfected
Hela cells with wvif-defective HIV-1 DNA along with
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A3A is resistant to Vif induced degradation. (A) Hela
cells were transfected with vectors expressing vif-deficient
pNL4-3 (3 ug each) along with pcDNA-A3A (1.5 pg each)
and 1.5 ug of either pNL-Alvif(-) (lane I), pNL-Al (lane 2),
or pcDNA-hVif (lane 3). Cells were harvested 24 h after
transfection and whole-cell lysates were analyzed by immu-
noblotting using an A3G-specific rabbit polyclonal antibody
(ApoCl17) followed by incubation with an HRP-conjugated
anti-rabbit antibody (A3A). The same blot was subsequently
re-blotted with a Vif-specific monoclonal antibody (Vif) fol-
lowed by probing with an HIV-positive patient serum to iden-
tify capsid protein (CA). Proteins are identified on the right.
(B) Virus-containing supernatants from panel A were nor-
malized for equivalent amounts of reverse transcriptase
activity and used to infect LuSIV indicator cells [51] for
determination of viral infectivity as described in Materials and
Methods. Luciferase activity induced by virus produced in the
absence of Vif and A3G was defined as 100% (lane I). The
infectivity of the remaining viruses was calculated relative to
the control virus. Error bars reflect standard deviations from
triplicate independent infections.
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increasing amounts of pcDNA-A3G-3A (Fig. 3, lanes 1-3)
or pcDNA-Apo3G DNA (Fig. 3, lanes 4-6). Cell lysates
(Fig. 3A, cell) and concentrated cell-free virus prepara-
tions (Fig. 3A, virus) were prepared 24 h after transfection
and analyzed by immunoblotting using an A3G-specific
antibody (Fig. 3A, APO). The same blot was then re-
probed with an HIV-positive human patient serum (Fig.
3A, CA). As can be seen, A3G-3A and A3G exhibited sim-
ilar mobilities in the gel, were expressed at similar levels,
and were packaged into virus particles with similar effi-
ciency and in a dose-dependent manner.

The infectivity of the viruses produced in figure 3A was
analyzed in a single-cycle infectivity assay as described in
Materials and Methods. Virus produced in the absence of
A3G was included as a control and its infectivity was
defined as 100% (Fig. 3B, lane 7). The infectivity of the
other viruses was normalized for equal input virus and
was expressed as percentage of the A3G-negative virus
(Fig. 3B, lanes 1-6). As expected, packaging of A3G
resulted in the dose-dependent inhibition of viral infectiv-
ity (Fig. 3B, lanes 4-6). Interestingly, the infectivity of
viruses containing increasing amounts of the A3G-3A chi-
mera was also reduced in a dose-dependent manner (Fig.
3B, lanes 1-3). These results demonstrate that, unlike
A3A, the A3G-3A chimera has antiviral activity.

HIV-1 Vif can reduce cellular expression and packaging of
A3G-3A chimera

HIV-1 Vif reduces cellular expression of A3G and inhibits
packaging of A3G into virus particles. On the other hand,
Vif neither affects the stability of A3A nor does it inhibit
its encapsidation into HIV-1 virions (see Fig. 1A). We next
investigated the sensitivity of A3G-3A to Vif-induced deg-
radation and inhibition of virus-encapsidation. HeLa cells
were transfected with vif-defective pNL4-3 DNA, along
with pcDNA-A3G-3A (Fig. 4A, lanes 1-2 & 5-6) or
pcDNA-Apo3G DNA (Fig. 4A, lanes 3-4 & 7-8) in the
presence (odd lane numbers) or absence (even lane num-
bers) of pcDNA-hVif. Cell lysates and concentrated cell-
free virus preparations were prepared 24 h after transfec-
tion and analyzed by immunoblotting using an A3G-spe-
cific antibody (Fig. 4A, APO). The same blot was then re-
probed first with a monoclonal antibody to Vif (Fig. 4A,
Vif) followed by an HIV-positive human serum (Fig. 4A,
CA). We found that the A3G-3A chimera - like wt A3G -
was sensitive to Vif-induced degradation (Fig. 4A, com-
pare lanes 1-2 & 3-4). In addition, hVif inhibited the
encapsidation of both wt A3G and the A3G-3A chimera
(Fig. 4A, compare lanes 5-6 and 7-8). These results dem-
onstrate that sensitivity to Vif is conferred to A3A by addi-
tion of the A3G N-terminal domain.

The infectivity of the viruses produced in figure 4A was

analyzed in a single-cycle infectivity assay as described in
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Construction and expression of A3G-3A chimera. (A) Sequence alignment of A3G and A3A. Highlighted areas indicate
regions of amino acid identity. Arrows mark the location of unique BamHI and Hindlll restriction sites in the expression vec-
tors used for construction of the A3G-3A chimera. The chimera was constructed by replacing the BamHI and HindlIl fragment
in A3G by that of A3A. (B) Schematic illustration of the APOBEC expression vectors used in this study. (C) Expression of
APOBEC proteins. Hela cells were transfected with 5 ng each of pcDNA-A3A (lane 1), pcDNA-A3G-3A (lane 2), and
pcDNA-A3G (lane 3). Total cell lysates were prepared 24 h after transfection and analyzed by immunoblotting for the expres-
sion of A3A, A3G-3A, and A3G, respectively using an A3G-specific polyclonal peptide antibody (ApoCl17). Proteins are identi-

fied on the right.

Materials and Methods. The infectivity of virus produced
in the absence of A3G and Vif (Fig. 4B, lane 1) was defined
as 100% and used to calculate the relative infectivity of the
remaining virus samples. Consistent with its effect on
A3G and A3G-3A packaging, Vif efficiently inhibited the
antiviral activities of A3G and A3G-3A (Fig. 4B compare
lanes 1 to lanes 2 & 4). In contrast, the infectivity of
viruses produced in the presence of A3G or A3G-3A but in
the absence of Vif was significantly impaired (Fig. 4B,
lanes 3 & 5). The less efficient inhibition of HIV-1 infec-
tivity by A3G-3A when compared to A3G (Fig. 4B, lanes 3
versus 5) could be explained in part by the lower expres-
sion and encapsidation of A3G-3A relative to A3G in this
experiment.

The A3G N-terminal domain dffects the subcellular
distribution of A3A

A3G is largely localized to the cytoplasm where it can be
found diffusely distributed or enriched in P bodies or
stress granules [9,22,38-42] A3A, on the other hand, has
been identified in both the nucleus and cytoplasm of tran-

siently transfected cells [21-23]. To determine the effects
of the A3G N-terminal domain on the cellular distribu-
tion of A3A, a side-by-side comparison of the intracellular
localization of A3G, A3A, and A3G-3A was performed.
Hela cells were transfected with vectors encoding
untagged A3G, A3A, and A3G-3A proteins. Immediately
after transfection, cells were detached from the monolayer
and re-seeded into 12 well plates containing microscope
cover slips. Cell were grown on the cover slips for 24 h;
then, cells were fixed with ice-cold methanol (-20°C, 10
min) and stained with A3G-specific peptide antiserum
(Fig. 5). Consistent with previous studies, A3G exhibited
predominantly cytoplasmic fluorescence (Fig. 5A). As pre-
dicted, A3A revealed nuclear and cytoplasmic staining
(Fig. 5B). Interestingly, the subcellular distribution of the
A3G-3A chimera largely reflected that of A3G (Fig. 5C).
Thus, addition of the N-terminal domain of A3G to A3A
induced a redistribution of the protein to a largely cyto-
plasmic localization. Punctate structures were observed in
all samples and presumably represent P bodies or stress
granules.
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The A3G-3A chimera has antiviral activity. (A) Hela
cells were transfected with vectors expressing vif-deficient
pNL4-3 (3 pg each) along with increasing amounts of
pcDNA-A3G-3A DNA (lane I, | pg; lane 2, 2 pg; lane 3, 3
ng) or pcDNA-A3G DNA (lane 4, 0.2 ug; lane 5, 0.5 pg, lane
6, | pg). Higher amounts of A3G-3A DNA relative to A3G
DNA were chosen because A3G-3A was generally expressed
at lower levels than A3G. The total amount of transfected
DNA in each sample was adjusted to 6 g using empty
pcDNA3.| vector DNA. Cells and virus-containing superna-
tants were collected 24 h post-transfection. Total cell lysate
and concentrated virus preparations were analyzed by immu-
noblotting using an A3G-specific rabbit polyclonal antibody
(ApoC17) followed by incubation with an HRP-conjugated
anti-rabbit antibody (APO). The same blot was subsequently
re-blotted with an HIV-positive patient serum (CA). (B)
Virus-containing supernatants from panel A were normalized
for equal reverse transcriptase activity and used to infect
LuSIV indicator cells [51] for determination of viral infectivity
as described in Materials and Methods. Luciferase activity
induced by virus produced in Hela cells in the absence of Vif
and A3G was defined as 100% infectivity (lane 7). The infec-
tivity of the remaining viruses was calculated relative to the
control virus. Error bars reflect standard deviations from
triplicate independent infections.
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A3G-3A is sensitive to HIV-1 Vif. (A) Hela cells were
transfected with vectors expressing vif-deficient pNL4-3 (3
pg each) along with 1.5 pg each of pcDNA-A3G-3A (lanes |-
2, 5-6) or pcDNA-Apo3G (lanes 3—4. 7-8) as well as 1.5 g
pcDNA-hVif (+) or 1.5 pg empty pcDNAS3. | vector DNA (-).
Cells and virus-containing supernatants were collected 24 h
post-transfection. Total cell lysates and concentrated virus
preparations were analyzed by immunoblotting using an
A3G-specific rabbit polyclonal antibody (ApoC17) followed
by incubation with an HRP-conjugated anti-rabbit antibody
(APO). The same blot was subsequently re-probed with a
Vif-specific monoclonal antibody (Vif) followed by an HIV-
positive patient serum (CA). Proteins are identified on the
right. (B) Virus-containing supernatants from panel A were
normalized for equal reverse transcriptase activity and used
to infect LuSIV indicator cells to [51] determine viral infectiv-
ity as described in Materials and Methods. Luciferase activity
induced by virus produced in Hela cells in the absence of Vif
and A3G was defined as 100% infectivity (lane 1). The infec-
tivity of the remaining viruses was calculated relative to the
control virus. Error bars reflect standard deviations from
triplicate independent infections.

The A3G-3A chimera associates with viral nucleoprotein
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A3G

Figure 5

A3A

A3G-3A

Subcellular localization of APOBEC proteins. Hela cells were transfected with 5 nig each of pcDNA-Apo3G (panel A),
pcDNA-A3A (panel B), or pcDNA-A3G-3A (panel C). Immediately following transfection, cells were detached from the flasks
by trypsinization and re-seeded into 12 well plates containing microscope cover slips. Transfected cells were grown on the
cover slips over night and then fixed with ice cold methanol for 10 minutes (-20°C). Cells were then stained with an A3G-spe-
cific rabbit polyclonal antibody (ApoC|17) and analyzed by confocal microscopy as detailed in Materials and Methods.

complexes

We have previously established that A3G is packaged into
virus particles as a stable complex with viral NPCs [35].
We next wanted to test whether A3A and A3G-3A similarly
assembled into viral NPCs. HeLa cells were transfected
with DNA encoding vif-defective HIV-1 along with
pcDNA-A3A (Fig. 6A), pcDNA-A3G (Fig. 6B), or pcDNA-
A3G-3A DNA (Fig. 6C). Virus-containing supernatants
were collected 48 h post transfection and concentrated by
pelleting through 20% sucrose. Concentrated viruses were
resuspended in 1 ml of DMEM and 50% each were loaded
onto a 20-60% sucrose step gradient in the absence (Fig.
6, lanes 1-3) or presence of 0.1% Triton X-100 (Fig. 6,
lanes 4-6). We have previously reported that components
of the viral core, including nucleocapsid protein (NC), are
resistant to 0.1% Triton X-100, whereas other viral com-
ponents, such as matrix (MA) or envelope protein, are
detergent sensitive and can be separated from core-associ-
ated proteins by sucrose step gradient centrifugation [43].
In this assay, intact viruses accumulate at the 20%/60%
interphase of the step gradient column as evidenced by
the enrichment of NC and CA protein in the S3 fraction
(Fig. 6, lane 3). As expected, A3A, A3G, and A3G-3A par-
titioned with the viral fractions in fraction S3. No viral
proteins were identified in fractions S1 and S2 attesting to
the absence of soluble secreted proteins in our virus prep-
arations. Detergent treatment resulted in the partitioning
of CA and NC between the soluble S1 fraction and the
detergent resistant viral core fraction S3 (Fig. 6, lanes 4 &
6). Interestingly, detergent treatment resulted in the quan-
titative sequestration of A3A to the soluble S1 fraction

(Fig. 6A, lane 4) suggesting that A3A was not associated
with viral NCPs. In contrast, >70% of the virus-associated
A3G copurified with viral NPCs in fraction S3 (Fig. 6B,
lane 6). Interestingly, A3G-3A behaved very similar to
A3G and exhibited significant resistance to detergent
extraction (Fig. 6C, lane 6). Thus, the A3G N-terminal
domain imposed A3G-like properties onto A3A not only
with respect to intracellular localization but also as far as
packaging into viral NPC and antiviral properties were
concerned.

Discussion

It is well documented that human A3G has potent antivi-
ral activity and effectively inhibits the replication of vif-
deficient HIV-1. It is also accepted that the antiviral activ-
ity of A3G requires packaging of the protein into viral par-
ticles. Accordingly, wt HIV-1 is generally not susceptible
to the antiviral properties of A3G since its Vif protein pre-
vents A3G encapsidation. Recent reports demonstrated
that A3A was able to inhibit LTR-retrotransposons and
adeno-associated virus, a single-stranded DNA virus, but
had no effect on vif-defective HIV-1 [20-23]. This was sur-
prising since A3A, like A3G, was found to be packaged
into HIV-1 particles and had deaminase activity [22].
Structurally, A3G and A3A differ by the presence of a sec-
ond deaminase domain in A3G located in the N-terminal
portion of the protein. Mutagenesis studies demonstrated
a role of this N-terminal deaminase domain in A3G
dimerization, Vif-sensitivity, and packaging into HIV-1
virions [44-48]. On the other hand, our data confirm that
despite the lack of an N-terminal deaminase domain, A3A
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Figure 6

A3G-3A co-purifies with viral nucleoprotein complexes. Virus stocks were made in Hela cells by cotransfection of
pNL4-3 Vif (-) plasmid DNA (3 pug each) with 2 pg each of pcDNA-A3A (panel A), pcDNA-A3G (panel B), or pcDNA-A3G-3A
DNA (panel C). Virus containing supernatants were collected 24 h post-transfection, filtered to remove cellular debris, and
concentrated by pelleting through 20% sucrose. Viral pellets were suspended in | ml of DMEM and 500 il each of the virus
preparation was loaded onto a 20%/60% sucrose step gradient previously overlaid with 100 pl of PBS (lanes 1-3) or Triton X-
100 (lanes 4 to 6) as described in Materials and Methods. Three fractions of .| ml each were collected from the top of the
gradient as shown in the cartoon on the right. Fraction S| (lanes | & 4) contains soluble proteins; fraction S2 (lanes 2 & 5) is a
buffer fraction of 20% sucrose that separates soluble proteins from virus particles or viral cores; fraction S3 (lanes 3 & 6)
includes the interphase of 20%:60% sucrose where viral particles and viral cores accumulate. Gradient fractions were subjected
to immunoblot analysis using an A3G-specific antibody (A3A, A3G, or A3G-3A) followed by probing with an HIV-positive
patient serum (CA). Nucleocapsid protein (NC) was identified by a goat anti-NC antibody and matrix protein (MA) was identi-

fied by a mouse monoclonal antibody to MA(P17).

is efficiently packaged into HIV-1 virions (Figs. 1 &6).
However, our data also show that encapsidation of A3A is
qualitatively distinct from that of A3G: A3G is packaged
into viral NPC and is resistant to detergent treatment
while virus-associated A3A is detergent sensitive and does
not co-purify with the NPC. This qualitative difference in
packaging of A3G and A3A may well explain their differ-
ent antiviral properties.

The reason for the lack of association of A3A with viral
NPCs is unclear; however, we have previously shown that
viral genomic RNA was required for the association of
A3G with the viral NPC [35]. Importantly, A3G was still
packaged into virus-like particles in the absence of
genomic RNA; however, such A3G remained detergent
sensitive [35]. Thus, we propose that functional packaging
of APOBEC proteins into viral NPCs requires interaction
with viral genomic RNA. Consistent with this model, A3A
was packaged into virus particles irrespective of the pres-
ence or absence of viral genomic RNA (data not shown)
suggesting that A3A lacks a domain required for the bind-
ing to viral genomic RNA. Thus, while A3A is packaged

either non-specifically or via a specific interaction with
viral component(s), it appears to lack a domain required
for the specific assembly into viral NPCs. Interestingly,
addition of the A3G N-terminal domain resulted in the
targeting of the chimeric protein to viral NPCs. At the
same time, the A3G-3A chimera acquired antiviral activ-
ity. These results suggest a correlation between the associ-
ation of APOBEC proteins with the viral NPC and their
ability to inhibit virus replication.

Consistent with the previously described importance of
the A3G N-terminal domain for Vif-sensitivity, the A3G-
3A chimera acquired sensitivity to degradation by Vif.
Future experiments will investigate whether the regions in
A3G determining Vif-sensitivity overlap with those
required for NPC association. Also, A3A clearly differed
from A3G and A3G-3A in its intracellular distribution
(Fig. 5). The more prominent nuclear accumulation of
A3A may explain its reported effects on retrotransposi-
tion. It will be interesting to define in more detail the
regions in the A3G N-terminus affecting subcellular distri-
bution of the A3A chimera. It is possible that the A3G N-
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terminus masks a nuclear import signal on A3A. Alterna-
tively, the A3G N-terminus may contain a nuclear export
signal preventing nuclear accumulation of the cytidine
deaminase.

Methods

Plasmids

The vif-defective molecular clone pNL4-3Vif(-) [49] was
used for the production of virus stocks. The construction
of pcDNA-hVif for the expression of NL4-3 Vif from a
codon-optimized gene under the transcriptional control
of a CMV promoter has been described elsewhere [37].
Construction of pcDNA-Apo3Gmyc for the expression of
C-terminally epitope-tagged wild type (wt) human A3G
was reported elsewhere [4]. A variant, pcDNA-Apo3G,
expressing untagged A3G was used for all of the experi-
ments described in this study and was constructed by
insertion of a stop codon at the end of the A3G gene in
pcDNA-Apo3Gmyc [44]. pBluescript-APO3A was gener-
ously provided by Peder Madsen [50] and was used as
template for PCR amplification of A3A using the 5' primer
ATCAAGAATTCGGGACAAGCACATGGAAG and the 3'
primer TTGTATAAGCTTCAGITTCCCTGATTCTGGAG.
The resulting PCR product was cloned between the EcoRI
and Hind III sites of pcDNA3.1(-). pcDNA-A3G-3A was
constructed by cloning a BamHI and HindIIl fragment
from pcDNA-A3A into BamHI and HindIll digested
pcDNA-Apo3G. This strategy resulted in the in-frame
fusion of A3G residues 1-197 to residues 14 to 199 of A3A
(see Fig. 2A).

Cell culture and transfections

HelLa cells were propagated in Dulbecco's modified Eagles
medium (DMEM) containing 10% fetal bovine serum.
LuSIV cells are derived from CEMx174 cells and contain a
luciferase indicator gene under the control of the
SIVmac239 LTR. These cells were obtained from Janice
Clements through the NIH AIDS Research and Reference
Reagent Program (Cat. no. 5460) and were maintained in
complete RPMI 1640 medium supplemented with 10%
FBS and hygromycin B (300 pg/ml). For transfection of
Hela cells, cells were grown in 25 cm? flasks to about 80%
confluency. Cells were transfected using LipofectAMINE
PLUS™ (Invitrogen Corp, Carlsbad CA) following the
manufacturer's recommendations. A total of 5-6 ng of
plasmid DNA per 25 cm? flask was generally used. Where
appropriate, empty vector DNA (pcDNA3.1(-)MycHis
(Invitrogen)) or vif-defective vector DNA (pNL-A1vif(-))
was used to adjust total DNA amounts. Cells were har-
vested 24 h post-transfection.

Antibodies

A peptide antibody to human A3G was prepared by
immunizing rabbits with KLH-coupled peptides corre-
sponding to residues 367 to 384 of human A3G. A goat
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anti-NC(p7) polyclonal antibody was a gift of Robert
Gorelick. Viral matrix (MA) protein was identified by a
mouse monoclonal anti-MA(p17) antibody (Cellular
Products Inc. Buffalo NY). A monoclonal antibody to Vif
(MADb #319) was used for all immunoblot analyses and
was obtained from Michael Malim through the NIH AIDS
Research and Reference Reagent Program. An HIV-posi-
tive patient serum was used for the identification of HIV-
1 capsid (CA) protein.

Immunoblotting

For immunoblot analysis of intracellular proteins, whole
cell lysates were prepared as follows: Cells were washed
once with PBS, suspended in PBS and mixed with an
equal volume of sample buffer (4% sodium dodecyl sul-
fate, 125 mM Tris-HCI, pH 6.8, 10% 2-mercaptoethanol,
10% glycerol, and 0.002% bromphenol blue). To analyze
virus-associated proteins, cell-free filtered supernatants
from transfected HeLa cells (5-6 ml) were pelleted (75
min, 35,000 rpm) through a 20% sucrose cushion (4 ml)
in an SW41 rotor. The concentrated virus pellet was sus-
pended in PBS and mixed with an equal volume of sample
buffer. Proteins were solubilized by heating 10 to 15 min
at 95°C. Cell and virus lysates were subjected to
SDSPAGE; proteins were transferred to PVDF membranes
and reacted with appropriate antibodies as described in
the text. Membranes were then incubated with horserad-
ish peroxidase-conjugated secondary antibodies (Amer-
sham Biosciences, Piscataway NJ) and proteins were
visualized by enhanced chemiluminescence (ECL, Amer-
sham Biosciences).

Virus preparation

Virus stocks were prepared by transfection of HelLa cells
with appropriate plasmid DNAs. Virus-containing super-
natants were harvested 24 h after transfection. Cellular
debris was removed by centrifugation (3 min, 1500 rpm)
and clarified supernatants were filtered (0.45 puM) to
remove residual cellular contaminations. Filtered virus
stocks were further purified and concentrated by pelleting
through 20% sucrose (75 min, 4°C at 35,000 rpm in an
SW41 rotor).

Viral infectivity assay

To determine viral infectivity, virus stocks were normal-
ized for equal reverse transcriptase activity and used to
infect 5 x 105 LuSIV cells [51] in a 24-well plate in a total
volume of 1.2 to 1.4 ml. Infection was allowed for 24 h at
37°C. Cells were then harvested and lysed in 150 pl of
Promega 1x reporter lysis buffer (Promega Corp., Madi-
son WI). To determine the luciferase activity in the lysates,
50 ul of each lysate were combined with luciferase sub-
strate (Promega Corp., Madison WI) by automatic injec-
tion and light emission was measured for 10 seconds at
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room temperature in a luminometer (Optocomp II, MGM
Instruments, Hamden CT).

Immunofluorescence and confocal microscopy

HelLa cells were transfected as indicated in the text. Trans-
fected cells were trypsinized and single-cell suspensions
were distributed into 12 well plates containing 0.13 mm
cover slips. Cells were grown for 15 h at 37°C in DMEM
containing 10% FBS. Cells were fixed at -20°C in pre-
cooled methanol (-20°C) for 10 minutes followed by two
washes in PBS. For antibody staining, coverslips were
incubated in a humid chamber at 37°C for 1 hr with pri-
mary antibodies at appropriate dilutions in 1% BSA in
PBS. Coverslips were washed once in PBS (5 min, room
temp) and incubated with Cy2-conjugated secondary
antibodies (diluted in 1% BSA in PBS) for 30 min at 37°C
in a humid chamber. Coverslips were then washed twice
with PBS and mounted onto microscope slides with glyc-
erol gelatin (Sigma-Aldrich Inc., St. Louis MO) containing
0.1 M N-propyl gallate (Sigma) to prevent photo bleach-
ing. For confocal microscopy, a Zeiss LSM410 inverted
laser scanning microscope equipped with a krypton/argon
mixed-gas laser was employed. Images were acquired with
a Plan-Apochromat 63x/1.4 oil immersion objective
(Zeiss). Image quality was enhanced during data acquisi-
tion using the LSM line average feature (8x). Post-acquisi-
tion digital image enhancement was performed using the
LSM software.

Sucrose step gradient analysis

Sucrose step gradients were prepared as follows: 2.0 ml of
a 60% sucrose solution (in PBS) was placed into the bot-
tom of SW55 centrifuge tubes and overlaid with 2.1 ml of
a 20% sucrose solution. Immediately prior to addition of
concentrated virus stocks (500 ul), the step gradients were
overlaid with 100 ul of either PBS or 1% Triton X-100.
This procedure minimized the time of detergent exposure
of the virus. Samples were then centrifuged in a SW55Ti
rotor (Beckman) for 60 min at 35,000 rpm and 4°C.
Three fractions (S1, S2, S3) of 1.1 ml each were collected
from the top. Aliquots of each fraction of step gradients
were subsequently processed for immunoblotting.
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