Poster presentation

Open Access

Novel Second Generation Anti-HIV shRNA Expressing vif and Decoy TAR Arrest the Virus-breakthrough Phenomenon Associated With siRNA-escape Variants

J Barnor^{1,4}, N Miyano-Kurosaki^{1,2}, Y Abumi¹, K Yamaguchi¹, K Ishikawa³, N Yamamoto³ and H Takaku^{*‡1,2}

Address: ¹Dept. Life Environ. Sci, Center, Chiba Inst. Tech., Narashino, Chiba, Japan, ²High Tech. Res. Center, Chiba Inst. Tech., Narashino, Chiba, Japan, ³NIHDiseases, AIDS Res. Center, Shinjuku-ku, Tokyo, Japan and ⁴Dept. Virol, Noguchi Memo. Inst. Univ. Ghana, Accra-Ghana

Email: H Takaku* - hiroshi.takaku@it-chiba.ac.jp

* Corresponding author #Presenting author

from 2005 International Meeting of The Institute of Human Virology Baltimore, USA, 29 August – 2 September 2005

Published: 8 December 2005 Retrovirology 2005, **2**(Suppl 1):P36 doi:10.1186/1742-4690-2-S1-P36

We describe a novel chimera RNA expressing vif shorthairpin RNA (shRNA) and decov trans-activation response region (TAR) RNA from a human U6 Pol II promoter, which enhanced the inhibition of human immunodeficiency virus (HIV) vif small-interfering RNA (siRNA) and arrested virus breakthrough by siRNA-generated escape variants in long-term culture assays. Our strategy was based on a second-generation anti-HIV-1 shRNA vector system, in which HIV-1 vif shRNA was fused to a decoy TAR RNA by a linker UU cleavage site to generate vif shRNA-decoy TAR RNA. Upon expression, the RNA molecule was cleaved and separated into vif siRNA and decoy TAR RNA. The synergistic effect of these molecules enhanced the inhibition of HIV-1 replication in a longterm culture assay and prevented virus breakthrough associated with siRNA-mediated escape variants. Combining shRNA with decoy TAR RNA as second-generation anti-HIV shRNA may provide practical basis for applying siRNA-based gene therapy to the treatment of HIV/AIDS.