

ORAL PRESENTATION

Open Access

Alternative splicing signatures discriminate ATL cells from untransformed CD4+ counterparts deriving from HTLV-1 infected individuals

Morgan Thenoz^{1*}, Céline Vernin¹, Christiane Pinatel², Nicolas Nazaret³, Joel Lachuer³, Antoine Gessain⁴, Didier Auboeuf⁵, Eric Wattel¹, Franck Mortreux¹

From 16th International Conference on Human Retroviruses: HTLV and Related Viruses Montreal, Canada. 26-30 June 2013

The clonal expansion and malignant transformation of HTLV-1 infected CD4+ T-cells have been linked to the reprogramming effects of HTLV-1 on host transcriptional profile. Coupled to transcription, alternative splicing (AS) is a post-transcriptional process that plays critical role in the complexity of transcriptome and splicing abnormalities frequently occur in cancer. To examine whether AS modifications associate with HTLV-1-associated leukemogenesis, we compared the exon expression profiles of ATL cells with that of CD4+ T-cell clones obtained by limited-dilution cloning of PBMC deriving from HTLV-1 carriers. 3 ATL cells and 12 untransformed infected clones clustering in infected, uninfected, PHA-stimulated or unstimulated CD4+ T cells were compared for exon RNA content using Exon Chip Human microarray. Hierarchical clustering analysis identified 12516 alternative spliced events (3642 genes) that clearly separated ATL samples from the 4 untransformed phenotypes mentioned above. In contrast, the exon content of 1539 genes differed between untransformed infected and uninfected T-CD4+ cells. Overall, less than 5% alternatively spliced genes were found differentially expressed at the transcriptional level. Microarray data were confirmed for 18 AS events using exon specific RT-PCR analysis. Pathway analysis of alternatively spliced genes (3642) in ATL cells revealed new AS-based pathways for p53 signaling, cell cycle and DNA replication while those of untransformed infected CD4+ T-cells were enriched in pathways for cellular movement and DNA repair. These findings unveil a new layer of complexity in the interplay between HTLV-1 and host cell gene expression

machinery in which AS might play a central role in tumor initiation and promotion.

Authors' details

¹Oncovirologie et Biotherapies, UMR5239 CNRS/ENS Lyon/UCBL/HCL, Hopital Pierre Benite, Lyon, France. ²Oncovirologie et Biothérapies, Centre Léon Bérard, Lyon, France. ³ProfileXpert, Neurobiotec Service, Bron, France. ⁴Unit of Epidemiology and Physiopathology of Oncogenic Viruses, Department of Virology, Institut Pasteur, Paris, France. ⁵Institut National de Santé et de Recherche Médicale U590, Centre Léon Bérard, Lyon, France.

Published: 7 January 2014

doi:10.1186/1742-4690-11-S1-O66

Cite this article as: Thenoz *et al.*: Alternative splicing signatures discriminate ATL cells from untransformed CD4+ counterparts deriving from HTLV-1 infected individuals. *Retrovirology* 2014 11(Suppl 1):O66.


Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

Submit your manuscript at www.biomedcentral.com/submit

¹Oncovirologie et Biotherapies, UMR5239 CNRS/ENS Lyon/UCBL/HCL, Hopital Pierre Benite, Lyon, France

