
Gupta et al. Retrovirology 2013, 10:82
http://www.retrovirology.com/content/10/1/82
REVIEW Open Access
Evolving uses of oral reverse transcriptase
inhibitors in the HIV-1 epidemic: from treatment
to prevention
Ravindra K Gupta1*, David A M C Van de Vijver2, Sheetal Manicklal3 and Mark A Wainberg4
Abstract

The HIV epidemic continues unabated, with no highly effective vaccine and no cure. Each new infection has
significant economic, social and human costs and prevention efforts are now as great a priority as global
antiretroviral therapy (ART) scale up. Reverse transcriptase inhibitors, the first licensed class of ART, have been at the
forefront of treatment and prevention of mother to child transmission over the past two decades. Now, their use in
adult prevention is being extensively investigated. We describe two approaches: treatment as prevention (TasP) -
the use of combination ART (2NRTI and 1NNRTI) following HIV diagnosis to limit transmission and pre-exposure
prophylaxis (PrEP) –the use of single or dual oral agents prior to sexual exposure. Prevention of mother-to-child
transmission using NRTI has been highly successful, though does not involve sustained use of NRTI to limit
transmission. Despite theoretical and preliminary support for TasP and PrEP, data thus far indicate that adherence,
retention in care and late diagnosis are the major barriers to their successful, sustained implementation. Future
advances in drug technologies will be needed to overcome the issue of drug adherence, through development of
drugs that involve both less frequent dosing as well as reduced toxicity, possibly through specific targeting of
infected cells.
Review
Introduction
The HIV epidemic has been devastating in its magnitude
and devastation [1], despite the availability of effective
antiretroviral therapy (ART). There are a number of rea-
sons for this, including lack of access to ART for the ma-
jority of infected individuals until relatively recently [2]
and low rates of uptake of HIV testing [3]. The global
scale up of ART has gathered considerable momentum
with an estimated 8 million individuals currently treated,
and corresponding reductions in morbidity and mortal-
ity have been documented [4,5].
By contrast, in the absence of an effective vaccine and/

or cure, transmission has continued largely unabated over
the last two decades, particularly in sub Saharan Africa,
where 67% [6] of all HIV infections are to be found. Male
circumcision has demonstrated around 50% protection in
limiting transmission [7], although logistical and ethical
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barriers may limit its public health impact. Topical
microbicides have shown some promise, with vaginal mi-
crobicide gel containing tenofovir (TFV) conferring 39%
protection in one study [8]. CAPRISA used tenofovir only
(as TFV and not as TDF).
Clearly, more effective prevention tools are needed.

Prevention of mother to child transmission has proved
highly effective when implemented efficiently, and serves
as a model for prevention using antiretroviral drugs.
Antiretrovirals, the cornerstone of HIV treatment, are
now being assessed as tools for limiting transmission in
two ways: treatment as prevention (TasP) and pre-
exposure prophylaxis (PrEP). The potential for TasP to
curb the epidemic is being explored following a report
showing that transmission amongst discordant couples
was reduced by 96% when the HIV infected partner ini-
tiated immediate antiretroviral therapy as compared to
delaying treatment until a CD4 <250 cells/mm3 [9]. A
recent study from South Africa has shown a reduction
in new HIV infections in a high incidence area following
ART scale up with two nucleoside reverse transcriptase
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inhibitors (NRTI) and one non-nucleoside reverse tran-
scriptase inhibitor (NNRTI) [10]. Modeling studies sug-
gest that universal testing followed by immediate
treatment in those who test positive for HIV would lead
to a diminution in numbers of new cases and that trans-
mission could eventually be interrupted [11].
In this review, we highlight the achievements of ART

in reducing morbidity and mortality, with particular em-
phasis on reverse transcriptase inhibitors (RTI). We re-
view RTI use in prevention strategies and its anticipated
impact on the HIV epidemic. We highlight the potential
for drug resistance and the challenge that this presents
to implementation of such prevention strategies.

NRTI and drug resistance
NRTI was the first class of antiretrovirals, with the thymi-
dine analogue zidovudine (ZDV) introduced in 1987 [12].
Subsequent NRTI licensed were the cytosine analogue di-
danosine (ddI) in 1991, which showed clinical benefit after
ZDV exposure [13], as did the thymidine analogue stavu-
dine (d4T) [14]. The cytidine analogue lamivudine (3TC)
[15] was licensed in 1995 and was able to restore sensitivity
of ZDV resistant virus [16]. Later the guansoine analogue
abacavir (ABC) and the nucleotide analogue tenofovir
(TFV) were licensed and showed superior outcomes when
compared to thymidine analogues [17-19]. Towards the
mid 1990s, protease inhibitors (PI) and NNRTI were also
introduced, with the combination of 3 or more drugs in-
cluding a PI or NNRTI along with 2NRTI leading to sus-
tainable suppression in patients with prior AZT exposure
[20]. Longer-term benefits from triple drug combination
therapy have been observed in different settings [21,22].
The twenty first century has seen introduction of a number
of new classes of ART, including integrase strand transfer
inhibitors (INSTIs) such as raltegravir and elvitegravir, the
CCR5 antagonist maraviroc, and the fusion inhibitor
enfurvitide.
Thymidine analogue resistance usually develops in a

stepwise fashion, involving mutations (M41L, D67N,
K70R, L210W, T215Y or F, K219Q), which increase the
drug excision activity of RT [23,24]. These mutations are
found at peripheries of the active site and were first de-
scribed shortly after the era of ZDV monotherapy. Thy-
midine analogue mutations (TAMs) increase nucleotide
and therefore drug excision rates and can compromise
activity of newer NRTI. In the case of tenofovir, three
TAMs including both M41L and L210W have been as-
sociated with virologic failure [25].
Important mutations in the RT active site include

L74V, K65R and M184V/I. The latter is selected by and
confers resistance to 3TC [26] but increases susceptibil-
ity to ZDV, d4T and TFV when K65R is present [27,28].
ABC and ddI select L74V and susceptibility is further re-
duced by M184V/I [29,30] and TAM [30]. K65R can be
selected by d4T, ABC, and ddIsubstantially reducing effi-
cacy of TFV, ddI and ABC [29-33]. Rarer active site muta-
tions such as Q151M can emerge with use of thymidine
analogues and confer high-level resistance to all NRTI
[31,32].
Connection domain resistance mutations such as

G335C/D, N348I, A360I/V, V365I, and A376S have been
identified and N348I, in particular, emerges following
nevirapine (NVP) exposure [34]. These mutations reduce
and/or delay RNAseH activity thereby allowing more
time for primer unblocking [35]. The effect is to reduce
susceptibility to NRTI, in particular to ZDV [36]. As this
region of the HIV-1 genome is not routinely sequenced
in drug resistance surveys, there are few data on whether
these mutations are transmitted, and thus whether they
may compromise treatment as prevention strategies.
Second-generation drugs in various classes with activ-

ity in the face of mutations associated with drug resist-
ance to first generation drugs have been developed (for
example the NNRTI etravirine, the PIs darunavir and
tipranavir, and the INSTI dolutegravir). As ABC and
TFV are compromised by mutations selected by older
NRTI, these drugs are potentially vulnerable in regard to
future use in prevention in areas in which ART scale up
has occurred.

NNRTI and resistance
Two currently licensed NNRTI are efavirenz (EFV) and
NVP, and both are highly effective when combined with
2NRTI [37]. Both bind in a hydrophobic pocket and ar-
rest DNA synthesis through allosteric effects. High-
level resistance is conferred by various single mutations,
includingK103N, Y181C, Y188C/L/H, V106A/M, G180A/
S and A98G (reviewed in [38]). HIV-2 and HIV-1 group O
are not sensitive to this class of agents due to RT polymor-
phisms [39,40].
The long plasma half-life of NNRTI predisposes them

to development of resistance, particularly when a fixed
dose tablet is stopped [41]. This may occur due to sub
optimal adherence or drug stock-outs, recently reported
to be common across Africa [42]. PI and NNRTI based
regimens appear to be largely equivalent in terms of viral
suppression rates [43]. However, when virologic failure
occurs, NNRTI are associated with higher rates of drug
resistance to both the NRTI and NNRTI components of
regimens as compared to failure occurring following PI
treatment [44]. If transmitted, NNRTI resistance is of
particular concern as the odds of viral failure when a
major NNRTI mutation pre-exists is approximately two
in the first year of therapy, based on data from both Eur-
ope [45] and sub-Saharan Africa [46]. There is evidence
that drug resistance to NRTI and in particular NNRTI
has been rising since ART scale up, with the greatest in-
creases being seen in East African countries [47].
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RTI-based treatment outcomes in the era of HAART
Wide scale availability of ART outside industrialized
countries has been largely possible through generic pro-
duction of fixed dose combinations (FDC) and accredit-
ation/quality control by the World Health Organization.
Thymidine analogues have featured in the most widely
used regimens along with 3TC/NVP with good out-
comes [48,49].
However, NVP interacts with rifampicin-containing tu-

berculosis therapies and is also associated with poten-
tially serious skin reactions and liver toxicity [50]. Data
suggest that EFV may have equivalent or superior effi-
cacy as NVP, and this agent has gradually replaced NVP.
EFV itself had been avoided due to concerns regarding
congenital birth defects, although it appears from retro-
spective data that risk is not increased [51].
Rates of viral suppression vary widely across sub Sa-

haran Africa [52], but also among industrialised nations
and risk groups [53,54]. Programmatic efficacy, drug sup-
ply and adherence have been identified as key indicators
of successful viral suppression [42]. Lack of virological
monitoring has also been associated with increased preva-
lence of drug resistance at viral failure, most likely due to
later detection of viral rebound [55,56]. Although the rela-
tive advantage of viral versus CD4 count monitoring can
be debated, there is growing consensus that viral load
monitoring is essential [57,58]. With appropriate adher-
ence counseling, viral suppression can be achieved with-
out the need for switch to PI based second line agents,
and re-suppression after viral rebound in the absence of
treatment switch has been observed [56]. Preservation of
second line therapy is highly desirable, as most settings
have access to only one or two lines of treatment.

Treatment as prevention (TasP)
The HPTN052 study showed that immediate treatment
of HIV-infected individuals results in a 96% reduction of
transmission to an uninfected sexual partner in the con-
text of a discordant couple analysis [9]. A study by
Granich et al even predicted that universal HIV testing,
followed by immediate treatment in those testing posi-
tive could eliminate the epidemic within a decade [11].
It is not likely that Treatment as Prevention (TasP) can
prevent all infections as this technique has practical con-
straints [59].
The first practical constraint of TasP is that adherence

to ART initiated at high CD4 counts in the absence of
any clinical illness may not reflect that achieved in
HPTN052. A number of studies are underway to address
this issue.
The second constraint is that immediate treatment is

frequently not possible as a substantial proportion of pa-
tients are diagnosed relatively late during their infection.
For instance, epidemiological studies in resource-rich
settings reported that 50% of patients are diagnosed with a
CD4 < 350 cells/mm3 [60-62]. As a consequence, patients
with early infections are not identified in a timely manner,
whereas these patients acccount for a disproportionally
high number of onward transmissions [63,64].
Third, in sub-Saharan Africa there is a problem with

retention of patients in clinical care [65-68]. In one set-
ting, only 74% of patients were still in clinical care
12 months after start of antiretroviral treatment [68].
Loss-to-follow-up of patients after start of antiretroviral
treatment can have a very detrimental impact. One mod-
elling study even predicted that increasing linkage to
care and preventing loss to follow-up provides nearly
twice the benefits of universal testing and treatment
alone [65]. A final constraint is economic: implementa-
tion of TasP requires extensive funding for prolonged
periods of time.
Although TasP may not completely eliminate the epi-

demic, modeling studies suggest that ART could be effect-
ive in reducing transmission on a population level
[11,69-71]. One modeling study that should be highlighted
was done by Eaton et al. who systematically compared
twelve independent mathematical models using a set of
standardized ART intervention scenarios in South-Africa.
One scenario that was standardized was an analysis in
which treatment is started in 80% of individuals with a
CD4 < 350 cells/μl and in which 85% were still on treat-
ment 3 years later. In this scenario the HIV incidence
would be reduced by 35% to 54% 8 years after introduc-
tion of ART. Similarly, it was found that the actual scale-
up of ART in South-Africa reduced the current incidence
by 17% to 32% as compared to when ART would not have
been available. A recent South African community based
study supports the reduction in transmission that was pre-
dicted by mathematical modeling [10].
Future risk of drug resistance following TasP
There are legitimate concerns regarding these of agents
for co-temporaneous treatment for clinical indications and
public health guided prevention efforts. Both efforts would
potentially be compromised by rising drug resistance [47],
especially in resource-limited settings where viral load
monitoring, genotypic resistance tests and second line
therapy are not widely available. Previous studies showed
that availability of such monitoring techniques is associ-
ated with a reduction in the emergence of drug resistance
[55,59].
Use of boosted PI instead of NNRTI as first line could

potentially avoid this problem given that viral failure
after modern boosted PI is rarely accompanied by the
occurrence of resistance mutations [43,44]. However,
boosted PI cannot be given with rifampicin used in the
treatment of tuberculosis, posing an important logistical
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barrier. Cost is a further issue, though boosted PI are
now being produced generically and prices are set to fall.
Several modeling papers predicted the future prevalence

of transmission of drug resistant HIV-1 in sub-Saharan
Africa [57,72]. Phillips et al. predicted that in the absence
of viral load monitoring, the prevalence of transmitted
drug resistance could increase to 12.4%. Implementation
of viral load guided monitoring (based on viral load testing
every six months) will result in a prevalence of transmis-
sion of drug resistant HIV-1 of about 5-6% [57]. Abbas
et al. reported that use of ART initiated at a CD4 < 200
cell/μl in South-Africa (80% coverage) will prevent 20% of
HIV infections over ten years but increase drug resistance
prevalence to almost 7% [72].
In resource-rich settings, implementation of TasP is

not expected to result in a substantial increase of drug
resistance. In these settings it is standard practice to per-
form a genotypic resistance before start of treatment, to
estimate the plasma HIV-1 RNA load during treatment
[73], and a genotypic test can be performed to detect ac-
quired drug resistance [74], with subsequent selection of
a virologically active regimen from a wide selection of
available agents. Epidemiological studies have indeed
found that the burden of transmitted and acquired drug
resistance is declining over time in resource-rich settings
[60,75,76].
One mathematical model predicted that over a ten-

year time span, TasP can reduce the number of new in-
fections by 34% in Los Angeles County and that at the
same time multi-drug resistance can almost double from
4.8% to 9.1% [77]. It should be noted that the size of the
problem of transmission of drug resistant HIV is greater
in the United States than in other resource-rich settings
[75]. It is not known if a similar increase could occur in
other resource-rich settings where the prevalence of
drug resistance seems to have been reduced during the
past years despite of increasing numbers of individuals
receiving treatment [76,78].
We do not know how good adherence will be where

individuals are treated as part of a TasP strategy. Greater
risk taking behavior is possible, with individuals not
knowing whether their viral load is suppressed in the ab-
sence of point of care viral load testing. Under such a
scenario, transmission of drug resistant variants could
occur. Although further studies are underway to better
evaluate TasP, effects on transmitted drug resistance will
be difficult to measure given the long follow-up times
that will be required to obtain definitive results.
Due to favourable tolerability/toxicity and efficacy pro-

files, tenofovir will be the most widely used NRTI in
first-line therapy [79,80], and also is likely to be the
NRTI of choice in second-line therapy for those who
have failed a first line thymidine analogue-based regi-
men. Of particular concern are data suggesting that TDF
(as well as stavudine), when combined with NNRTI
where subtype C virus infections predominate, is associ-
ated with a high prevalence (around 50%) of the K65R
mutation in cases of virological failure [31,81-83]. Sub-
type C viruses seem more likely to develop K65R based
on sequence polymorphisms [38], leading to high- level
cross-resistance to all currently approved NRTIs except
ZDV [33]. At present, rates of transmitted K65R are low
worldwide, and, under trial conditions, cases of transmit-
ted drug resistance involving K65R have not been
reported. As TDF becomes more widely available, sur-
veillance for transmitted K65R is important.

Oral antiretrovirals for use as PrEP
Multiple clinical trials have been undertaken in resource
limited settings using TDF/FTC or TDF alone as PrEP
for predominantly heterosexual transmission. Clinical
trials reported that use of PrEP reduced the risk of infec-
tion by 44-75% [84-86]. Two studies, however, did not
find any efficacy of PrEP in reducing infections which is
most likely attributed to sub-optimal adherence [87,88].
In the PrEP trials, blood drug levels correlated with effi-
cacy, consistent with the notion that non-adherence is a
primary reason for failure [84-86].
There is a concern that use of PrEP could result in

emergence and transmission of HIV drug resistance [89].
Studies performed before highly active antiretroviral ther-
apy (HAART) became available showed that use of only
two NRTI’s could result in the emergence of drug resist-
ance. Therefore, drug resistance could rapidly emerge in
individuals that continue using PrEP after they became
infected. Because tenofovir and emtricitabine are also
recommended in first-line treatment [73,90], use of PrEP
could result in the loss of future treatment options [89,91].
Accordingly, the FDA registered the use of TDF/FTC as
PrEP under the condition that viral isolates of patients that
became infected despite the use of PrEP, are investigated
for resistance [92].
Resistance was not common in the trials and was

detected in only nine individuals, of who most had an
unrecognized acute infection [84-86]. Importantly, regular
testing for incident infection was undertaken and prophy-
laxis was stopped in cases of new infection in PrEP trials.
Such testing is unlikely to be achieved in most high preva-
lence settings and this raises the possibility of selection of
drug-resistant viruses following transmission.
Assessing the impact of PrEP on drug resistance will re-

quire large-scale epidemiological follow-up studies that
are expensive and time-consuming. Mathematical models
have therefore been developed which predict the impact
of PrEP on the future HIV epidemic and the impact of
PrEP on HIV drug resistance [93]. An interesting finding
that has been reported across models is that introduction
of PrEP in sub-Saharan Africa will result in a reduction of
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the prevalence of HIV as compared to a situation when
only ART is used [72,94-96]. Mathematical models also
predict that drug resistance will increase in the coming dec-
ade in sub-Saharan Africa as access to ART is expanding.
However, resistance due to combination ART, including
TDF and FTC, is predicted to far exceed resistance due to
PrEP [72,97,98]. One model set in South-Africa found that
drug resistance can be limited by using different antiretro-
viral drugs in treatment than the antiretrovirals that are
used for PrEP [72]. They reported that ART and PrEP with
overlapping antiretroviral prevents 35% of infections over
ten years but increases resistance prevalence to 8.2%. Con-
versely, using ART and PrEP with non-overlapping ani-
retrovirals prevents more infections (37%) and reduces
resistance prevalence to 7.2% [72]. Additional research on
non-overlapping antiretrovirals is therefore required. Clas-
ses of antiretrovirals that may be considered as PrEP are
CCR5-inhibitors– reported to prevent SIV infections in
macaques [99].
Behavioral issues regarding TasP would also apply to

wide scale PrEP, where, in the absence of early detection
of incident HIV infection, risk behavior combined with
intermittent PrEP could contribute to emergence and
transmission of drug resistant variants. Multiple studies
are underway to better understand risk behavior in the
context of PrEP, though there is likely to be considerable
heterogeneity of results, based on geographical location,
risk group and calendar time [100,101].

RT inhibitors in prevention of mother to child
transmission (PMTCT)
RT inhibitors have a long and distinguished history in
PMTCT. A few years after introduction of ZDV, the
landmark ACTG 076 study showed that a three compo-
nent ZDV regimen reduced MTCT from 25% to 8% in
the absence of breastfeeding [102]. Transmission risk
was associated with the duration of ZDV use, although
even shortened perinatal regimens conferred substantial
protection [103-105]. Subsequent evidence showed that
merely one dose of NVP each to the mother and the in-
fant conferred greater protection than peripartum ZDV
alone, and this permitted simplification of MTCT
prophylaxis and facilitated wide scale uptake of prophy-
laxis in resource poor settings [106]. Moreover, when
prenatal ZDV was boosted with intrapartum NVP, trans-
mission rates in formula-fed infants fell to as low as 2%
[107]. Although combination ART (together with elect-
ive Caesarian section and absence of breastfeeding)
proved to be highly efficacious in industrialised settings
[108,109], cost and feasibility concerns coupled with lack
of safety data from developing countries (risk of drug
toxicity in mother, adverse pregnancy outcomes, and
treatment interruption) limited the wider use of triple
ARV prophylaxis. Short course regimens, especially
single dose (sd) NVP, have therefore become entrenched
as the cornerstone of prophylaxis in poorer parts of the
world for women not yet requiring ARV therapy.
Unfortunately, important challenges have ensued.

Firstly, the inherently low genetic barrier to resistance of
NVP, in addition to its long half-life, increases the likeli-
hood for selection of drug resistant virus. ZDV/3TC for a
week following sd NVP has been shown to reduce the
emergence of NVP resistance [110]. A high prevalence of
NNRTI resistance has been widely documented following
exposure to NVP-based prophylaxis, in the case of sd
NVP as well as extended daily NVP (ED-NVP), in both
mother and infant with deleterious consequences for
NVP-based first line HAART [111-116]. Resistance, how-
ever, often fades rapidly and progressively in the first year
following exposure [112,113,117-119]. As a result, viro-
logic susceptibility may be restored in women initiating
NVP based HAART following a minimum of 6 months
after intrapartum NVP exposure [115,116,120]. In the case
of infants, delayed clearance of NVP resistance may also
occur following ED-NVP [121]. Although PI-based
HAART is recommended for infants exposed to antiretro-
viral prophylaxis, drawbacks associated with continuing
PIs have evoked strategies to recycle NVP following PI in-
duction [122,123]. However, whether these strategies will
be effective following use of ED-NVP remains unknown.
Secondly, in RLS the disastrous impact of unsafe re-

placement feeding on child survival on the one hand [124]
and breast milk transmission on the other have threatened
the global success of pre- and perinatal prophylaxis regi-
mens. Emerging data from these settings now provide
compelling evidence that covering a recommended six
month exclusive breastfeeding period either with maternal
combination antiretroviral therapy or, where access to
HAART is limited, extended daily infant nevirapine for
14 weeks or 6 months comparably suppresses HIV trans-
mission rates to 1-5% at 6-12 months [130]. Of concern
are emerging data that maternal combination therapy dur-
ing breastfeeding can induce not only NNRTI but con-
comitant RT resistance in infants who become infected
despite prophylaxis - K65R, TAMS and M184V have been
reported in breastfed infants [131-133]. The appearance of
drug resistant virus in the infant is thought to result from
direct breast milk transmission of resistant virus or, more
likely, the selection of resistance in the infant as a result of
breast milk ARV exposure [134,135]. It is therefore critical
that programmes implementing maternal ART have sys-
tems in place to optimize adherence and retention in care.
There has been a move from sdNVP to HAART in

pregnant and breastfeeding women to limit vertical
transmission, with prolonged ART following weaning.
However, in a South African study, pregnant women
were substantially more likely to be lost to follow-up
than non-pregnant women for both pre-ART care and
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while on ART [136,137], and adherence is a concern
with the potential development of drug resistance for
both mother and infant [131,132].
Conclusions
Data suggest that treatment as prevention and PrEP may
be used to prevent transmission of HIV, and these could
be powerful tools in curbing and reversing the global epi-
demic. The experience of PMTCT provides evidence for
the ability of governments and health systems to target
and treat a risk group with single dose ART with the aim
of preventing new HIV infections. WHO option B + (life-
long ART for pregnant HIV infected women as opposed
to limited duration therapy) is now recommended, and fu-
ture studies will address its success. These data will inform
the feasibility of TasP. Adherence has been identified as a
key barrier to successful implementation of both strat-
egies, and sustained public health messaging will likely be
crucial for success. This is a major research priority.
It should be borne in mind that there are long-term

toxicities associated with current and probably future
ART [138]. EFV is associated with changes in blood lipid
profiles and long-term use would be expected to lead to
increased cardiovascular complications [139]. TFV use
can lead to reductions in renal function over time, as
well as decrease in bone mineral density [140]. Newer
RTI are in development and may have improved safety
profiles. For example, a prodrug related to TFV termed
TAF (tenofovir alafenamide) shows promise as a NRTI,
achieving high intracellular but low plasma concentra-
tions and hence reduced renal and bone toxicity with
oral doses of less than 10 mg per day, in contrast to the
oral TFV dose of 245 mg daily [141].
The field is also in need of new classes for treatment

that do not overlap with prevention strategies. Basic sci-
ence can help identify new targets, for example capsid de-
stabilisation/stabilisation agents, maturation inhibitors and
antagonists of viral accessory genes. As new agents would
need to be cheap in order to be widely available, dose
optimization should be a priority for future clinical trials
of new antiretrovirals. Critically, basic science can also as-
sist in the development of long acting agents to address
the adherence issues that pervade both therapeutic and
preventive HIV strategies. One promising approach is
nanoparticle technology that might incorporate RTI as
well as other agents [142,143].
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