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Abstract

Lentiviruses have unusually long envelope (Env) cytoplasmic tails, longer than those of other retroviruses. Whereas
the Env ectodomain has received much attention, the gp41 cytoplasmic tail (gp41-CT) is one of the least studied
parts of the virus. It displays relatively high conservation compared to the rest of Env. It has been long established
that the gp41-CT interacts with the Gag precursor protein to ensure Env incorporation into the virion. The gp41-CT
contains distinct motifs and domains that mediate both intensive Env intracellular trafficking and interactions with
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intracellular interacting factors

numerous cellular and viral proteins, optimizing viral infectivity. Although they are not fully understood, a
multiplicity of interactions between the gp41-CT and cellular factors have been described over the last decade;
these interactions illustrate how Env expression and incorporation into virions is a finely tuned process that has
evolved to best exploit the host system with minimized genetic information. This review addresses the structure
and topology of the gp41-CT of lentiviruses (mainly HIV and SIV), their domains and believed functions. It also
considers the cellular and viral proteins that have been described to interact with the gp41-CT, with a particular
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Review

Background: Env and the entry process

The main target cells for the Human Immunodeficiency
Virus type 1 (HIV) and Simian Immunodeficiency Virus
(SIV) are CD4-expressing cells, namely CD4+ T lympho-
cytes, dendritic cells (DCs) and macrophages. The first step
of the viral cycle, involving anchoring to the target cell
membrane and entry, is mediated by the envelope glyco-
protein (Env). Env is composed of two non-covalently
linked subunits, SU (surface glycoprotein or gp120) and
TM (transmembrane glycoprotein or gp41), displayed as
heterotrimeric spikes on the surface of virions and infected
cells [1-6]. The two Env subunits are the products of the
proteolytic cleavage of a highly glycosylated gp160 precur-
sor protein by the cellular protease Furin in the Golgi ap-
paratus. gpl20 is responsible for binding to the CD4
receptor and the coreceptor expressed at the cell surface of
target cells. gp120 is composed of several variable and con-
stant regions; it comprises a heavily glycosylated outer
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domain and an inner domain, which are linked by a struc-
ture called the bridging sheet. Mature Env thus forms a
cage-like structure with an interior void; this cage-like
structure is believed to restrict antibody access [7]. gp41 is
non-covalently linked to gpl20 and the N-terminal
ectodomain of gp41l contains a hydrophobic, glycine-rich
fusion peptide that mediates fusion of the viral and target
cell membranes. Binding of gp120 to the CD4 receptor in-
duces conformational changes that expose the third hyper-
variable region (V3 loop) of gp120, which in turn binds
one of the co-receptors, CCR5 or CXCR4 [8-12]. Binding
to the co-receptor triggers further conformational changes
within gp41, which adopts the so-called “fusion-active”
state required for bringing the viral and cellular mem-
branes into close contact and allowing fusion. These con-
formational changes involve two leucine zipper-like motifs,
the heptad repeat 1 (HR1) and heptad repeat 2 (HR2): HR2
folds in an anti-parallel fashion onto the pre-formed trimer
of HR1 helices, allowing HR1 and HR2 to assemble into a
highly stable antiparallel six-helix bundle structure, which
juxtaposes the viral and cellular membranes, and allows fu-
sion of the viral and cellular membranes [2,3,5,6,13].

© 2013 Santos da Silva et al,; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the
Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.


mailto:danielle.perezbercoff@crp-sante.lu
http://creativecommons.org/licenses/by/2.0

Santos da Silva et al. Retrovirology 2013, 10:54
http://www.retrovirology.com/content/10/1/54

Most of the Env precursor is retained in the endoplas-
mic reticulum (ER) or the cis-Golgi compartments and
only a small proportion progresses through the trans-
Golgi network (TGN) and reaches the cell membrane
[14-17]. As it is synthesized and oligomerizes in the rough
ER (RER), Env is extensively N-and O-glycosylated, sul-
fated and plamitoylated concomitantly with its translation
and transit through the TGN [1,18-24] reviewed in [25].
Glycosylation of gpl20 accounts for nearly half of its
molecular mass. This substantial glycosylation is believed
to ensure correct protein folding and to favor immune
escape by providing a glycan shield against neutralizing
antibodies. As the disease progresses, viral strains lose po-
tential N-glycosylation sites (PNGs) and display notably
reduced glycosylation; these strains are consequently less
well shielded from neutralizing antibodies [26,27]. None-
theless, such viral strains appear late during infection, con-
comitantly with the decline in CD4+ T cell counts, such
that the immune system is unable to trigger an efficient B-
cell response; consequently, evading the immune system is
no longer necessary [28].

Env is the most variable region of the HIV genome, and
inter-subtype diversity is typically up to 25-35%. This vari-
ability is not evenly distributed throughout the env gene:
the gpl20 ectodomain is the most variable, the gp4l
ectodomain is the least variable, and the gp41 cytoplasmic
tail (gp41-CT) lies somewhere in between, with an inter-
mediate level of sequence diversity and phylogenetic evolu-
tion [29]. Experimental data obtained from peptides and by
sequence analysis and modeling indicate that the structural
and physicochemical properties of the gp41-CT are sur-
prisingly highly conserved despite the sequence variations.
Presumably, this reflects constraints on its evolution im-
posed by crucial functional roles. However, these roles have
mostly been explored using the NL4-3 reference strain or
synthetic peptides.

Aims of the review

The ectodomain of Env has been the subject of much
interest and substantial investigations. The structural
and functional characterization of the HIV and SIV
gp41-CTs has received far less attention, and indeed,
there are numerous contradictory results. Early studies
of the gp41-CT mainly addressed the immunogenic
properties of the Kennedy epitope, or the viroporin
properties of the a-helical lentiviral lytic peptides LLP-
1, LLP-2 and LLP-3 and their role in viral incorporation
and infectivity. The discovery that the gp41-CT inter-
acts with the p559° precursor during viral assembly
and ensures Env incorporation into virions has led to a
reconsideration of the functional importance of this do-
main. It was, nevertheless, only very recently that its role
in modulating Env expression and viral infectivity through
a plethora of interactions with cellular partners started to
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be appreciated. Three recent reviews are relevant: they ad-
dress the role of the HIV-1 gp41-CT in Env trafficking, in-
corporation and viral assembly [25], the biophysical
properties and topology of the gp41-CT [30] and the inter-
actions of the gp41-CT with cellular factors [31]. Parallel
spectacular advances in cell and virion imagery, and very
recent studies on the biophysical characteristics of mature
and immature virions based on Atomic Force Microscopy
(AFM) [32] and STED microscopy [33] provide new in-
sights into the contribution of the gp41-CT to viral fusion
efficiency. Here, we review current knowledge on the gp41-
CT and its believed structure and function as a regulator of
viral infectivity. In particular, we focus on variability and
subtype-related specificities, as most studies on the gp41-
CT are based on the NL4-3 reference and mutants thereof,
in sharp contrast to studies on the Env ectodomain.

Structural determinants and topology of the gp41-CT
Structure of the gp41-CT

The gp41-CT of lentiviruses is unusually long (~150 amino
acids) and substantially longer than the tails of other retro-
viruses (< 50 AA) [34] (Figure 1A). Although amino acid
(AA) sequence identity is not conserved, both secondary
structures and various endocytic and trafficking motifs are
highly conserved across HIV-1 clades and even among len-
tiviruses in general [29,30] (Figure 1B). Immediately down-
stream from the membrane-spanning domain, gp41-CT
has a loop containing the highly immunogenic Kennedy
epitope (KE) which is not believed to adopt any particular
conformation. The KE in fact harbors three consecutive
epitopes (P7osDRPEG735, I733EEE;36 and E;39RDRD743)
[35]. Antibodies against the KE (SR1) display neutralizing
activity against the infectivity of free virus and impair cell-
to-cell spread by inhibiting Env-mediated fusion [36-38].
ERDRD is a conformational epitope and elicits production
of neutralizing antibodies; the linear IEEE epitope seems to
deflect the humoral response to favor viral immune escape
from a neutralizing response against ERDRD [35].

The KE is followed by three o-helical motifs named
lentiviral lytic peptides (LLP)-2 (AA 768 to 793 of NL4-3),
LLP-3 (AA 785 to 807) and LLP-1 (AA 828 to 856) [39-41]
(Figure 1B). LLP-3 partly overlaps LLP-2, and has been less
studied than the other two LLP domains. Biochemical ana-
lyses with LLP peptides indicate that although primary
amino acid identity is not conserved across clades (with
the exception of the more conserved LLP-1), these do-
mains adopt an a-helical structure in a membrane-mimetic
environments and random coil conformations in an aque-
ous environment [29,30]. Early studies focused on deter-
mining the role and biochemical properties of these
domains; they were based on synthetic peptides and three-
dimensional computer modeling [39,40,42] or point muta-
tions and truncation mutants of the gp41-CT, analyzing
Env incorporation into virions [43-46] (detailed below),
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Figure 1 Lengths of the cytoplasmic tails of various retroviruses and sequence alignment of different HIV-1 subtypes, clades and
types. (A) Comparison of the lengths of the gp41-CT of Human Immunodeficiency Virus type 1 (HIV-1), HIV type 2 (HIV-2), Simian
Immunodeficiency Virus (SIV), Feline Immunodeficiency Virus (FIV), Equine Infectious Anemia Virus (EIAV), Maedi-Visna Virus (MVW), Caprine Arthritis
Encephalitis Virus (CAEV), Human T-lymphotropic Virus type | (HTLV-1), Human T-lymphotropic Vtype 2 (HTLV-2), Mouse Mammary Tumor Virus
(MMTV), Murine Leukemia Virus (MLV) and Gibbon Ape Leukemia Virus (GaLV); conserved Yxx® motifs (where ® represents a hydrophobic
residue) are highlighted. (B) Sequence alignment of the gp41-CT from various lenviviral (HIV and SIV) types and subtypes: HIV-1 subtypes A
(92UG037), B (HXB2), C (ETH2220), D (SE365), F1 (93BR020), G (175), H (90CF056), CRFO2_AG (93TH065), clade O (ANT70) and clade N (YBF106),
HIV-2 (UC2), SIVcpz (Ptt_04CAM155) and SIVsmm (H635). AA positions are aligned against the NL-3 reference used in most studies of the gp41-CT.
Lentiviral lytic peptide (LLP) domains, Kennedy epitopes and antibodies directed against them are shown. Conserved Yxx® motifs are highlighted
in orange; conserved dileucine motifs, and motifs involved in cell trafficking are highlighted in green.




Santos da Silva et al. Retrovirology 2013, 10:54
http://www.retrovirology.com/content/10/1/54

viral infectivity [47] and syncytia formation [46]. In the pep-
tide form, the LLP domains interact with the plasma mem-
brane [41,48,49] and thereby decrease bilayer stability
[41,50] or alter the ionic permeability of membranes
[48,50,51]. Intracellular localization studies suggested that
the LLP helices may lie adjacent to and line the plasma
membrane [49] (Figure 2A). These observations have led to
the idea that the LLP domains are involved in fusogenicity,
immunogenicity, and in conformational regulation of Env
accompanying viral maturation and infectivity (see below,
section ‘Viral stiffness, viral maturation and infectivity’).

Functional domains of the gp41-CT

Mutational analyses and work with truncation mutants of
specific LLP-1 or LLP2 domains indicate varying Env ex-
pression and processing phenotypes, depending on the ex-
tent of the truncation and on the cell type. Despite subtle
differences in the extent of the truncations studied, it ap-
pears that deleting the C-terminal domain of LLP-1 dimin-
ishes virion infectivity and cell-to-cell spread, due to
decreased Env incorporation into virions [43-46,52] and to
diminished Env expression and stability of the gp41/gp120
heterodimeric complex both at the cell membrane and in
virions [44,53]. Env protein synthesis and processing in
transfected HeLa or HEK293 cells is however unaffected by
truncations of the C-terminal domain of LLP-1 [43,46,53].
Larger truncations, i.e. truncation of the full gp41-CT, or
the region downstream from LLP-3 (i.e. deleting upstream
from LLP-1), or even LLP-1 deletions or point mutations in
this region dictate Env fusion capacity of mature [46] and
immature virions [47,54]. Some authors attributed this
phenotype to failed Env multimerization, a prerequisite for
viral infectivity [55,56]; others proposed that truncation of
LLP-1 induces modifications of the helical structure of
LLP-2 and/or alterations in the structure of the Env
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ectodomain, suggesting an inside-out regulation of viral in-
fectivity and fusion capacity [46,47,54,57,58]. Biochemical
studies involving the use of synthetic peptides found that
viral infectivity is dependent on interactions of LLP-1 and
LLP-2 with the cell membrane [49,56,58] and/or with re-
gions of the gp41l ectodomain, and particularly the HR1-
HR2 6-helix bundle [29,59,60]. For SIVmac239, truncations
of the gp41-CT affected the fusion capacity of Env in HeLa-
CD4 cells by changing the conformation of the Env gp41
ectodomain [61] or the amount of gp120 on the surface of
the virion due to an unstable gp120-gp41 association [62].
Indirect support for gp41-CT affecting the conformation of
the gp41 ectodomain has been provided by studies showing
that truncations of the gp41-CT affect the conformation of
gp120 [57] and of the gp41 ectodomain [63]; also, such
truncations interfere with the accessibility of these domains
to antibodies targeting various epitopes including the CD4
or co-receptor binding sites [57] or the Membrane Prox-
imal External Region (MPER) (neutralizing antibodies such
as 2F5 and 4E10) [63]. In addition, a L49D mutation in the
matrix protein (MA) of the p55° precursor, which inter-
acts with the gp41-CT (see below, section ‘Viral assembly,
Env incorporation into virions and viral infectivity’), is asso-
ciated with decreased amounts of gp120 at the surface of
the virion without affecting gp41 incorporation [64]. This
suggests that modifications to the MA/gp41-CT interaction
may affect the level of gp120 incorporation [64]. This defect
could be reversed by truncating the gp41-CT or disrupting
the Y71,SPL endocytic motif (i.e. impairing Env down-
regulation, see section ‘Env trafficking and sorting through
the TGN’). This implies that altering the interaction be-
tween p55%°€ and the gp41-CT affects the conformation of
gp41l and thereby the incorporation of gp120 into virions
[64]. Although these reports are descriptive and the pro-
posed mechanisms are divergent, these studies agree that

Kennedy

membrane. Adapted from Lu et al. J Biol Chem 2008 [60].

Figure 2 Schematic representation of the topology of the gp41-CT. A. Conventional model, in which gp41 spans the membrane once and the
membrane-spanning domain (MSD) is an a-helix (boxed). B. Alternative model in which the gp41-CT crosses the membrane three times via antiparallel
B-sheets (arrows) and the KE is exposed extracellularly. Adapted from Steckbeck et al. PlosOne 2010 [71]. C. LLP-2 is a membrane-traversing peptide or a
“carrier” peptide and may interact with the HR1-HR2 6-helix bundle at the moment of fusion. In this conformation, the KE would also traverse the plasma
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the gp41-CT may modulate the conformation of the Env
ectodomain [46,47,54,57,58] and the stability of the 6-helix
bundle [29,59,60] thereby affecting fusion capacity and sen-
sitivity to neutralization [57,63].

The dileucine motifs that span the gp41-CT LLP
helices play a role in viral replication, as has been
demonstrated through a cumulative mutagenesis ap-
proach [65]. Bhakta et al. reported a cumulative effect
on the infectivity of free virions and on viral propaga-
tion that did not correlate with modifications in viral
incorporation or expression at the cell membrane [65].
Importantly, disruption of individual dileucine motifs
had only a moderate impact, whereas the cumulative
effect was substantial, suggesting a degree of flexibility,
and tolerance of mutations of single dileucine motifs
[65]. This study reconciles early and more recent
reports on the role of the gp41-CT, as it suggests that
impaired replicative capacity and viral spread may re-
sult from disrupting the hydrophobic properties of the
LLP-2 a-helix: this disruption may impair interactions
with the cell membrane and/or membrane transloca-
tion and interaction with the HR1-HR2 6-helix bundle
[65]. Another possible explanation is that altering the
biochemical amphipathic properties of the gp41-CT,
or simply disrupting the LL dileucine domains, inter-
feres with Env/Env interactions and coalescence
[33,55], thereby affecting infectivity. This issue re-
quires further investigation. Intriguingly, a highly con-
served seven AA insertion (NSLKGLR) between Ryg,
and R;gg (LLP-2 domain) is found in many subtype C
strains where the dileucine motifs spanning the gp41-
CT are disrupted (ESS, MM and DPB, unpublished ob-
servation). The two supplementary a-helical turns re-
sult in three arginine residues being aligned side-by-side
on the hydrophilic face of the a-helix. Whether adding
these two a-helical turns to LLP-2 modifies its biophysical
properties remains to be established.

The gp41-CT also harbors many functional determinants,
including internalization motifs, for example: two Yxx®
motifs (D representing a hydrophobic AA, generally L in
HIV and V in SIV), one immediately downstream from the
transmembrane domain (membrane-proximal Yxx®) and
one within LLP-2; a Yg0, W3 diaromatic motif within LLP-
3; two inhibitory sequences named IS1 (AA 750 to 763 of
HXB2) and 1S2 (AA 764 to 785); and the various dileucine
(LL) motifs spanning the gp41-CT (Figure 1B). The role of
these motifs in Env trafficking and protein-protein interac-
tions is considered in more detail below (section ‘Interac-
tions of the gp41-CT with cellular factors and intracellular
regulators’).

Topology of the gp41-CT
gp4l is generally thought to be a type I membrane-
spanning protein, with one a-helical membrane spanning
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domain (MSD) (AA 671-705) [66]. However, alternative
models have been proposed, in which the gp41-CT lies
partly outside the virus or the infected cell, crossing the
membrane three times [38,60,67-71] (Figure 2B and C).

The Kennedy Epitope

Serum from HIV-infected individuals contains anti-
bodies against epitopes within the KE. This has led to
the hypothesis that this region is exposed extravirally
and extracellularly, consistent with gp41 spanning the
membrane three times rather than once [38,67-70]. In
this model, the membrane-spanning domains form
three antiparallel B-sheets [30,71] (Figure 2B). In sup-
port of this model, IgG against the gp41-CT-encoded
epitopes P;53DRPEGy3,, 1733EEE 36 and E;39RDRD7y43
bound and neutralized free virions, and protease diges-
tion inhibited antibody binding [69]. Other studies
showed that neutralization by these antibodies extended
to cell-to-cell fusion [38]. However, this model places the
Y,1,SPL internalization motif outside the cell such that it
would not allow and ensure an interaction of Env with cel-
lular partners (see section ‘Env trafficking and sorting
through the TGN’). Moreover, experiments per-
formed with amphotericin B methyl ester (AME), a
cholesterol-binding compound that interferes with
virion-cell membrane fusion, showed that AME-
resistant HIV variants contained mutations within the
gp41-CT that create a cleavage site for the viral
protease within the Y,1,SPL motif [72]. By cleaving
the gp41-CT, HIV mimics the shorter gp41-CT of
other retroviruses to restore Env fusogenicity [72,73].
(In the case of SIV, AME-resistant SIV gp41-CT
displayed a premature STOP codon [72], and the topology
of the gp41-CT does not affect its capacity to arise). Cleav-
age of the gp41-CT by the viral protease is not compatible
with this epitope lying outside the virion. A more dynamic
view of gp41-CT topology has recently been proposed to
reconcile these observations [71] (reviewed in [30]). This
model posits that the KE can adopt various distinct top-
ologies: inside the virion, the KE would lie intravirally
(Figure 2A), whereas in transfected/infected cells, the KE
would lie outside the cell (Figure 2B) [71]. In support of
this model, the authors present evidence that the gp41-CT
of all HIV clades and of SIV share a highly conserved
enrichment in arginine over lysine [29,40]. Arginine-rich
peptides may be located within lipid environments and
may readily cross biological membranes due to their
guanidium group; they can also carry soluble proteins
across membranes [74-77]. This dynamic model is com-
patible with the viral protease cleaving the gp41-CT in the
virion under AME selective pressure. Note, however, that
the authors compared the location of the KE in virions
(ie. in entities containing MA) with that in cells
transfected with a construct encoding Env only rather



Santos da Silva et al. Retrovirology 2013, 10:54
http://www.retrovirology.com/content/10/1/54

than in cells transfected with a full HIV coding sequence.
The interaction between the gp41-CT and p55%° (see sec-
tion ‘Interaction of the gp41-CT with Gag’) is not taken
into account in this model and it may not be excluded that
the absence of Gag in the experimental setup may bias the
topology of the gp41-CT, including that of the KE.

The dynamic topology model still predicts that the
Y71,SPL internalization motif is outside the cell: this is
not consistent with the regulation of Env expression at
the plasma membrane of infected cells through adaptor
protein (AP)-mediated internalization (see section ‘Env
trafficking and sorting through the TGN’). The authors
[71] do not address this point. This dynamic model has
been opposed on the grounds that the model for a
dynamic intra/extra viral localization of the KE is based
solely on indirect observations, and in particular labeling
with antibodies raised against this epitope [78]. In a very
recent study based on the SIV gp41, it was convincingly
shown that the reported surface labeling was due to the
release of Env from expressing cells into the supernatant;
shed Env subsequently attaches to the surface of cells in
the culture [78]. The authors report that transferring
supernatant from Env-transfected cells to mock-transfected
cells was sufficient for labeling of the mock-transfected cells.
Furthermore, the PNG in the KE was never glycosylated,
and both serum and monoclonal antibodies against the KE
failed to neutralize even highly neutralization-sensitive
strains [78].

LLP-2

Biochemical studies led to the suggestion that LLP-2
may also be a traversing peptide, and that it interacts
with the extracellular 6-helix bundle at the moment of
fusion [60] (Figure 2C). LLP-2 exposure may be induced
by CD4 and CCR5 binding, and be highly transient, as
implied by the observations that antibody binding is ob-
served at 31.5°C but not at 37°C and that LLP-2 peptides
bind peptides mimicking the 6-helix bundle in biochem-
ical experiments [60]. The mechanisms underlying this
crossing of the membrane are unclear; the exact extent of
membrane crossing by LLP-2 has not been investigated,
so this remains speculative. As this study was based on a
biochemical approach using peptides and antibody bind-
ing, the possibility of a biased interpretation due to label-
ing of shed Env subsequently bound to the cell surface, as
described by Postler et al. for KE epitopes [79], cannot be
excluded. Furthermore, the absence of other viral proteins
from the Env-transfected cell system pleads for caution in
interpreting the results, as indicated by the authors them-
selves [60]. Furthermore, Steckbeck et al. described the
introduction of known epitopes into LLP-2, and failed to
detect any extracellular or extraviral labeling, whereas
similar epitopes inserted within KE epitopes were success-
fully detected [71].
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These diverse results are such that caution is still
required for any conclusions concerning a cell-versus-virion
conformation of Env. It remains unclear whether there are
such transient rearrangements and biochemical adjust-
ments of Env in response to modifications in the mem-
brane lipid or protein environment during viral assembly or
at the moment of fusion; the corresponding observations
may be experimental artifacts that do not reflect to
biological realities. No images are available of the conform-
ation and distribution of Env gp41-CT in the immature
forming virion or in the mature virion. If the gp41-CT does
adopt different topologies and if both the KE and LLP-2 are
indeed membrane-traversing peptides, it would be interest-
ing to investigate whether both can be found extracellularly
at the same time, or whether such a conformation would
be too highly unfavorable.

Open questions

A series of questions remain unanswered. For example,
why is there such strong constraint on the structure of the
LLP peptides but not on their sequences? How does this
structure favor infectivity, motility or clustering of the Env
in the virion? Does the conformation of the gp41-CT
change upon virion maturation p55°°¢ cleavage by the viral
protease? Does the gp41-CT really adopt different topolo-
gies? If so, what triggers the switch from an intraviral/intra-
cellular to extraviral/extracellular localization of KE or of
LLP-2, and how are the KE and LLP-2 retained intravirally
or “freed”? And what would the function of transiently ex-
posing the highly immunogenic KE be? Alternatively, if the
immune response elicited by the KE is due to Env shedding
rather than to extracellular exposure, could this be a viral
strategy to evade the immune system, by providing
immunodominant domains that are subsequently not
accessible to antibodies as they are located inside the virion
and infected cells?

Viral assembly, Env incorporation into virions and viral
infectivity

Env is produced in the RER and the Golgi network, whereas
the p559% and p1609*¢*°" protein precursors and the
accessory proteins are synthesized by cytosolic ribosomes.
Viral assembly thus requires viral components synthesized
in distinct cellular compartments and the genomic RNA to
come together and to interact at the budding interface. Viral
assembly is a highly regulated phenomenon, dictated by
intracellular trafficking.

HIV assembly and budding occurs at the plasma mem-
brane (PM) [80-84] in detergent-resistant-membrane lipid
raft-enriched domains [73,85-87] (Figure 3). The p55Ga‘g
precursor is a polyprotein, including the structural pro-
teins of HIV, namely the matrix protein (MA) lining the
cell-derived viral envelope, the capsid protein (CA), con-
stituting the viral cone-shaped capsid containing the viral
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RNA genome, the nucleocapsid (NC, p7), associated with
the viral RNA genome, and p6, regulating the viral prote-
ase, as well as two spacer peptides, SP1 and SP2. MA
drives and regulates p559% targeting to the PM by
preferentially interacting with phosphatidylinositol 4,5
bisphosphate [PI(4,5)P2] [88-90]. Once it has reached the
PM, the p55%° precursor is anchored by its N-terminal
myristoylated moiety [91,92] and stabilized by basic resi-
dues 84-88 [89,90,92]. The myristoylated moiety is co-
translationally coupled to the p55* MA domain, and its
exposure is regulated by binding to calmodulin: binding to
calmodulin induces conformational changes within MA
[93,94] which lead to p55°°¢ binding to lipid rafts [95-97],
where it oligomerises [73,86,87,98], through the C-ter-
minal domain of CA and the a-helical spacer peptide SP1,
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leading to the formation of the immature lattice [99,100].
In solution, MA within the p55%% precursor assembles in
trimers [101]. In cholesterol-rich membranes composed
of phosphatidylcholine, cholesterol and [PI(4,5)P2],
myristoylated MA assembles in hexamers of trimers
interconnecting the radially oriented immature p55%°€
lattice [99,102,103].

Four models of viral assembly and budding have been de-
scribed exhaustively in three recent reviews [25,104,105]
and will therefore not be addressed in detail again here.
Briefly, the “Passive incorporation model” posits that HIV
assembly occurs by random co-localization of p55% and
Env at the cell membrane; it is supported by the observa-
tions that a number of cellular membrane proteins are
incorporated into virions without stringent restriction, that
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Figure 3 Schematic representation of the interacting partners of the gp41-CT in the cell. The Env precursor gp160 is synthesized in the
rough endothelial reticulum (RER), where it is glycosylated and oligomerizes into trimers. Furin cleavage in the Golgi apparatus enables the
formation of the gp120-gp41 structure. Once it reaches the plasma membrane (PM), Env is subject to endocytosis, via the Y71,SPL and LgssLgss
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HIV-1 can be pseudotyped by a variety of retroviral
and non-retroviral envelopes (e.g alphaviruses, ortho/
paramixoviruses, flaviviruses, etc.) [106-109], and by the
fact that gp41-CT truncations do not affect Env incorpor-
ation in some cell types (e.g. the HeLa cell line) (reviewed
in [25,104]). The three other models, in contrast, propose
that p555% and Env are co-targeted to assembly platforms
in a highly regulated fashion, either through direct p55%°%/
Env interaction, or through an indirect interaction medi-
ated by lipid rafts, or by other cellular factors (for details,
see [25]). Indeed, several lines of evidence suggest that
p55%%€ and the gp41-CT interact [52,110-118]. However,
whether the MA/gp41-CT interaction is direct or involves
other partners remains controversial and requires further
investigation: coimmunoprecipitation studies and cell-free
protein-protein interaction studies suggest a direct inter-
action between gp41-CT and p55° [112,113,116], but fur-
ther interactions involving cellular or other viral proteins,
such as adaptins AP-1 through AP-4 or TIP47, lipid rafts
themselves and other lipid raft components have also been
described. One possible explanation for this diversity of re-
ports is that the interacting partners may have stabilizing or
facilitating effects, that are not required at all moments, or
that are inessential in some cell types. The observation that
gp41-CT truncation alters the localization and affects
polarization of the viral capsid at the viral synapse (VS) in
some cell types (see section Phenotypes of gp41-CT trun-
cations’) supports this view [119,120].

Interaction of the gp41-CT with Gag

In the absence of Env, Gag and viral-like particles (VLPs)
bud in a non-polarized manner from the epithelial cell
membrane suggesting the existence of a p55%°¢/Env
interaction. Env drives p55“° accumulation and virion
budding from the basolateral surface of polarized cells
(MDCK cells in early reports, then extended to all polar-
ized cells) [111,121,122]. This polarized release was
shown both to be mediated by the Y;1,SPL motif of the
gp41-CT and to require interaction between Env and
MA [111,121,122]. Likewise, truncation of the gp41-CT
of a SIV strain resulted in redistribution of cell surface
envelope molecules from localized patches to a diffuse pat-
tern that covered the entire plasma membrane [123]. Con-
versely, Env glycoproteins produced alone are randomly
scattered across the cell plasma membrane, whereas in the
presence of p55°° they are recruited to budding sites,
suggesting active recruitment to these sites [109].

Further evidence that a Gag/Env interaction is required
for the process of viral assembly arises from the observa-
tion that although truncation of the entire gp41-CT gener-
ally has little or no effect on Env incorporation, and even
increases Env expression at the cell membrane, deletions
downstream of the KE (ablating the LLP domains) or small
deletions within LLP-2, severely hamper Env incorporation
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[43-46,52]. This defect can be reversed by mutations
(V341) in MA [52]. Conversely, it was reported that muta-
tions in the p55%% precursor MA protein result in
decreased plasma membrane expression of Env [110],
and in lower Env stability and virion incorporation
[110,119,124,125]. The discovery that mutations in MA
interfere with Env incorporation in ‘non-permissive’ cells
and that pseudotyping with shorter Envs (MLV or a trun-
cated HIV-2) or truncating the HIV-1 gp41-CT reversed
this impairment confirm that the gp41-CT interacts with
the p55% precursor [52,114,115,118]. Importantly, these
findings have led to the idea that the gp41-CT plays a role
in assembly during the late stages of the viral cycle, rather
than in Env fusogenicity and in entry during the early
stages of the replication cycle [52,114,118].

The MA/Env interaction has variously been mapped to
L12 and L30 within MA [52,114,118], to K32 [110], and
to the MA-CA junction [114-116,118]. The defect in Env
incorporation into virions containing the L12E mutation in
MA can be reversed by truncations of the gp41-CT depriv-
ing it of the LLP domains [114,115,118], and MA AA L30
has been shown to interact with the C-terminus of LLP-2
[52]. Other studies based on progressive HIV-1 or SIV
gp41-CT truncation mutants (67 AA, or a central peptide
of 93 AA) confirmed that this interaction mapped to LLP-2
[52,112,113,126]. Another group however repeatedly
mapped the interaction to the 28 C-terminal AA (ie. to
LLP-1) [47,54,116]. Despite the diversity of truncations that
have been studied, the observation that removal of 59 to 90
AA from the gp41-CT strongly impairs Env incorporation
into virions whereas removing 93 AA from the C-terminus
does not affect Env incorporation [115,118] suggests that
LLP-2 does not adopt an appropriate conformation in the
absence of LLP-1, and fails to accommodate the p5598
precursor. Lastly, Env and MA sequences from patient-
derived viral strains co-evolved over time [127], providing
further ex vivo support for a gp41-CT/p55* interaction.

The gp41-CT/p55%%€ interaction seems to tolerate a
degree of flexibility, as MA mutations that abolish
incorporation of HIV-1 Env do not interfere with the in-
corporation of heterologous retroviral Envs with short
CTs [115,118] and as HIV can be pseudotyped with a var-
iety of retroviral and non-retroviral Env glycoproteins
[106-109]. This contrasts with VSV cores, which cannot
be pseudotyped by HIV gp160 [128]. The Env/Env inter-
action mediated by the gp41-CT [33], in contrast, is highly
specific as recent studies mixing Env glycoproteins from
lentiviruses (HIV or SIV) and from two retroviruses (RSV
and MLV) to produce pseudovirions show that Env clus-
tering at the plasma membrane is dependent on the Env
gp41-CT and is limited to autologous Envs [106,109]; also
in another study, the formation of hybrid pseudovirions
was not tolerated, although in this case, the non-retroviral
Ebola Env glycoprotein and HIV were mixed [108].
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Viral stiffness, viral maturation and infectivity

It is currently believed that the p55%° precursor orches-
trates viral assembly through interactions with all viral com-
ponents to be incorporated, and that the gp41-CT/p555°
interaction is involved in controlling viral infectivity in a
maturation-dependent fashion. The efficiency of entry and
fusion is lower for immature than mature HIV-1 particles
[47,54,129]. Similar results have been reported for the SIV
Env-CT [117]. This inefficiency can be overcome by trunca-
tion of the gp41-CT or by LLP-1 truncations [47,54,114].

It has been proposed that the plasticity of the lentiviral
particle controls its infectivity and fusion capacity
[32,130]. Immature virions are 14 times stiffer than ma-
ture particles [32]. The structural rearrangements associ-
ated with p559% maturation by the viral protease
transform the stiff immature viral particle into a mature
particle with a thin protein shell and conical core; its
ability to enter cells depends on its softness [32,130].
p559° maturation by the viral protease into its distinct
components is a regulated and sequential process with
particular kinetics [131]: the first cleavage is that of the
SP1-NC, and it induces the structural switch of Gag that
controls maturation and activates Env [54,99]. STED mi-
croscopy has recently provided visual evidence of such
regulation: Env spikes at the surface of mature virions
coalesce into foci, whereas in the less infectious imma-
ture virion, Env spikes remain scattered across the vir-
ion surface [33]. Proteolytic maturation of p559°¢
allows Env lateral motility and clustering into foci
[33,132]. However, although truncation of the gp41-CT
also favors Env motility on immature particles, it does
not result in Env clustering: this provides evidence that
gp41-CT-mediated Env clustering optimizes viral in-
fectivity [33,132], confirming prior reports showing that
LLP-1 and LLP-2 mediate Env clustering [55], partly via
Arg residues [56]. Pang et al. [32] recently used atomic
force microscopy to demonstrate a correlation between
viral infectivity and virion stiffness. Using different con-
structs that separate the Env ‘fusion-activity’ (EnvACT
construct) from the ‘stiffness/softness properties’ (GFP-
gp41-CT construct), they found that the gp41-CT stiffens
immature virions in a concentration-dependent fashion,
thereby impairing infectivity of immature (but not mature)
particles [32]. Because VSV-G pseudovirions were simi-
larly affected, the authors conclude that particle stiff-
ness directly regulates immature viral entry [32].
Intriguingly, there was no direct interaction between
the EnvACT and the GFP-gp41-CT constructs, imply-
ing that the gp41-CT directly stiffens immature viral
particles, and that virion stiffness controls virion fu-
sion capacity [32]. These studies indicate biophysical
mechanisms underlying the control of viral infectivity
by protease-mediated p55%°¢ cleavage [32,33,132]. Al-
though both groups related viral infectivity to viral
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stiffness, they draw opposite conclusions about the
roles of viral stiffness and of the gp41-CT: Chojnacki
et al. [33] propose that the stiffness of the immature
particle interferes with Env motility and clustering
through the gp41-CT, whereas Pang et al. [32]
propose that it is viral stiffness itself that is controlled by
the gp41-CT through an as yet undefined mechanism pos-
sibly involving the arrangement or stability of the immature
Gag shell. In other words, stiffness impairs Env motility and
gp41-CT-mediated Env clustering and infectivity [33,132],
or, alternatively, stiffness is a consequence of the presence
of the gp41-CT [32]. Either way, Env ensures minimal fu-
sion until the virus is mature, suggesting a mechanism
whereby unprocessed p55°¢ “withholds” Env until full
maturation by the viral protease is complete through an
inside-out regulation mechanism [54,58,129].

Control of viral infectivity

The p559°8 precursor is trafficked to and accumulates
at the plasma membrane where it recruits viral compo-
nents (including Env, viral genomic RNA, viral accessory
proteins). However, interactions of the gp41-CT with
cellular trafficking regulators (discussed below, ‘Interac-
tions of the gp41-CT with cellular factors and intracellu-
lar regulators’) down-modulates Env as soon as it
reaches the plasma membrane such that it remains
scarce until p55% oligomerization is complete or, at
least, sufficiently dense in the assembly platforms to en-
sure efficient viral assembly and release [133] (Figure 3).
This mechanism for the regulation of the surface abun-
dance of Env protein may protect infected cells from Env-
dependent cytopathic effects, from Env-induced Fas-
mediated apoptosis and/or from Env-specific immune
responses [133-137]. During, or shortly after virus release,
the viral protease cleaves the p55°* and p1609°€7°!
precursors, resulting in structural and morphological
rearrangements of the virion that enable Env fusion
capacity [47,54,129]. gp41-CT interacts with p555° with
higher affinity than with mature MA [129], and this loos-
ened interaction probably favors changes in Env conform-
ation after viral maturation [47,54] and Env lateral
motility [33]. With the completion of maturation, the
virion becomes maximally infectious and can start a new
round of infection. The scarcity of Env spikes at the
surface of virions appears to be a compromise between ef-
ficient fusion capacity, through virion softness, clustering
of Env into foci, and immune escape.

This mechanism for controlling infectivity differs from
that of other retroviruses, such as Murine Leukemia
Virus and Mason-Pfizer monkey virus, where the viral
gp41-CT is cleaved by the viral protease in the released
virion, resulting in Env becoming fusion competent
[138,139].
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Open questions

Clearly, p55%° is the main pillar of HIV assembly, and
recruits the constituents of HIV virions, orchestrates
their assembly and controls infectivity of viral particles.
Nevertheless, many questions concerning Env recruit-
ment and incorporation into virions remain unresolved.
Do p55°¢ and Env interact directly or is this interaction
indirect? Or, alternatively, are there many contact points,
both direct and indirect? In this case, are these multiple
interactions permanent and simultaneous, or is there a
sequential order important for the control of viral as-
sembly and/or infectivity? Which Env determinants are
involved? Many cellular proteins have been described to
interact with the gp41-CT (detailed below, section ‘In-
teractions of the gp41-CT with cellular factors and intra-
cellular regulators’), but it is not known which bridge
the p55/Env interaction and which serve other pur-
poses. It is unclear which are, as a consequence, incor-
porated in newly synthesized viral particle, and if they
are, whether they are included passively or contribute to
the initial steps of the following infection round.

Phenotypes of gp41-CT truncations

Despite numerous studies addressing the role of the gp41-
CT domain, the roles of particular determinants remain
poorly documented. One reason why the gp41-CT
remains poorly understood is that the effects of gp41-CT
truncations and/or mutations are cell-type dependent. For
example, many transformed T-cell lines (e.g. the cell lines
H9, MT-2, Jurkat, and CEMx174) and primary target cells
of HIV (primary CD4+ T cells and macrophages) do not
sustain replicative spread of viruses with a truncated
gp41-CT; these cells are referred to as ‘non-permissive’ for
gp41-CT truncation. Other cells, in contrast, such as the
T cell lines MT-4 and C8166 and several laboratory cell
lines (HEK293T, HeLa, and COS) are less affected by full
or partial truncations of the gp41-CT and sustain replica-
tion of the corresponding viruses (termed ‘permissive’
cells) [43-45,119,120,140-142]. Truncation of gp41-CT de-
creases Env incorporation into virions by about 10-fold in
‘non-permissive’ cell lines and in primary HIV target cells
(i.e. primary PBMCs and monocyte-derived-macrophages),
but has a much smaller effect in ‘permissive cells’
[119,120]. An illustrative example, albeit extreme, is that
truncation mutants have different effects in macrophages
[119], perhaps owing to differentiation and culture condi-
tions. Compromised infectivity and replication capacity
in ‘non-permissive’ cells has been linked to altered
localization of the viral capsid that failed to accumulate
and polarize at the viral synapse [119,120], but not to in-
creased gp120 shedding from virions nor to reduced Env
cell-surface expression [110,119,120,140]. HIV and SIV
viral particles contain relatively small amounts of Env (~7-
14 Env trimers/virion) [143-145], due to both the massive
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recycling of neo-synthesized Env and to Env shedding.
These findings and comparisons are thus difficult to inter-
pret and their biological relevance is unclear.

It is not clear how gp41-CT truncations may impact
Env incorporation into virions without affecting Env
expression at the PM or Env trafficking through the ER
and Golgi networks, as one could expect Env incorpor-
ation into virions to be related to the amount of Env at
the PM. One possible explanation is that inherent differ-
ences between cell types in the expression or localization
of host factors play a role in viral assembly; this would
account for the cell-type dependent phenotypes of gp41-
CT truncations and mutations. A second possible ex-
planation is that because the gp41-CT activates the NF-kB
canonical pathway [79], gp41-CT truncations interfere
with the cell activation status (see section ‘Activation of
transcription’). Cell types and cell lines differ in their
basal activation levels and in their dependence on
NF-«B, and it is therefore conceivable that truncations
of the gp41-CT could translate into cell-type-dependent
phenotypes [31].

One recent study [141] compared the infectivity of
sub-saturating titers of wild-type and of a HIV-1 gp4l-
CT-truncated mutant in various gp41-CT truncation
‘permissive’ (MT-4, C8166) and ‘non-permissive’ (H9,
MT-2, Jurkat, CEM-SS) cell lines: the ‘permissive’ and
‘non-permissive’ phenotypes of target cells correlated with
the level of gene expression, and particularly of p55“8 pro-
duction and processing to mature capsid (CA), rather than
with Env incorporation into the virion [141]. In ‘non-per-
missive’ cells, viral assembly was compromised as a conse-
quence of p55%° failing to accumulate and polarize at the
viral synapse (VS), whereas in ‘permissive’ cell lines, high
levels of p55“°¢ overrode and compensated for the absence
of the gp41-CT [141]. This study could reconcile the cell-
type dependence of Env incorporation with a dual role for
the gp41-CT, being involved in Env incorporation into
virions and polarized budding on one hand and in cell acti-
vation and regulating viral gene transcription on the other.

The situation is more clear-cut for the SIV gp41-CT.
SIV Env truncations have been reported to arise spon-
taneously when culturing SIV in human cell lines, and
then to revert back following culture in simian cells
[146-149]. These truncations increased Env surface ex-
pression, fusogenicity [61,150] and infectivity in vitro
[147,151]. These SIV gp41-CT truncation mutants are
replication competent both in vitro and in vivo, but lack
full pathogenicity in vivo: macaques infected with a
LLP-1- and LLP-2-defective SIVmac239 initially had
viremia, but the viral load declined with time to below
the detection threshold; the infected macaques never
progressed to AIDS [152]. A similar phenotype has
been reported for HIV-2 [147,153]. Spontaneous trun-
cations of the gp41-CT of SIV cultured in human cell
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lines and reversion in rhesus PBMCs may reflect the
presence of a restriction factor whose action is
inhibited by the gp41-CT in rhesus cells, but which is
absent from human PBMCs or ineffective against SIV
[79]. Alternatively, spontaneous truncations of the
gp41-CT in human PBMCs or T cell lines may improve
viral infectivity by enhancing Env expression and
thereby incorporation into virions. The truncation of
the SIV gp41-CT observed in human cell lines may re-
move signals mediating Env trafficking such that the
higher Env density at the surface of SIV virions is pre-
served. Further studies to elucidate how these phenom-
ena are related and the real consequences of Env levels
in the virion may reveal new leads for the development
of strategies to control viral assembly.

Interactions of the gp41-CT with cellular factors and
intracellular regulators
A number of cell factors have been described to interact
with the gp41-CT: in some cases, the interactions have
simply been described without any evidence of signifi-
cance, and in others, the significance is controversial.
Nonetheless, most of these interactions between the gp41-
CT and cellular factors contribute to improving viral repli-
cation, by promoting viral gene expression, enhancing viral
infectivity, or interfering with intrinsic cellular restriction
factors or immunity. Innate immunity has developed many
(often interferon-induced) pathways to counter gene ex-
pression and the late stages of the viral replication cycle,
namely assembly and budding, as these are essential steps
for viral propagation. It seems likely that such factors are,
at least in part, responsible for the cell-type-dependent
phenotypes observed.

Figures 3 and 4 summarize cellular and viral proteins
interacting with the gp41-CT and their intracellular
localization.

Env trafficking and sorting through the trans Golgi network
(TGN)

Golgi retrieval signals function to return proteins which
have left the Golgi to that compartment; Golgi retention
signals, by contrast, are generally found in the transmem-
brane domain of Golgi and ER resident proteins. The main
Golgi retrieval signals are cytoplasmic domain tyrosine-
based or dileucine motifs [154,155]. The gp41-CT contains
both Golgi retrieval (tyrosine-based and dileucine-based)
and Golgi retention motifs [156]. They regulate Env
trafficking through the endocytic pathway [157-159].

AP-mediated Env endocytosis

As soon as Env comes into contact with the plasma mem-
brane, it is endocytosed. Time course analyses show that
50% of Env, but only 15% of a gp41-CT-truncated Env, is
internalized after 60 minutes [157]; and similar time
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courses have been reported using a chimeric CD4 mol-
ecule fused to the gp41-CT [156]. These observations in-
dicate that the gp41-CT mediates endocytosis. Env is
endocytosed via interactions with the clathrin adaptor
complex (AP proteins) [157-159]. Clathrin adaptors sort
and direct proteins through the endocytic pathway. The
highly conserved Y;1,SPL motif of HIV (and Y75, XX® of
SIV) immediately downstream from the transmembrane
region has been implicated in regulating Env intracellular
trafficking by binding clathrin adaptor AP-2 p (medium)
chains [157-159] (Figures 3 and 4). The Y-;,SPL motif can
also interact with the AP-1 and AP-3 adaptor complexes
through pl and p3A, respectively [159]. Whereas the
interaction of the gp41-CT Y,,SPL motif with AP-2 leads
to Env internalization, interaction with AP-1 regulates Env
trafficking through the TGN and addresses Env to the
basolateral PM in polarized cells [159] (Figures 3 and 4).
The AP-2 adaptor complex also mediates p55“° internal-
ization through Y3, and Vi35 at the MA-CA junction
[160], and the AP-1 p [161] and AP-3  and & subunits
contribute to p55°° release. They do so by transporting it
to intracellular sites of active budding, such as MVBs and
the PM [162,163] and/or by facilitating its interaction with
other cellular partners such as TsglOl [161]. The inter-
action between Env and various proteins of the AP
clathrin adaptor complex may therefore be involved in the
p555%8/gp41-CT interaction and determine the fate of Env
(targeting to the lysosomal compartment for degradation,
or to the basolateral plasma membrane for incorporation
into virions).

Y,1,SPL-mediated endocytosis is suppressed in the pres-
ence of the HIV-1 p55%° precursor polyprotein [133,164].
This suggests that p55“° interferes with the Env/AP-2
interaction and that the amount of Env at the cell surface
is regulated by the AP-2 versus p55°° balance. AP-2 may
thus eliminate any Env protein that is not associated with
p559° and that is therefore not destined for incorporation
into virions [133,164]. Env internalization may proceed
until sufficient p555°¢ has been synthesized and has accu-
mulated at the site of viral assembly, at which point, p5558
would interact with Env directly or indirectly, thereby trap-
ping Env into the nascent virion [133,165]. In the case of
SIV, mutating the Y,; in agp41-CT truncated Env resulted
in increased Env expression at the plasma membrane,
whereas mutations of Y;»; in a full-length gp41-CT context
had little impact on Env expression at the plasma mem-
brane [123,166]. Presumably, other motifs involved in
endocytic regulation overcome the single mutation.

Additional distal determinants also regulate Env internal-
ization [164]. These have now been identified as being the
most distal C-terminal dileucine motif [167,168] and/or
IS1 and IS2 Golgi retention sequences [156]. Recruitment
of AP-1 [167] and AP-2 [168] by the most C-terminal
dileucine motif ensures correct post-Golgi routing of Env,
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MSD proximal Subtype- Interaction Function Reference
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cre 785 conserved expression Virol
? Rab7a * Promotesgpl60Env M. Caillet, 2011, Plos
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LLP-2 Luman Luman inhibition G. Blot, 2006 Mol Biol
LLP-2 Calmodulin Apoptosis S.K. Srinivas, 1993 J Biol Chem

Figure 4 gp41-CT domains or AA with reported function(s), conservation across subtypes, interacting partners and role of these
interactions. Abbreviations: RER: rough endoplasmic reticulum; TGN: trans Golgi network; CaM: calmodulin; LLP: lentiviral lytic peptide; TAK:
TFG-B-activating factor; AP: adaptor protein: TIP-47: Tail-interacting protein 47 kDa; Ub: ubiquitin.
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replication Biol
L7991 800 Alternation to  Prohibitin 1/2  Cell-to-cell V. Emerson, 2010 )
Eor e transmission Virel

and restricts cell surface expression of Env in conjunction
with the membrane-proximal Y-;,SPL motif [167,168]
(Figures 3 and 4).

Both the Y,;,SPL motif and the most C-terminal
dileucine motif are extremely well conserved across HIV-1
subtypes (except subtype C), and also in HIV-2 and SIV
strains, evidence of their importance (Figure 1B). Similar
signals in cellular proteins or in the glycoproteins of other
viruses (e.g alpha herpesviruses) affect endocytosis as well
as intracellular trafficking in endosomes and the TGN,
and can determine basolateral versus apical sorting
(reviewed in [169,170]). It is nevertheless intriguing that
subtype C viruses harbor a LQ rather than LL (dileucine)
at this position in over 60% of cases. As the requirement
for an intact C-terminal dileucine motif for correct inter-
action with AP-1 and with Nef (see below, section ‘As-
sembly’) seems to be quite stringent [167], these
observations raise three possibilities: (i) other motifs
are involved, or (ii) Env trafficking differs between sub-
types, and differences in sub-cellular localization are
less detrimental to viral assembly and infectivity than
previously believed, or (iii) subtype C Env internaliza-
tion is less efficient and more Env is expressed at the
surface of infected cells and possibly on virions of

subtype C than of other subtypes; this could be a cause
or consequence of the weaker antibody response or of
the lower replicative capacity.

Another tyrosine-based motif, Y,cgHRL, is present in
the gp41-CT. Although this motif also interacts with
AP-1, AP-2 and AP-3, it is not involved in endocytosis
of Env, perhaps because of its localization in the gp41-
CT, but may mediate NF-kB gene expression [79] (see
below, section ‘Activation of Transcription’). Likewise, one
or two other Yxx® motifs are present in various SIV
strains and in HIV-2, but none has been shown to mediate
endocytosis [166].

Golgi retention

Most Env is retained in the ER, and from there
ubiquitinated and degraded by the proteasome. Only a
small proportion actually reaches the Golgi and proceeds
to the cell surface. Nevertheless, Env is also retained in the
Golgi [156]. The IS1 (AA 750-763) and IS2 (AA 764-785)
regions in the gp41-CT reduce Env surface expression by
retaining Env in the Golgi, independently of AP-1 and AP-
2 [156] (Figure 4). These sequences include LL (or IL mo-
tifs, which behave similarly to LL in Golgi retrieval [171]),
and result in retention in the Golgi of gpl60 and of
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chimeric proteins composed of the gp41-CT fused to the
CD4 receptor or to immunoglobulin extracellular/trans-
membrane domains. These sequences are also highly con-
served across subtypes [156] (Figure 1B).

TIP47

The leucine-zipper domain, LLP-3, also contains a highly
conserved YgpoWgo3 diaromatic motif. This motif has
been found to be involved in the retrograde transport of
Mannose-6-Phosphate Receptors and in lipid droplet
biogenesis. The YgooWgos motif in Env ensures the retro-
grade transport of Env from late endosomes to the TGN
(Figure 3) and thereby contributes to the regulation of
the intracellular distribution of Env, and to Env incorp-
oration into the virion, particularly in macrophages
[165,172-175]. Lopez-Vergez et al. reported that TIP47
is required for the p55%°%/gp41-CT interaction [165].
Disruption of the p55%°¢/TIP47 interaction through mu-
tations in MA or by TIP47 knock-down causes p55°8
to localize in scattered dots in the vicinity of the PM.
These observations led to the suggestion that TIP47 acts
as a linker between Env and p55°%, and serves as a
bridge for efficient Env incorporation [175]. However,
other authors report not being able to reproduce these
findings [25].

Rab7A and other RabGTPases

Rab proteins are early and late-endosome associated
GTPases that regulate specific steps in intracellular mem-
brane trafficking. They recruit tethering, docking and fu-
sion factors, as well as the actin- and microtubule-based
motor proteins that facilitate vesicle traffic [176-180]. In a
study aiming to identify cellular trafficking factors in-
volved in HIV assembly and budding, Caillet et al. report
that Rab4A, Rab6A, Rab8A, Rab9A, and Rab11A moder-
ately decreased viral infection (by 30-60%) in HeLa cells,
probably in relation to their roles as regulators of the
exocytic pathway [173,181,182]. Rab7A knock-down
resulted in a > 30-fold decrease in viral propagation [182].
Rab7A is involved in regulating exit from the late endo-
some/MVB by controlling the maturation and fusion of
late endosomes and phagosomes with lysosomes, their
intracellular motility when loaded with lipids, and their
interaction with the cytoskeleton for migration along mi-
crotubules [176,178-180,183-185]. Of particular interest is
the finding that Rab7A has a dual activity. Rab7A knock-
down experiments using siRNA also showed that Rab7A
regulated and allowed gp160 processing to gp120 + gp41
and incorporation of mature Env into particles (Figure 3).
The authors propose that Rab7A may either ensure cor-
rect Env trafficking through furin-containing compart-
ments, or ensure appropriate co-localization of Env
and/or of furin; alternatively, Rab7A may modulate Env
expression, and in the absence of Rab7A, Env is
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expressed to levels that exceed the processing capacity
of furin [182].

Rab7A knock-down also interfered with viral release,
resulting in the accumulation of gp160 and viral compo-
nents at the PM, reminiscent of a BST-2/Tetherin pheno-
type [182]. The authors report that Rab7A is required for
sorting BST-2/Tetherin to lysosomes for degradation
through molecular mechanisms that remain to be eluci-
dated [182] (Figure 3). Rab7A is also involved in the late
maturation of the final autophagic vacuoles [186,187].

Strikingly, the role of Rab7A shares similarities with
that of Nef (see section ‘Nef” below) in mediating in-
creased Env at the PM [188] and in intercepting the au-
tophagic processing of Gag to increase virion assembly
and egress [189,190]; both also affect traffic through the
endocytic pathway [106]. It would be interesting to find
out whether Nef intersects the Rab7A or Rab5 signaling
cascades.

Rab9A is a mediator of late endosome-to-TGN traffick-
ing involved in the replication of many viruses, including
Marburg Virus, Filoviruses and Measles. It interacts with
TIP47 and PRA1 (prenylated Rab acceptor 1), both cellu-
lar interacting partners of gp41-CT [173]. PRA1 has been
reported to interact with lentiviral gp41-CT (SIV, HIV-1
and 2, EIAV and FIV) in a 2-hybrid system [191] without
modulating viral release, infectivity or Env incorporation
[192]. The significance of these interactions remains
unclear, but as both Rab9A and PRA-1 are involved in
vesicular trafficking, it is possible that they participate in
regulating Env trafficking through the Golgi.

Assembly

Detergent-resistant lipid rafts

Detergent-resistant lipid rafts are cellular microdomains
enriched in cholesterol and sphingolipids and which
contain proteins. Lipid rafts are thought to play an import-
ant role in many cellular processes including signal trans-
duction, membrane trafficking, protein oligomerization,
cytoskeletal organization, and pathogen entry (reviewed in
[193-195]). Lipid rafts are thought to be central to the
assembly and infectivity of numerous enveloped viruses,
including lentiviruses. The lipid bilayer of HIV virions is
highly enriched in cholesterol and sphingomyelin, both of
which are major components of lipid rafts [196,197]. Also,
p559°8 and Env and have been co-localized with lipid raft-
associated proteins [73,85-87]. Env incorporation into lipid
rafts optimizes its incorporation into virions and confers
viral infectivity [198]. Conversely, excluding HIV from lipid
rafts impairs viral infectivity [85,199-203]. The 12 C-terminal
amino acids of LLP-1 and portions of LLP-3 [43,44,49,204],
and also palmitoylated cysteines C;44 and Cgs;, and bulky
hydrophobic side chains, have been implicated in targeting
Env to lipid rafts [198,205] (Figure 4). In contrast to the
reports by Bhattacharya [198,206], Chan et al. [207] found
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that Cys to Ser and Cys to Ala mutations had no signifi-
cant effect on Env expression, trafficking, interaction with
lipid rafts and incorporation into virions, or on the fusion
efficiency or infectivity in single-cycle infections, despite
decreased palmytoylation of Env [207].

Other studies argue against any substantial direct
targeting of Env to lipid rafts, and suggest, rather, that it is
p55%8 that recruits and anchors Env to lipid rafts [85].
Various observations imply that p55“%€ drives Env to lipid
rafts. First, mutation of residue S4 in MA abolishes the
interaction of p55%° with lipid rafts resulting in reduced
Env incorporation into virions, presumably by inhibiting
the ability of p55°% to target or hold Env within raft
microdomains [208]. Second, independent studies have
reported that in the absence of p55“°, or in the presence
of MA or gp41-CT mutations that abolish Env incorpor-
ation into virions, Env was not found associated with
detergent-resistant membranes [198,206]. The obser-
vation that neither the cysteine residue in LLP-1 nor
the presence of bulky AA is conserved between sub-
types raises further doubts about a direct interaction
between Env and lipid rafts. This polymorphic flexibil-
ity is more consistent with the view that Env is
recruited to lipid rafts through p55%°¢, and/or that
other determinants are also involved. Nonetheless, it
cannot be excluded that under certain circumstances,
particularly in transfection experiments involving
strong viral gene overexpression, Env may be passively
incorporated into virions; a phenomenon of this type
would explain the contrasting results reported.

In the cases of other enveloped viruses, such as Influ-
enza Virus [209] and Respiratory Syncytial Virus [210],
the matrix/lipid raft interaction is favored by, or even
dependent on, the presence of the respective envelope
cytoplasmic tails. Whether lentiviral gp41-CTs also
somehow influence the MA/lipid raft interaction has
not been described.

Nef

Interplay between the Env gp41-CT and the viral
accessory protein Nef has been reported to increase viral
infectivity [211,212]. The viral accessory protein Nef is a
pleiotropic non-enzymatic, myristoylated, HIV and SIV
lentivirus pathogenesis factor. Nef increases viral
infectivity through various, not fully elucidated, mecha-
nisms involving immune escape [213-216] (reviewed in
[217]), increased viral infectivity and propagation
[106,212,218-222], and perturbed immune activation,
thereby promoting a favorable environment for viral
replication [90,216,219,223-227]). Most of Nef’s func-
tions are due to its ability to influence the cellular en-
vironment, mainly through protein-protein interactions
which interfere with cell-receptor trafficking or are in-
volved in T cell receptor (TCR)-induced signaling [228].
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It has been proposed that Nef promotes Env gp160 pre-
cursor processing and PM expression of the mature gp120
and gp41 products by abrogating their retention in the cis-
Golgi [106,212], and by specifically augmenting Env accu-
mulation at the PM [212]. Enhanced Env at the PM was
found to be dependent on the C-terminal dileucine motif
of the gp41-CT and on the C-terminal residues of Nef
(positions 181-210), and it was suggested that Nef in-
creases Env incorporation into virions [212]. Whether the
gp41-CT Golgi retention sequences IS1 and IS2 are also
involved has not been investigated.

Others have proposed that Nef may modulate cell sig-
naling thereby altering intracellular trafficking and
augmenting Env accumulation in late endosomes/MVBs
[106]. Nef-insensitive Env glycoproteins from various
enveloped viruses share pH-dependence (Influenza-HA,
VSV-G and HCV), and most importantly, lack endocytic
traffic motifs, budding in compartments other than
MVBs (HCV) or at the cell PM (Influenza-HA, VSV-G).
Glycoproteins needing Nef for optimal assembly harbor
determinants of intracellular trafficking through the
endocytic pathway and assemble in MVBs [106,229].
Furthermore, the role of Nef in Env and p55%° precur-
sor co-localization could be linked, at least to some ex-
tent, to Gag expression levels, and this may explain the
cell-dependence and the gp41-CT ‘permissive’ versus
‘non-permissive’ phenotypes. The incorporation into
pseudovirions of some retroviral and lentiviral Envs is
increased in the presence of Nef, but not for those for
which Env incorporation was already optimal [106].
Sandrin et al. conclude from these observations that Nef
expression optimizes co-localization of retroviral Envs
with p559% in late endosomes/MVBs specifically for
those Envs that inherently do not accumulate in the
endosomal pathway [106]. This is consistent with the
observation that Nef [231-233], the gp41-CT [167,168]
and p55“° [160-163] all interact with adaptins AP-1
through 3, suggesting these intermediates may be
involved. It would be interesting to assess whether this
observation is relevant to the findings of another study:
the absence of the scaffold protein Dlgl was described
to restrict late steps of the HIV cycle due to Gag and
Env rerouting and sequestration in a tetraspannin-rich
(CD63+ and CD82+) late-endosome and plasma-
membrane-related compartment [230].

Nef also interacts directly with the p55°* and
p1609%™°! precursors via p6* in the overlap region
between p6 and pol [234,235], and increases p55“°€ and
p1609%°°! processing and egress via AIP-1/ALIX, a critical
intermediate in the formation and proliferation of
multivesicular bodies (MVBs) [221,233,234]. It has been
suggested that the Nef-induced p55°% accumulation in
late endosomes/MVBs is linked to autophagy. Autophagy
is a cell survival and host defense mechanism by which
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cells degrade their own cytoplasmic constituents during
starvation and microbial invasion; it involves clearing
damaged organelles, macromolecular aggregates and
intracellular microbes through double-membrane vacu-
oles, termed autophagosomes, which typically mature into
amphisomes or autolysosomes after fusing with MVBs or
lysosomes [236-238]. Nef has been suggested to increase
virion assembly and egress by intercepting the autophagy
process [189,190]; however, the mechanisms of HIV
p55%8 incorporation into the autophagosome leading to
the release of HIV Gag particles into the extracellular en-
vironment remain largely unknown.

It is important to keep in mind, however, that recent
work to identify the localization of HIV assembly in dif-
ferent cell types, and particularly in 293T cells and in
macrophages, were performed using viral-like particles
(VLPs) and VSV-G pseudotypes which target the
p555% precursor to the PM. From there, it either
buds releasing new infectious viral particles or is en-
docytosed and accumulates in late endosomes and
MVBs [80,81,239]. Most of these studies are based on
the use of VLP and of pseudovirions comprising a
heterologous Env, and on large p55*® or VLP/
pseudovirion input, i.e. high Gag overexpression. The
precise fate of p55“°¢ precursor protein that has not
budded from the PM and that has been endocytosed
into late endosomes and MVBs is not known; more im-
portantly, it remains to be established how and where
Env and Nef interplay with the p55%% precursor to
allow the release of fully infectious virions.

The Nef/gp41 interplay also involves other mecha-
nisms independent of the gp41-CT and of its trafficking
domains. Another function of Nef is to promote the bio-
genesis of viral assembly platforms including rafts and
MVBs [221,222]. Nef can accumulate in lipid rafts and
thereby contribute to infectivity of progeny virions by in-
creasing the incorporation of lipids into viral membranes
[222]. Whether Nef further favors or stabilizes the insuf-
ficient interaction of Env with lipid rafts, in conjunction
or not with Gag, is still not known. In another study, the
N-terminal region of Nef and its myristoylated moiety was
shown to decrease the sensitivity of the gp41 ectodomain
to neutralization by antibodies targeting the MPER epitopes
that are embedded in the virion lipid bilayer (2F5 and
4E10) [240-242] and thereby contribute to viral escape from
the humoral immune response [243]. This activity did not
affect Env incorporation into virions, and the authors sug-
gest that the susceptibility of neutralization to these epi-
topes may be modulated by Nef-mediated alteration of the
lipid bilayer composition [243].

The consequences of Nef deletions, like those
of gp41-CT truncations, are cell-type dependent
[244,245]. In ‘Nef non-permissive’ cells, Nef deletion af-
fects the early stages of viral infection and only slightly
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modulates the late stages of the viral replication cycle
(assembly, release and maturation) [244,245]. Although
there has been no direct pair-wise comparative study of
gp41-CT truncations and Nef deletion mutants to our
knowledge, it is interesting that there is some overlap be-
tween the gp41-CT and Nef ‘permissive’/ non-permissive’
phenotypes (eg MT-4 cells are ‘permissive’ to both,
whereas primary CD4 cells and macrophages, and H9,
Jurkat and CEMx174 cells are ‘non-permissive’ to both
[119,120,244,245]). The reported effects of gp41-CT trun-
cations and of Nef deletions on viral replication can differ
in a given ‘non-permissive’ cell type (e.g. C1866 cells are
‘permissive’ to gp41-CT truncations [119,120] but are par-
tially ‘non-permissive’ to Nef truncations) [244,245],
although such comparisons should be interpreted with
caution as the results come from different groups with dif-
ferent experimental set-ups. Day et al. reported that the in-
corporation of an Env Y;;,A mutant into virions was
impaired in the absence of Nef in MT-4 cells but not in
HEK?293 cells [211]. This is intriguing because MT-4 cells
are ‘permissive’ to both gp41-CT truncation and Nef dele-
tion. One would have expected the Env Y712A ANef
double mutant not to display impaired Env incorporation
when produced in this cell type. One possible explanation
is that in gp41-CT ‘permissive’ cells, Nef plays a “compen-
satory” role: in the absence of Nef, the gp41-CT ‘permissive’
cell-line becomes ‘non-permissive’ to gp41-CT mutations.
Alternatively, the correct routing of Env and/or Nef to
intracellular trafficking compartments may play a crucial
role in viral assembly and Env incorporation. Mutations
disrupting the Y,1,SPL endocytic motif and truncation mu-
tants may behave differently.

Calmodulin

Calmodulin is a calcium-induced mediator of FAS-
mediated apoptosis. The gp41-CT binds calmodulin
[246,247] and induces apoptosis of T cells, thereby ac-
counting for most of the CD4+ T cell decline that
characterizes HIV infection [134,248]. Amino acids
Alagss, Alagsg and Ilegyy of LLP-1 have been identified as
being involved in calmodulin binding and inducing Ca**
flux and DNA fragmentation in transfected cells
[134,136,137,246,247] (Figure 4). Point mutations of the
gp41-CT (A835W, A838W, A838I, and 1842R) eliminate
co-immunoprecipitation of Env with calmodulin but have
no significant effect on viral production or Env expression
[135,137]. Therefore, active Env cycling through the
endocytic pathway may prevent Env-mediated apoptosis
and thereby avoid premature cell-death and ensure viral as-
sembly [133,164]. Because the gp41-CT/calmodulin inter-
action is deleterious to the virus by itself, it is likely that this
interaction is “collateral damage” from other actions of cal-
modulin in viral assembly. These other actions include en-
suring the conformational changes of MA so as to expose
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the myristoylated moiety that docks p55“% in assembly
platforms at the PM [73,86,87,93,94,98].

Although independent reports have described Alagss
as being the calmodulin-binding site [136,137], Alagss is
not conserved across clades, and there is a Leu, Ile, Thr
or Phe at the corresponding position in some strains.
Possibly, polymorphism at this position explains the di-
verse calmodulin-binding activity of Envs and correlates
with their apoptotic potential; indeed, the A835W muta-
tion used in many studies fully abolishes the ability of
the gp41-CT to bind calmodulin. If this were the case,
late, more cytopathic or apoptosis-inducing Envs would
be expected to all have an Alagss and to bind more cal-
modulin, whereas the less pathogenic, early and chronic-
infection viral isolates would be expected to bind less
calmodulin and be more polymorphic at this position.

Prohibitin1/2

The dileucine motifs of LLP-2/LLP-3 (AA 790-800), and
more specifically the dileucine motif L;g9lggo immedi-
ately upstream from the Ygo, Wyo3 diaromatic motif, has
been found to interact with prohibitin 1/2 (Phb) [249].
These proteins are produced almost ubiquitously; they
are localized in numerous cellular compartments includ-
ing mitochondria, the plasma membrane PM and
the nucleus, and are also associated with lipid rafts. Dis-
ruption of the gp41-CT/Phb association, like gp41-CT
truncation mutants, impairs cell-to-cell transmission in
‘non-permissive’ cells [249] (Figures 3 and 4). It is however
not known whether this association genuinely contributes
to the cell-to-cell transmission capacity of diverse HIV
Envs or whether they are passively bound to gp41 at the
time of assembly into lipid rafts. The L;g9Lggo motif is not
conserved between subtypes and is in many cases replaced
by Val, particularly in subtype C. Nonetheless, in this
work, the gp41-CT/Phb association was disrupted only
when both Leu residues were mutated: single mutants
were unaffected [249]. These findings suggest that this
interaction, or interactions of this L-g9Lggo motif with other
cellular factors, is important enough to be preserved des-
pite sequence variation. Moreover, this motif is also in-
volved in interacting with p155-RhoGEF to block RhoA
activation [250,251] (see section ‘Activation of transcrip-
tion” below), but there is no indication to date that these
two paths converge.

Activation of transcription

NF-kB

It was recently shown that the gp41-CT of HIV-1 activates
NF-kB via the canonical pathway by interacting directly
with TFG-B-activated kinase 1 (TAK1) [79]. TAKI acti-
vates the transcription factors NF-kB and AP-1. TAK1 is
itself activated by cytokines and microbial pathogens,
and phosphorylates IkB, routing it for proteasomal
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degradation, thereby allowing NF-«B to translocate into
the nucleus [252]. The gp41-CT/TAK1 interaction maps
to the N-terminus of LLP-2 (Cye4-L775) and involves Y-eg
in the second YxxL motif [79] (Figures 3 and 4). The HIV-
1 LTR contains 2 (or 3, depending on subtype) NF-«kB
-binding sites [253]. The authors show that HIV mutants
lacking the NF-kB-activating domains were more heavily
dependent on cellular activation for replication, and
thereby elegantly demonstrated that the gp41-CT contrib-
utes to viral replication in sub-optimally activated T lym-
phocytes by inducing the canonical NF-kB pathway [79].
In the case of SIV, the gp41-CT also activates the NF-kB
pathway, but by acting upstream from TAKI, on a factor
that has not yet been identified [31]. One of the functions
of SIV and HIV Nef is to increase cellular activation
in a manner similar to that induced by TCR engage-
ment [90,228,254-257] in a NF-kB-independent manner
[224,226,258,259]. Consequently, it has been suggested
that Nef and Env may act in concert to progressively and
steadily activate gene expression resulting in a positive
feedback loop [79]. Alternatively, the early viral gene prod-
uct Nef and the late gene product Env gp41-CT may act
at different times or stages in the viral replication cycle,
and induce different activation pathways [79], thereby ful-
filling the requirement for two independent stimuli to fully
activate T cells [260,261].

Luman

Luman (LZIP or CREB3) is a transcription factor belong-
ing to the CREB/ATF family; it has been linked to the
endoplasmic reticulum (ER) stress response. Luman acti-
vates the transcription of genes involved in ER-associated
degradation of unfolded proteins [262-264]. The ER-
membrane-bound form of luman is inactive; proteolytic
cleavage releases an active form which enters the nucleus
[263]. This activated form of luman interferes with Tat-
mediated HIV transcription [265]. gp41-CT interacts with
the ER-bound inactive precursor of luman, decreases its
stability and targets it for degradation, thereby indirectly
promoting LTR-mediated transcription (Figure 3). This
interaction maps to residues 751-768, the region lying
between the KE and LLP-2 [265] (Figure 4), and partly
overlaps the gp41-CT region that interacts with TAK1
(Cs6a-L775) [79]. Whether these two mechanisms some-
how overlap or converge has not been explored.

P115-RhoGEF

Activation of RhoA through p155-RhoGEF inhibits HIV
replication by affecting gene expression [251]. The gp41-
CT of HIV interacts with p155-RhoGEF and thereby
relieves the RhoA-induced inhibition [250,251]. This inter-
action involves L;g9 in LLP-3. L9 is highly conserved,
and is part of the dileucine motif interacting with Phb1/2
[249] which tolerates polymorphic changes (Figure 4).
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Mutations in gp41-CT leading to loss of interaction with
p115-RhoGEF impair HIV-1 replication in the human
Jurkat T cell line (‘non-permissive’ to gp41-CT trunca-
tions) [250,251]. p155-RhoGEF is a specific guanine
nucleotide exchange factor (GEF) involved in actin cyto-
skeletal organization rearrangements [250] through activa-
tion of RhoA GTPase, which is in turn involved in actin
stress fiber organization, cell cycle progress through G1
and cell proliferation. Nonetheless, the gp41-CT-mediated
relief of RhoA-mediated viral inhibition seems to be inde-
pendent of the stress fiber formation function of RhoA
and to involve other, as yet unknown, RhoA-mediated
mechanisms [251]. Furthermore, whether this viral inhib-
ition also applies in ‘permissive’ T cells or whether it is
restricted to ‘non-permissive’ is not known: both relevant
studies used ‘non-permissive’ cells. Comparisons between
‘permissive’ and ‘non-permissive’ cells may provide some
clues as to the mechanism of action of this cellular factor
in the HIV replication cycle.

Immune evasion: countering intrinsic restriction/
countering antiviral restriction factors

Tetherin

Tetherin (BST-2 or CD317) is an interferon-inducible
transmembrane protein that restricts the release of nas-
cent viral particles from infected cells by tethering
them to the PM [266,267] reviewed in [268,269]. HIV-1
counteracts tetherin activity through Vpu (HIV-1)
[266,267] which enhances ESCRT-dependent sorting for
lysosomal degradation [270,271], whereas SIV Nef [272],
and the HIV-2 Env ectodomain [273] counteract tetherin
by intracellular sequestration through internalization
motifs. One recent study reported that a Nef-deleted SIV
strain acquired compensatory changes within the gp41-
CT that restored resistance to rhesus tetherin through dir-
ect gp41-CT/tetherin interaction that sequestered tetherin
[272]. The alterations of the SIV gp41-CT involved a
tyrosine-based internalization motif similar to the HIV-2
gp41-CT [272], underlining the importance of countering
tetherin and of Env trafficking for lentiviral replication. No
such evolution has been reported for HIV-1.

Open questions

Numerous cellular proteins have been described to inter-
act with the gp41-CT. Some of these proteins and inter-
actions have been studied in detail, particularly those
involved in Env internalization and trafficking through
the TGN. However, in many cases, the role or the mech-
anisms of these interactions have not been documented.
In some cases, the results and interpretations are con-
troversial, and raise questions about whether the pro-
teins are really involved in the viral replication cycle as
active partners, or whether they are passively incorpo-
rated into the assembly platform, where they make only
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a limited if any contribution to viral replication. Differ-
ent studies have been performed using different cell
types and cell lines, each with their specific characteris-
tics. Thus, there are issues about whether they reflect
phenotypes of cell types relevant to the HIV replication
cycle in vivo. Similarly, do these experimental models re-
flect the context of cell-to-cell transmission where the
vicinity of cells and cell contacts are determinant param-
eters of viral infection and transmission? Some motifs
involved in Env internalization and trafficking, as well as
those involved in interaction with lipid rafts and in en-
hanced viral gene expression, are highly conserved
across subtypes; others seems to display non-negligible
sequence variation. It would be useful to assess whether
such apparent tolerance identifies interactions that are less
vital for viral replication, or whether the virus has acquired
other compensatory polymorphisms to override decreased
efficiency of that particular interaction.

Conclusions

Initially considered to be inessential for the HIV rep-
lication cycle, the gp41-CT has now been demon-
strated to be a pleiotropic domain: it is required for
viral infectivity by ensuring Env incorporation into
the virion on one hand, and contributing to en-
hanced viral replication in target cells through many
still incompletely understood interactions on the
other. Work on the gp41-CT has revealed that lentiviral
assembly relies on finely coordinated interactions between
diverse viral components subverting cell trafficking and
activation factors. The virus thereby optimizes the infec-
tious capacity of the neo-synthesized particle, prevents im-
mune responses and preserves the virus-producing host
cell until viral release. The uncontrolled release of imma-
ture virions would not only hinder viral propagation and
be deleterious to the long-term maintenance of viral infec-
tion, but would also provoke a series of bystander effects,
including Env-induced apoptosis, Env-mediated disruptive
effects, and sensitivity to humoral immune responses.

The Env expressed on the surface of infected cells and of
virions is one of the most powerful escape mechanisms de-
veloped by HIV. Its extreme variability, dense glycosylation
and its very efficient cell-to-cell spreading capacity ensure
extremely effective virus shielding. This shielding is further
strengthened by the only weak expression of Env at the
surface of infected cells and of virions, resulting from its
late expression during the viral replication cycle, intense
cycling and down-regulation through the TGN. Interfer-
ence with cellular trafficking factors further contributes to
viral masking. These latter functions are all fulfilled by the
gp41-CT. Indeed, despite some sequence divergence be-
tween subtypes, structural motifs and some sequences mo-
tifs in the gp41-CT are strongly conserved. In particular,
elements involved in Env trafficking from the plasma
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membrane through the endocytic and TGN compartments
are conserved, underscoring their importance for viral rep-
lication and propagation. Other motifs involved in protein-
protein interactions are not conserved providing evidence
of subtype-related specificities. Such differences between
subtypes have been poorly studied to date. The fine bal-
ance between sequence variability and highly controlled
protein trafficking and dynamics allows the virus to
optimize viral infectivity and viral propagation. The viral
determinants that are poorly tolerant to polymorphic vari-
ation may well be interesting subjects for investigations to
elucidate the subtle control of viral assembly, budding and
release. Such work may lead to the identification of interac-
tions that are possible targets for new antiviral strategies.

Abbreviations

Ab: Antibody; AP: Adaptor protein; CA: Capsid; CaM: Calmodulin;

CT: Cytoplasmic tail; Env: Envelope; ER: Endoplasmic reticulum;

gp: Glycoprotein; HA: Hemagglutinin; HCV: Hepatitis C virus; HIV: Human
Immunodeficiency Virus; IS: Inhibitory sequence; IkB: Inhibitor kB;

KE: Kennedy epitope; LLP: Lentiviral lytic peptide; MA: Matrix;

MPER: Membrane proximal external region; MSD: Membrane-spanning
domain; MVB: Multi vesicular bodies; NF-kB: Nuclear Factor -kB; PM: Plasma
membrane; PNG: Potential N-glycosylation site; PR: Protease; RER: Rough
endoplasmic reticulum; SIV: Simian Immunodeficiency virus; SP: Spacer
protein; TAK-1: TGF-B-interacting factor 1; TCR: T cell receptor; TGN: trans
Golgi network; TIP47: Tail-interacting Factor 47 kDa; VSV-G: Vesicular
stomatitis virus-glycoprotein.

Competing interests
The authors declare no competing interests.

Authors’ contributions
ESS, MM and DPB drafted the manuscript. All authors read and approved the
final manuscript.

Acknowledgments

We thank Carole Devaux, Andy Chevigné and Jean Claude Schmit for critical
reading of the manuscript. ESS and MM were supported by PhD scholarships
from the Fonds National de la Recherche of Luxembourg. Work on the
gp41-CT in the laboratory is supported by the Luxembourg Ministry of
Research grant MESR-LRTV-20100604.

Received: 21 December 2012 Accepted: 1 May 2013
Published: 24 May 2013

References

1. Earl PL, Doms RW, Moss B: Oligomeric structure of the human
immunodeficiency virus type 1 envelope glycoprotein. Proc Natl Acad Sci
USA 1990, 87:648-652.

2. Chan DG, Fass D, Berger JM, Kim PS: Core structure of gp41 from the HIV
envelope glycoprotein. Cell 1997, 89:263-273.

3. Kwong PD, Wyatt R, Robinson J, Sweet RW, Sodroski J, Hendrickson WA:
Structure of an HIV gp120 envelope glycoprotein in complex with the CD4
receptor and a neutralizing human antibody. Nature 1998, 393:648-659.

4. Moore JP, Doms RW: The entry of entry inhibitors: a fusion of science and
medicine. Proc Natl Acad Sci USA 2003, 100:10598-10602.

5. Weissenhorn W, Dessen A, Harrison SC, Skehel JJ, Wiley DC: Atomic
structure of the ectodomain from HIV-1 gp41. Nature 1997, 387:426-430.

6. Wyatt R, Kwong PD, Desjardins E, Sweet RW, Robinson J, Hendrickson WA,
Sodroski JG: The antigenic structure of the HIV gp120 envelope
glycoprotein. Nature 1998, 393:705-711.

7. Mao Y, Wang L, Gu C, Herschhorn A, Xiang SH, Haim H, Yang X, Sodroski J:
Subunit organization of the membrane-bound HIV-1 envelope
glycoprotein trimer. Nat Struct Mol Biol 2012, 19:393-899.

20.

22.

23.

24.

25.

26.

27.

28.

29.

Page 18 of 24

Alkhatib G, Combadiere C, Broder CC, Feng Y, Kennedy PE, Murphy PM,
Berger EA: CC CKR5: a RANTES, MIP-1alpha, MIP-1beta receptor as a fusion
cofactor for macrophage-tropic HIV-1. Science 1996, 272:1955-1958.

Deng H, Liu R, Ellmeier W, Choe S, Unutmaz D, Burkhart M, Di Marzio P,
Marmon S, Sutton RE, Hill CM, et al: Identification of a major co-receptor
for primary isolates of HIV-1. Nature 1996, 381:661-666.

Feng Y, Broder CC, Kennedy PE, Berger EA: HIV-1 entry cofactor: functional
cDNA cloning of a seven-transmembrane, G protein-coupled receptor.
Science 1996, 272:872-877.

Choe H, Farzan M, Sun Y, Sullivan N, Rollins B, Ponath PD, Wu L, Mackay CR,
LaRosa G, Newman W, et al: The beta-chemokine receptors CCR3 and CCR5
facilitate infection by primary HIV-1 isolates. Cell 1996, 85:1135-1148.

Dragic T, Litwin V, Allaway GP, Martin SR, Huang Y, Nagashima KA, Cayanan
C, Maddon PJ, Koup RA, Moore JP, Paxton WA: HIV-1 entry into CD4+ cells is
mediated by the chemokine receptor CC-CKR-5. Nature 1996, 381:667-673.
Tan K Liu J, Wang J, Shen S, Lu M: Atomic structure of a thermostable
subdomain of HIV-1 gp41. Proc Natl Acad Sci USA 1997, 94:12303-12308.
Crise B, Buonocore L, Rose JK: CD4 is retained in the endoplasmic
reticulum by the human immunodeficiency virus type 1 glycoprotein
precursor. J Virol 1990, 64:5585-5593.

Willey RL, Bonifacino JS, Potts BJ, Martin MA, Klausner RD: Biosynthesis,
cleavage, and degradation of the human immunodeficiency virus 1
envelope glycoprotein gp160. Proc Natl Acad Sci USA 1988, 85:9580-9584.
Earl PL, Moss B, Doms RW: Folding, interaction with GRP78-BiP, assembly,
and transport of the human immunodeficiency virus type 1 envelope
protein. J Virol 1991, 65:2047-2055.

Courageot J, Fenouillet E, Bastiani P, Miquelis R: Intracellular degradation
of the HIV-1 envelope glycoprotein. Evidence for, and some
characteristics of, an endoplasmic reticulum degradation pathway. Eur J
Biochem 1999, 260:482-489.

Bernstein HB, Compans RW: Sulfation of the human immunodeficiency
virus envelope glycoprotein. J Virol 1992, 66:6953-6959.

Allan JS, Coligan JE, Barin F, McLane MF, Sodroski JG, Rosen CA, Haseltine
WA, Lee TH, Essex M: Major glycoprotein antigens that induce antibodies
in AIDS patients are encoded by HTLV-III. Science 1985, 228:1091-1094.
Bernstein HB, Tucker SP, Hunter E, Schutzbach JS, Compans RW: Human
immunodeficiency virus type 1 envelope glycoprotein is modified by
O-linked oligosaccharides. J Virol 1994, 68:463-468.

Leonard CK, Spellman MW, Riddle L, Harris RJ, Thomas JN, Gregory TJ:
Assignment of intrachain disulfide bonds and characterization of
potential glycosylation sites of the type 1 recombinant human
immunodeficiency virus envelope glycoprotein (gp120) expressed in
Chinese hamster ovary cells. J Biol Chem 1990, 265:10373-10382.

Earl PL, Koenig S, Moss B: Biological and immunological properties of
human immunodeficiency virus type 1 envelope glycoprotein: analysis
of proteins with truncations and deletions expressed by recombinant
vaccinia viruses. J Virol 1991, 65:31-41.

Schawaller M, Smith GE, Skehel JJ, Wiley DC: Studies with crosslinking
reagents on the oligomeric structure of the env glycoprotein of HIV.
Virology 1989, 172:367-369.

Fenouillet E, Jones IM: The glycosylation of human immunodeficiency
virus type 1 transmembrane glycoprotein (gp41) is important for the
efficient intracellular transport of the envelope precursor gp160. J Gen
Virol 1995, 76(Pt 6):1509-1514.

Checkley MA, Luttge BG, Freed EO: HIV-1 envelope glycoprotein
biosynthesis, trafficking, and incorporation. J Mol Biol 2011, 410:582-608.
Bunnik EM, Pisas L, Van Nuenen AC, Schuitemaker H: Autologous
neutralizing humoral immunity and evolution of the viral envelope in
the course of subtype B human immunodeficiency virus type 1
infection. J Virol 2008, 82:7932-7941.

Borggren M, Repits J, Sterjovski J, Uchtenhagen H, Churchill MJ, Karlsson A,
Albert J, Achour A, Gorry PR, Fenyo EM, Jansson M: Increased sensitivity to
broadly neutralizing antibodies of end-stage disease R5 HIV-1 correlates
with evolution in Env glycosylation and charge. PLoS One 2011, 6:€20135.
Fenyo EM, Esbjornsson J, Medstrand P, Jansson M: Human
immunodeficiency virus type 1 biological variation and coreceptor use:
from concept to clinical significance. J Intern Med 2011, 270:520-531.
Steckbeck JD, Craigo JK, Barnes CO, Montelaro RC: Highly conserved
structural properties of the C-terminal tail of HIV-1 gp41 protein despite
substantial sequence variation among diverse clades: implications for
functions in viral replication. J Biol Chem 2011, 286:27156-27166.



Santos da Silva et al. Retrovirology 2013, 10:54
http://www.retrovirology.com/content/10/1/54

30.

31

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

Steckbeck JD, Kuhlmann AS, Montelaro RC: C-terminal tail of human
immunodeficiency virus gp41: functionally rich and structurally
enigmatic. J Gen Virol 2012, 94:1-19.

Postler TS, Desrosiers RC: The Tale of the Long Tail: the Cytoplasmic
Domain of HIV-1 gp41. J Virol 2012, 87:2-15.

Pang HB, Hevroni L, Kol N, Eckert DM, Tsvitov M, Kay MS, Rousso I: Virion
stiffness regulates immature HIV-1 entry. Retrovirology 2013, 10:4.

Chojnacki J, Staudt T, Glass B, Bingen P, Engelhardt J, Anders M, Schneider J,

Muller B, Hell SW, Krausslich HG: Maturation-dependent HIV-1 surface
protein redistribution revealed by fluorescence nanoscopy. Science 2012,
338:524-528.

Hunter E, Swanstrom R: Retrovirus envelope glycoproteins. Curr Top
Microbiol Immunol 1990, 157:187-253.

Buratti E, McLain L, Tisminetzky S, Cleveland SM, Dimmock NJ, Baralle FE:
The neutralizing antibody response against a conserved region of
human immunodeficiency virus type 1 gp41 (amino acid residues
731-752) is uniquely directed against a conformational epitope. J Gen
Virol 1998, 79(Pt 11):2709-2716.

Reading SA, Heap CJ, Dimmock NJ: A novel monoclonal antibody specific
to the C-terminal tail of the gp41 envelope transmembrane protein of
human immunodeficiency virus type 1 that preferentially neutralizes
virus after it has attached to the target cell and inhibits the production
of infectious progeny. Virology 2003, 315:362-372.

Heap CJ, Reading SA, Dimmock NJ: An antibody specific for the C-terminal
tail of the gp41 transmembrane protein of human immunodeficiency virus
type 1 mediates post-attachment neutralization, probably through inhibition
of virus-cell fusion. J Gen Virol 2005, 86:1499-1507.

Cheung L, McLain L, Hollier MJ, Reading SA, Dimmock NJ: Part of the
C-terminal tail of the envelope gp41 transmembrane glycoprotein of
human immunodeficiency virus type 1 is exposed on the surface of
infected cells and is involved in virus-mediated cell fusion. J Gen Virol
2005, 86:131-138.

Eisenberg D, Wesson M: The most highly amphiphilic alpha-helices
include two amino acid segments in human immunodeficiency virus
glycoprotein 41. Biopolymers 1990, 29:171-177.

Miller MA, Garry RF, Jaynes JM, Montelaro RC: A structural correlation
between lentivirus transmembrane proteins and natural cytolytic
peptides. AIDS Res Hum Retroviruses 1991, 7:511-519.

Kliger Y, Shai Y: A leucine zipper-like sequence from the cytoplasmic tail
of the HIV-1 envelope glycoprotein binds and perturbs lipid bilayers.
Biochemistry 1997, 36:5157-5169.

Venable RM, Pastor RW, Brooks BR, Carson FW: Theoretically determined
three-dimensional structures for amphipathic segments of the HIV-1
gp41 envelope protein. AIDS Res Hum Retroviruses 1989, 5:7-22.

Dubay JW, Roberts SJ, Hahn BH, Hunter E: Truncation of the human
immunodeficiency virus type 1 transmembrane glycoprotein
cytoplasmic domain blocks virus infectivity. J Virol 1992, 66:6616-6625.
Yu X, Yuan X, McLane MF, Lee TH, Essex M: Mutations in the cytoplasmic
domain of human immunodeficiency virus type 1 transmembrane
protein impair the incorporation of Env proteins into mature virions.

J Virol 1993, 67:213-221.

Piller SC, Dubay JW, Derdeyn CA, Hunter E: Mutational analysis of
conserved domains within the cytoplasmic tail of gp41 from human
immunodeficiency virus type 1: effects on glycoprotein incorporation
and infectivity. J Virol 2000, 74:11717-11723.

Kalia V, Sarkar S, Gupta P, Montelaro RC: Rational site-directed mutations
of the LLP-1 and LLP-2 lentivirus lytic peptide domains in the
intracytoplasmic tail of human immunodeficiency virus type 1 gp41
indicate common functions in cell-cell fusion but distinct roles in virion
envelope incorporation. J Virol 2003, 77:3634-3646.

Jiang J, Aiken C: Maturation-dependent human immunodeficiency virus
type 1 particle fusion requires a carboxyl-terminal region of the gp41
cytoplasmic tail. J Virol 2007, 81:9999-10008.

Miller MA, Cloyd MW, Liebmann J, Rinaldo CR Jr, Islam KR, Wang SZ,
Mietzner TA, Montelaro RC: Alterations in cell membrane permeability by
the lentivirus lytic peptide (LLP-1) of HIV-1 transmembrane protein.
Virology 1993, 196:89-100.

Chen SS, Lee SF, Wang CT:

Cellular membrane-binding ability of the C-terminal cytoplasmic domain
of human immunodeficiency virus type 1 envelope transmembrane
protein gp41. J Virol 2001, 75:9925-9938.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

62.

63.

64.

65.

66.

67.

68.

69.

Page 19 of 24

Chernomordik L, Chanturiya AN, Suss-Toby E, Nora E, Zimmerberg J: An
amphipathic peptide from the C-terminal region of the human
immunodeficiency virus envelope glycoprotein causes pore formation in
membranes. J Virol 1994, 68:7115-7123.

Comardelle AM, Norris CH, Plymale DR, Gatti PJ, Choi B, Fermin CD, Haislip
AM, Tencza SB, Mietzner TA, Montelaro RC, Garry RF: A synthetic peptide
corresponding to the carboxy terminus of human immunodeficiency
virus type 1 transmembrane glycoprotein induces alterations in the ionic
permeability of Xenopus laevis oocytes. AIDS Res Hum Retroviruses 1997,
13:1525-1532.

Murakami T, Freed EO: Genetic evidence for an interaction between
human immunodeficiency virus type 1 matrix and alpha-helix 2 of the
gp41 cytoplasmic tail. J Virol 2000, 74:3548-3554.

Gabuzda DH, Lever A, Terwilliger E, Sodroski J: Effects of deletions in the
cytoplasmic domain on biological functions of human immunodeficiency
virus type 1 envelope glycoproteins. J Virol 1992, 66:3306-3315.

Wyma DJ, Jiang J, Shi J, Zhou J, Lineberger JE, Miller MD, Aiken C: Coupling
of human immunodeficiency virus type 1 fusion to virion maturation: a
novel role of the gp41 cytoplasmic tail. J Virol 2004, 78:3429-3435.

Lee SF, Wang CT, Liang JY, Hong SL, Huang CC, Chen SS: Multimerization
potential of the cytoplasmic domain of the human immunodeficiency
virus type 1 transmembrane glycoprotein gp41. J Biol Chem 2000,
275:15809-15819.

Zhu Y, Lu L, Chao L, Chen YH: Important changes in biochemical
properties and function of mutated LLP12 domain of HIV-1 gp41.

Chem Biol Drug Des 2007, 70:311-318.

Edwards TG, Wyss S, Reeves D, Zolla-Pazner S, Hoxie JA, Doms RW,
Baribaud F: Truncation of the cytoplasmic domain induces exposure of
conserved regions in the ectodomain of human immunodeficiency virus
type 1 envelope protein. J Virol 2002, 76:2683-2691.

Wyss S, Dimitrov AS, Baribaud F, Edwards TG, Blumenthal R, Hoxie JA:
Regulation of human immunodeficiency virus type 1 envelope
glycoprotein fusion by a membrane-interactive domain in the gp41
cytoplasmic tail. J Virol 2005, 79:12231-12241.

Abrahamyan LG, Mkrtchyan SR, Binley J, Lu M, Melikyan GB, Cohen FS: The
cytoplasmic tail slows the folding of human immunodeficiency virus
type 1 Env from a late prebundle configuration into the six-helix bundle.
J Virol 2005, 79:106-115.

Lu L, Zhu Y, Huang J, Chen X, Yang H, Jiang S, Chen YH: Surface exposure
of the HIV-1 env cytoplasmic tail LLP2 domain during the membrane
fusion process: interaction with gp41 fusion core. J Biol Chem 2008,
283:16723-16731.

Spies CP, Compans RW: Effects of cytoplasmic domain length on cell
surface expression and syncytium-forming capacity of the simian
immunodeficiency virus envelope glycoprotein. Virology 1994, 203:8-19.
Affranchino JL, Gonzalez SA: Mutations at the C-terminus of the simian
immunodeficiency virus envelope glycoprotein affect gp120-gp41
stability on virions. Virology 2006, 347:217-225.

Durham ND, Yewdall AW, Chen P, Lee R, Zony C, Robinson JE, Chen BK:
Neutralization resistance of virological synapse-mediated HIV-1 Infection
is regulated by the gp41 cytoplasmic tail. J Virol 2012, 86:7484-7495.
Davis MR, Jiang J, Zhou J, Freed EO, Aiken C: A mutation in the human
immunodeficiency virus type 1 Gag protein destabilizes the interaction of
the envelope protein subunits gp120 and gp41. J Virol 2006, 80:2405-2417.
Bhakta SJ, Shang L, Prince JL, Claiborne DT, Hunter E: Mutagenesis of tyrosine
and di-leucine motifs in the HIV-1 envelope cytoplasmic domain results in
a loss of Env-mediated fusion and infectivity. Retrovirology 2011, 8:37.

Haffar OK, Dowbenko DJ, Berman PW: Topogenic analysis of the human
immunodeficiency virus type 1 envelope glycoprotein, gp160, in
microsomal membranes. J Cell Biol 1988, 107:1677-1687.

Kennedy RC, Henkel RD, Pauletti D, Allan JS, Lee TH, Essex M, Dreesman GR:
Antiserum to a synthetic peptide recognizes the HTLV-IIl envelope
glycoprotein. Science 1986, 231:1556-1559.

Chanh TC, Dreesman GR, Kanda P, Linette GP, Sparrow JT, Ho DD, Kennedy
RC: Induction of anti-HIV neutralizing antibodies by synthetic peptides.
EMBO J 1986, 5:3065-3071.

Cleveland SM, McLain L, Cheung L, Jones TD, Hollier M, Dimmock NJ: A
region of the C-terminal tail of the gp41 envelope glycoprotein of
human immunodeficiency virus type 1 contains a neutralizing epitope:
evidence for its exposure on the surface of the virion. J Gen Virol 2003,
84:591-602.



Santos da Silva et al. Retrovirology 2013, 10:54
http://www.retrovirology.com/content/10/1/54

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

Hollier MJ, Dimmock NJ: The C-terminal tail of the gp41 transmembrane
envelope glycoprotein of HIV-1 clades A, B, C, and D may exist in two
conformations: an analysis of sequence, structure, and function.

Virology 2005, 337:284-296.

Steckbeck JD, Sun C, Sturgeon TJ, Montelaro RC: Topology of the C-
terminal tail of HIV-1 gp41: differential exposure of the Kennedy epitope
on cell and viral membranes. PLoS One 2010, 5:215261.

Waheed AA, Ablan SD, Roser JD, Sowder RC, Schaffner CP, Chertova E,
Freed EO: HIV-1 escape from the entry-inhibiting effects of a cholesterol-
binding compound via cleavage of gp41 by the viral protease. Proc Natl
Acad Sci USA 2007, 104:8467-8471.

Waheed AA, Ablan SD, Sowder RC, Roser JD, Schaffner CP, Chertova E,
Freed EO: Effect of mutations in the human immunodeficiency virus type
1 protease on cleavage of the gp41 cytoplasmic tail. J Virol 2010,
84:3121-3126.

Futaki S, Nakase |, Suzuki T, Nameki D, Kodama E, Matsuoka M, Sugiura Y:
RNase S complex bearing arginine-rich peptide and anti-HIV activity.

J Mol Recognit 2005, 18:169-174.

Mitchell DJ, Kim DT, Steinman L, Fathman CG, Rothbard JB: Polyarginine
enters cells more efficiently than other polycationic homopolymers.

J Pept Res 2000, 56:318-325.

Tung CH, Weissleder R: Arginine containing peptides as delivery vectors.
Adv Drug Deliv Rev 2003, 55:281-294.

Viard M, Ablan SD, Zhou M, Veenstra TD, Freed EO, Raviv Y, Blumenthal R:
Photoinduced reactivity of the HIV-1 envelope glycoprotein with a
membrane-embedded probe reveals insertion of portions of the HIV-1 Gp41
cytoplasmic tail into the viral membrane. Biochemistry 2008, 47:1977-1983.
Postler TS, Martinez-Navio JM, Yuste E, Desrosiers RC: Evidence against
extracellular exposure of a highly immunogenic region in the C-terminal
domain of the simian immunodeficiency virus gp41 transmembrane
protein. J Virol 2012, 86:1145-1157.

Postler TS, Desrosiers RC: The cytoplasmic domain of the HIV-1
glycoprotein gp41 induces NF-kappaB activation through TGF-beta
-activated kinase 1. Cell Host Microbe 2012, 11:181-193.

Jouvenet N, Neil SJ, Bess C, Johnson MC, Virgen CA, Simon SM, Bieniasz PD:
Plasma membrane is the site of productive HIV-1 particle assembly.
PLOS Biol 2006, 4:¢435.

Welsch S, Keppler OT, Habermann A, Allespach 1, Krijnse-Locker J, Krausslich
HG: HIV-1 buds predominantly at the plasma membrane of primary
human macrophages. PLoS Pathog 2007, 3:e36.

Deneka M, Pelchen-Matthews A, Byland R, Ruiz-Mateos E, Marsh M: In
macrophages, HIV-1 assembles into an intracellular plasma membrane
domain containing the tetraspanins CD81, CD9, and CD53. J Cell Biol
2007, 177:329-341.

Adamson CS, Freed EO: Human immunodeficiency virus type 1 assembly,
release, and maturation. Adv Pharmacol 2007, 55:347-387.

Bieniasz PD: The cell biology of HIV-1 virion genesis. Cell Host Microbe
2009, 5:550-558.

Ono A, Freed EO: Plasma membrane rafts play a critical role in HIV-1
assembly and release. Proc Natl Acad Sci USA 2001, 98:13925-13930.

Ono A, Freed EO: Role of lipid rafts in virus replication. Adv Virus Res 2005,
64:311-358.

Waheed AA, Freed EO: Lipids and membrane microdomains in HIV-1
replication. Virus Res 2009, 143:162-176.

Ono A, Ablan SD, Lockett SJ, Nagashima K, Freed EO: Phosphatidylinositol
(4,5) bisphosphate regulates HIV-1 Gag targeting to the plasma
membrane. Proc Natl Acad Sci USA 2004, 101:14889-148%4.

Chukkapalli V, Hogue B, Boyko V, Hu WS, Ono A: Interaction between the
human immunodeficiency virus type 1 Gag matrix domain and
phosphatidylinositol-(4,5)-bisphosphate is essential for efficient gag
membrane binding. J Virol 2008, 82:2405-2417.

Simmons A, Aluvihare V, McMichael A: Nef triggers a transcriptional
program in T cells imitating single-signal T cell activation and inducing
HIV virulence mediators. Immunity 2001, 14:763-777.

Zhou W, Parent LJ, Wills JW, Resh MD: Identification of a membrane-
binding domain within the amino-terminal region of human
immunodeficiency virus type 1 Gag protein which interacts with acidic
phospholipids. J Virol 1994, 68:2556-2569.

Ono A, Orenstein JM, Freed EO: Role of the Gag matrix domain in
targeting human immunodeficiency virus type 1 assembly. J Virol 2000,
74:2855-2866.

93.

94.

95.

96.

97.

99.

100.

101.

103.

106.

107.

108.

109.

112.

113.

116.

Page 20 of 24

Chow JY, Jeffries CM, Kwan AH, Guss JM, Trewhella J: Calmodulin disrupts
the structure of the HIV-1 MA protein. J Mol Biol 2010, 400:702-714.
Ghanam RH, Fernandez TF, Fledderman EL, Saad JS: Binding of calmodulin
to the HIV-1 matrix protein triggers myristate exposure. J Biol Chem 2010,
285:41911-41920.

Zhou W, Resh MD: Differential membrane binding of the human
immunodeficiency virus type 1 matrix protein. J Virol 1996, 70:8540-8548.
Spearman P, Horton R, Ratner L, Kuli-Zade I: Membrane binding of human
immunodeficiency virus type 1 matrix protein in vivo supports a
conformational myristyl switch mechanism. J Virol 1997, 71:6582-6592.
Scarlata S, Carter C: Role of HIV-1 Gag domains in viral assembly.

Biochim Biophys Acta 2003, 1614:62-72.

Ono A, Waheed AA, Joshi A, Freed EO: Association of human
immunodeficiency virus type 1 gag with membrane does not require
highly basic sequences in the nucleocapsid: use of a novel Gag
multimerization assay. J Virol 2005, 79:14131-14140.

Wright ER, Schooler JB, Ding HJ, Kieffer C, Fillmore C, Sundquist WI, Jensen
GJ: Electron cryotomography of immature HIV-1 virions reveals the
structure of the CA and SP1 Gag shells. EMBO J 2007, 26:2218-2226.
Jouvenet N, Bieniasz PD, Simon SM: Imaging the biogenesis of individual
HIV-1 virions in live cells. Nature 2008, 454:236-240.

Hill CP, Worthylake D, Bancroft DP, Christensen AM, Sundquist WI: Crystal
structures of the trimeric human immunodeficiency virus type 1 matrix
protein: implications for membrane association and assembly. Proc Nat!
Acad Sci USA 1996, 93:3099-3104.

. Briggs JA, Riches JD, Glass B, Bartonova V, Zanetti G, Krausslich HG:

Structure and assembly of immature HIV. Proc Nat/ Acad Sci USA 2009,
106:11090-11095.

Alfadhli A, Barklis RL, Barklis E: HIV-1 matrix organizes as a hexamer of
trimers on membranes containing phosphatidylinositol-(4,5)-
bisphosphate. Virology 2009, 387:466-472.

. Murakami T: Retroviral env glycoprotein trafficking and incorporation

into virions. Mol Biol Int 2012, 2012:682850.

. Ghanam RH, Samal AB, Fernandez TF, Saad JS: Role of the HIV-1 matrix

protein in gag intracellular trafficking and targeting to the plasma
membrane for virus assembly. Front Microbiol 2012, 3:55.

Sandrin V, Cosset FL: Intracellular versus cell surface assembly of retroviral
pseudotypes is determined by the cellular localization of the viral
glycoprotein, its capacity to interact with Gag, and the expression of the
Nef protein. J Biol Chem 2006, 281:528-542.

Sandrin V, Russell SJ, Cosset FL: Targeting retroviral and lentiviral vectors.
Curr Top Microbiol Immunol 2003, 281:137-178.

Leung K, Kim JO, Ganesh L, Kabat J, Schwartz O, Nabel GJ: HIV-1 assembly:
viral glycoproteins segregate quantally to lipid rafts that associate
individually with HIV-1 capsids and virions. Cell Host Microbe 2008, 3:285-292.
Jorgenson RL, Vogt VM, Johnson MC: Foreign glycoproteins can be
actively recruited to virus assembly sites during pseudotyping. J Virol
2009, 83:4060-4067.

. Lee YM, Tang XB, Cimakasky LM, Hildreth JE, Yu XF: Mutations in the

matrix protein of human immunodeficiency virus type 1 inhibit surface
expression and virion incorporation of viral envelope glycoproteins in
CD4+ T lymphocytes. J Virol 1997, 71:1443-1452.

. Owens RJ, Dubay JW, Hunter E, Compans RW: Human immunodeficiency

virus envelope protein determines the site of virus release in polarized
epithelial cells. Proc Natl Acad Sci USA 1991, 88:3987-3991.

Cosson P: Direct interaction between the envelope and matrix proteins
of HIV-1. EMBO J 1996, 15:5783-5788.

Hourioux C, Brand D, Sizaret PY, Lemiale F, Lebigot S, Barin F, Roingeard P:
Identification of the glycoprotein 41(TM) cytoplasmic tail domains of
human immunodeficiency virus type 1 that interact with Pr55Gag
particles. AIDS Res Hum Retroviruses 2000, 16:1141-1147.

. Freed EO, Martin MA: Virion incorporation of envelope glycoproteins with

long but not short cytoplasmic tails is blocked by specific, single amino
acid substitutions in the human immunodeficiency virus type 1 matrix.
J Virol 1995, 69:1984-1989.

. Mammano F, Kondo E, Sodroski J, Bukovsky A, Gottlinger HG: Rescue of

human immunodeficiency virus type 1 matrix protein mutants by envelope
glycoproteins with short cytoplasmic domains. J Virol 1995, 69:3824-3830.
Wyma DJ, Kotov A, Aiken C: Evidence for a stable interaction of gp41
with Pr55(Gag) in immature human immunodeficiency virus type 1
particles. J Virol 2000, 74:9381-9387.



Santos da Silva et al. Retrovirology 2013, 10:54
http://www.retrovirology.com/content/10/1/54

117.

118.

120.

121.

122.

124.

125.

126.

127.

128.

129.

130.

131.

132.

134.

135.

136.

Celma CC, Manrigue JM, Affranchino JL, Hunter E, Gonzalez SA: Domains in
the simian immunodeficiency virus gp41 cytoplasmic tail required for
envelope incorporation into particles. Virology 2001, 283:253-261.

Freed EO, Martin MA: Domains of the human immunodeficiency virus
type 1 matrix and gp41 cytoplasmic tail required for envelope
incorporation into virions. J Virol 1996, 70:341-351.

. Murakami T, Freed EO: The long cytoplasmic tail of gp41 is required in a

cell type-dependent manner for HIV-1 envelope glycoprotein
incorporation into virions. Proc Natl Acad Sci USA 2000, 97:343-348.

Akari H, Fukumori T, Adachi A: Cell-dependent requirement of human
immunodeficiency virus type 1 gp41 cytoplasmic tail for Env
incorporation into virions. J Virol 2000, 74:4891-4893.

Lodge R, Gottlinger H, Gabuzda D, Cohen EA, Lemay G: The
intracytoplasmic domain of gp41 mediates polarized budding of human
immunodeficiency virus type 1 in MDCK cells. J Virol 1994, 68:4857-4861.
Lodge R, Lalonde JP, Lemay G, Cohen EA: The membrane-proximal
intracytoplasmic tyrosine residue of HIV-1 envelope glycoprotein is critical for
basolateral targeting of viral budding in MDCK cells. EMBO J 1997, 16:695-705.

. LaBranche CC, Sauter MM, Haggarty BS, Vance PJ, Romano J, Hart TK,

Bugelski PJ, Marsh M, Hoxie JA: A single amino acid change in the
cytoplasmic domain of the simian immunodeficiency virus
transmembrane molecule increases envelope glycoprotein expression
on infected cells. J Virol 1995, 69:5217-5227.

Yu X, Yuan X, Matsuda Z, Lee TH, Essex M: The matrix protein of human
immunodeficiency virus type 1 is required for incorporation of viral
envelope protein into mature virions. J Virol 1992, 66:4966-4971.
Dorfman T, Mammano F, Haseltine WA, Gottlinger HG: Role of the matrix
protein in the virion association of the human immunodeficiency virus
type 1 envelope glycoprotein. J Virol 1994, 68:1689-1696.

Gonzalez SA, Burny A, Affranchino JL: Identification of domains in the
simian immunodeficiency virus matrix protein essential for assembly
and envelope glycoprotein incorporation. J Virol 1996,

70:6384-6389.

Beaumont E, Vendrame D, Verrier B, Roch E, Biron F, Barin F, Mammano F,
Brand D: Matrix and envelope coevolution revealed in a patient
monitored since primary infection with human immunodeficiency virus
type 1. J Virol 2009, 83:9875-9889.

Owens RJ, Rose JK: Cytoplasmic domain requirement for incorporation of
a foreign envelope protein into vesicular stomatitis virus. J Virol 1993,
67:360-365.

Murakami T, Ablan S, Freed EO, Tanaka Y: Regulation of human
immunodeficiency virus type 1 Env-mediated membrane fusion by viral
protease activity. J Virol 2004, 78:1026-1031.

Kol N, ShiY, Tsvitov M, Barlam D, Shneck RZ, Kay MS, Rousso I: A stiffness
switch in human immunodeficiency virus. Biophys J 2007, 92:1777-1783.
Pettit SC, Moody MD, Wehbie RS, Kaplan AH, Nantermet PV, Klein CA,
Swanstrom R: The p2 domain of human immunodeficiency virus type 1
Gag regulates sequential proteolytic processing and is required to
produce fully infectious virions. J Virol 1994, 68:3017-8027.

Muranyi W, Malkusch S, Muller B, Heilemann M, Krausslich HG: Super-
resolution microscopy reveals specific recruitment of HIV-1 envelope
proteins to viral assembly sites dependent on the envelope C-terminal
tail. PLoS Pathog 2013, 9:e1003198.

. Egan MA, Carruth LM, Rowell JF, Yu X, Siliciano RF: Human

immunodeficiency virus type 1 envelope protein endocytosis mediated
by a highly conserved intrinsic internalization signal in the cytoplasmic
domain of gp41 is suppressed in the presence of the Pr55gag precursor
protein. J Virol 1996, 70:6547-6556.

Micoli KJ, Pan G, Wu Y, Williams JP, Cook WJ, McDonald JM: Requirement
of calmodulin binding by HIV-1 gp160 for enhanced FAS-mediated
apoptosis. J Biol Chem 2000, 275:1233-1240.

Radding W, Pan ZQ, Hunter E, Johnston P, Williams JP, McDonald JM:
Expression of HIV-1 envelope glycoprotein alters cellular calmodulin.
Biochem Biophys Res Commun 1996, 218:192-197.

Ishikawa H, Sasaki M, Noda S, Koga Y: Apoptosis induction by the binding
of the carboxyl terminus of human immunodeficiency virus type 1
gp160 to calmodulin. J Virol 1998, 72:6574-6580.

. Micoli KJ, Mamaeva O, Piller SC, Barker JL, Pan G, Hunter E, McDonald JM:

Point mutations in the C-terminus of HIV-1 gp160 reduce apoptosis and
calmodulin binding without affecting viral replication. Virology 2006,
344:468-479.

138.

139.

140.

141.

143.

145.

148.

149.

150.

152.

154.

155.

157.

158.

Page 21 of 24

Rein A, Mirro J, Haynes JG, Ernst SM, Nagashima K: Function of the
cytoplasmic domain of a retroviral transmembrane protein: p15E-p2E
cleavage activates the membrane fusion capability of the murine
leukemia virus Env protein. J Virol 1994, 68:1773-1781.

Brody BA, Rhee SS, Hunter E: Postassembly cleavage of a retroviral
glycoprotein cytoplasmic domain removes a necessary incorporation
signal and activates fusion activity. J Virol 1994, 68:4620-4627.

Wilk T, Pfeiffer T, Bosch V: Retained in vitro infectivity and
cytopathogenicity of HIV-1 despite truncation of the C-terminal tail of
the env gene product. Virology 1992, 189:167-177.

Emerson V, Haller C, Pfeiffer T, Fackler OT, Bosch V: Role of the C-terminal
domain of the HIV-1 glycoprotein in cell-to-cell viral transmission
between T lymphocytes. Retrovirology 2010, 7:43.

. Iwatani Y, Ueno T, Nishimura A, Zhang X, Hattori T, Ishimoto A, Ito M, Sakai

H: Modification of virus infectivity by cytoplasmic tail of HIV-1 TM
protein. Virus Res 2001, 74:75-87.

Zhu P, Chertova E, Bess J Jr, Lifson JD, Arthur LO, Liu J, Taylor KA, Roux KH:
Electron tomography analysis of envelope glycoprotein trimers on HIV
and simian immunodeficiency virus virions. Proc Natl Acad Sci USA 2003,
100:15812-15817.

. Yuste E, Reeves JD, Doms RW, Desrosiers RC: Modulation of Env content in

virions of simian immunodeficiency virus: correlation with cell surface
expression and virion infectivity. J Virol 2004, 78:6775-6785.

Chertova E, Bess JW Jr, Crise BJ, Sowder IR, Schaden TM, Hilburn JM, Hoxie
JA, Benveniste RE, Lifson JD, Henderson LE, Arthur LO: Envelope
glycoprotein incorporation, not shedding of surface envelope
glycoprotein (gp120/SU), Is the primary determinant of SU content of
purified human immunodeficiency virus type 1 and simian
immunodeficiency virus. J Virol 2002, 76:5315-5325.

. Tsujimoto H, Cooper RW, Kodama T, Fukasawa M, Miura T, Ohta Y, Ishikawa

K, Nakai M, Frost E, Roelants GE, et al: Isolation and characterization of
simian immunodeficiency virus from mandrills in Africa and its
relationship to other human and simian immunodeficiency viruses.
J Virol 1988, 62:4044-4050.

. Chakrabarti L, Emerman M, Tiollais P, Sonigo P: The cytoplasmic domain of

simian immunodeficiency virus transmembrane protein modulates
infectivity. J Virol 1989, 63:4395-4403.

Hirsch VM, Edmondson P, Murphey-Corb M, Arbeille B, Johnson PR, Mullins
JI: SIV adaptation to human cells. Nature 1989, 341:573-574.

Kodama T, Wooley DP, Naidu YM, Kestler HW 3rd, Daniel MD, Li Y,
Desrosiers RC: Significance of premature stop codons in env of simian
immunodeficiency virus. J Virol 1989, 63:4709-4714.

Ritter GD Jr, Mulligan MJ, Lydy SL, Compans RW: Cell fusion activity of the
simian immunodeficiency virus envelope protein is modulated by the
intracytoplasmic domain. Virology 1993, 197:255-264.

. Zingler K, Littman DR: Truncation of the cytoplasmic domain of the

simian immunodeficiency virus envelope glycoprotein increases env
incorporation into particles and fusogenicity and infectivity. J Virol 1993,
67:2824-2831.

Shacklett BL, Weber CJ, Shaw KE, Keddie EM, Gardner MB, Sonigo P, Luciw
PA: The intracytoplasmic domain of the Env transmembrane protein is a
locus for attenuation of simian immunodeficiency virus SIVmac in rhesus
macaques. J Virol 2000, 74:5836-5844.

. Mulligan MJ, Yamshchikov GV, Ritter GD Jr, Gao F, Jin MJ, Nail CD, Spies CP,

Hahn BH, Compans RW: Cytoplasmic domain truncation enhances fusion
activity by the exterior glycoprotein complex of human
immunodeficiency virus type 2 in selected cell types. J Virol 1992,
66:3971-3975.

Nilsson T, Warren G: Retention and retrieval in the endoplasmic reticulum
and the Golgi apparatus. Curr Opin Cell Biol 1994, 6:517-521.

Munro S: An investigation of the role of transmembrane domains in
Golgi protein retention. EMBO J 1995, 14:4695-4704.

. Bultmann A, Muranyi W, Seed B, Haas J: Identification of two sequences in

the cytoplasmic tail of the human immunodeficiency virus type 1 envelope
glycoprotein that inhibit cell surface expression. J Virol 2001, 75:5263-5276.
Rowell JF, Stanhope PE, Siliciano RF: Endocytosis of endogenously
synthesized HIV-1 envelope protein. Mechanism and role in processing
for association with class Il MHC. J Immunol 1995, 155:473-488.

Ohno H, Fournier MC, Poy G, Bonifacino JS: Structural determinants of
interaction of tyrosine-based sorting signals with the adaptor medium
chains. J Biol Chem 1996, 271:29009-29015.



Santos da Silva et al. Retrovirology 2013, 10:54
http://www.retrovirology.com/content/10/1/54

159.

160.

161.

162.

163.

164.

166.

167.

172.

173.

174.

175.

176.

177.

178.

Ohno H, Aguilar RC, Fournier MC, Hennecke S, Cosson P, Bonifacino JS:
Interaction of endocytic signals from the HIV-1 envelope glycoprotein
complex with members of the adaptor medium chain family.

Virology 1997, 238:305-315.

Batonick M, Favre M, Boge M, Spearman P, Honing S, Thali M: Interaction of
HIV-1 Gag with the clathrin-associated adaptor AP-2. Virology 2005,
342:190-200.

Camus G, Segura-Morales C, Molle D, Lopez-Verges S, Begon-Pescia C,
Cazevieille C, Schu P, Bertrand E, Berlioz-Torrent C, Basyuk E: The clathrin
adaptor complex AP-1 binds HIV-1 and MLV Gag and facilitates their
budding. Mol Biol Cell 2007, 18:3193-3203.

Dong X, Li H, Derdowski A, Ding L, Burnett A, Chen X, Peters TR, Dermody TS,
Woodruff E, Wang JJ, Spearman P: AP-3 directs the intracellular trafficking of
HIV-1 Gag and plays a key role in particle assembly. Cell 2005, 120:663-674.
Liu L, Sutton J, Woodruff E, Villalta F, Spearman P, Dong X: Defective HIV-1
particle assembly in AP-3-deficient cells derived from patients with
Hermansky-Pudlak syndrome type 2. J Virol 2012, 86:11242-11253.
Berlioz-Torrent C, Shacklett BL, Erdtmann L, Delamarre L, Bouchaert |, Sonigo
P, Dokhelar MC, Benarous R: Interactions of the cytoplasmic domains of
human and simian retroviral transmembrane proteins with components
of the clathrin adaptor complexes modulate intracellular and cell surface
expression of envelope glycoproteins. J Virol 1999, 73:1350-1361.

. Lopez-Verges S, Camus G, Blot G, Beauvoir R, Benarous R, Berlioz-Torrent C:

Tail-interacting protein TIP47 is a connector between Gag and Env and
is required for Env incorporation into HIV-1 virions. Proc Natl Acad Sci USA
2006, 103:14947-14952.

Bowers K, Pelchen-Matthews A, Honing S, Vance PJ, Creary L, Haggarty BS,
Romano J, Ballensiefen W, Hoxie JA, Marsh M: The simian immunodeficiency
virus envelope glycoprotein contains multiple signals that regulate its cell
surface expression and endocytosis. Traffic 2000, 1:661-674.

Wyss S, Berlioz-Torrent C, Boge M, Blot G, Honing S, Benarous R, Thali M:
The highly conserved C-terminal dileucine motif in the cytosolic domain
of the human immunodeficiency virus type 1 envelope glycoprotein is
critical for its association with the AP-1 clathrin adaptor [correction of
adapter]. J Virol 2001, 75:2982-2992.

. Byland R, Vance PJ, Hoxie JA, Marsh M: A conserved dileucine motif

mediates clathrin and AP-2-dependent endocytosis of the HIV-1
envelope protein. Mol Biol Cell 2007, 18:414-425.

. Dingwell KS, Johnson DC: The herpes simplex virus gE-gl complex

facilitates cell-to-cell spread and binds to components of cell junctions.
J Virol 1998, 72:8933-8942.

. Johnson DC, Huber MT: Directed egress of animal viruses promotes cell-

to-cell spread. J Virol 2002, 76:1-8.

. Orsini MJ, Parent JL, Mundell SJ, Marchese A, Benovic JL: Trafficking of the

HIV coreceptor CXCRA4. Role of arrestins and identification of residues in
the c-terminal tail that mediate receptor internalization. J Biol Chem 1999,
274:31076-31086.

Blot G, Janvier K, Le Panse S, Benarous R, Berlioz-Torrent C: Targeting of the
human immunodeficiency virus type 1 envelope to the trans-Golgi
network through binding to TIP47 is required for env incorporation into
virions and infectivity. J Virol 2003, 77:6931-6945.

Murray JL, Mavrakis M, McDonald NJ, Yilla M, Sheng J, Bellini WJ, Zhao L, Le
Doux JM, Shaw MW, Luo CC, et al: Rab9 GTPase is required for replication
of human immunodeficiency virus type 1, filoviruses, and measles virus.
J Virol 2005, 79:11742-11751.

Lambele M, Labrosse B, Roch E, Moreau A, Verrier B, Barin F, Roingeard P,
Mammano F, Brand D: Impact of natural polymorphism within the gp41
cytoplasmic tail of human immunodeficiency virus type 1 on the
intracellular distribution of envelope glycoproteins and viral assembly.

J Virol 2007, 81:125-140.

Bauby H, Lopez-Verges S, Hoeffel G, Delcroix-Genete D, Janvier K, Mammano F,
Hosmalin A, Berlioz-Torrent C: TIP47 is required for the production of infectious
HIV-1 particles from primary macrophages. Traffic 2010, 11:455-467.

Feng Y, Press B, Wandinger-Ness A: Rab 7: an important regulator of late
endocytic membrane traffic. J Cell Biol 1995, 131:1435-1452.

Chavrier P, Parton RG, Hauri HP, Simons K, Zerial M: Localization of low
molecular weight GTP binding proteins to exocytic and endocytic
compartments. Cell 1990, 62:317-329.

Vitelli R, Santillo M, Lattero D, Chiariello M, Bifulco M, Bruni CB, Bucci C: Role
of the small GTPase Rab7 in the late endocytic pathway. J Biol Chem
1997, 272:4391-4397.

179.

180.

181.

185.

186.

188.

189.

190.

191.

195.
196.

198.

199.

200.

20

202.

Page 22 of 24

Vieira OV, Bucci C, Harrison RE, Trimble WS, Lanzetti L, Gruenberg J,
Schreiber AD, Stahl PD, Grinstein S: Modulation of Rab5 and Rab7
recruitment to phagosomes by phosphatidylinositol 3-kinase. Mol Cell
Biol 2003, 23:2501-2514.

Wang T, Ming Z, Xiaochun W, Hong W: Rab7: role of its protein interaction
cascades in endo-lysosomal traffic. Cell Signal 2011, 23:516-521.

Brass AL, Dykxhoorn DM, Benita Y, Yan N, Engelman A, Xavier RJ, Lieberman
J, Elledge SJ: Identification of host proteins required for HIV infection
through a functional genomic screen. Science 2008, 319:921-926.

. Caillet M, Janvier K, Pelchen-Matthews A, Delcroix-Genete D, Camus G,

Marsh M, Berlioz-Torrent C: Rab7A is required for efficient production of
infectious HIV-1. PLoS Pathog 2011, 7:21002347.

. Bucci C, Thomsen P, Nicoziani P, McCarthy J, Van Deurs B: Rab7: a key to

lysosome biogenesis. Mol Biol Cell 2000, 11:467-480.

. Lebrand C, Corti M, Goodson H, Cosson P, Cavalli V, Mayran N, Faure J,

Gruenberg J: Late endosome motility depends on lipids via the small
GTPase Rab7. EMBO J 2002, 21:1289-1300.

Ceresa BP: Bahr SJ: rab7 activity affects epidermal growth factor:
epidermal growth factor receptor degradation by regulating
endocytic trafficking from the late endosome. J Biol Chem 2006,
281:1099-1106.

Jager S, Bucci C, Tanida |, Ueno T, Kominami E, Saftig P, Eskelinen EL: Role
for Rab7 in maturation of late autophagic vacuoles. J Cell Sci 2004,
117:4837-4848.

. Gutierrez MG, Munafo DB, Beron W, Colombo MI: Rab7 is required for the

normal progression of the autophagic pathway in mammalian cells.

J Cell Sci 2004, 117:2687-2697.

Schiavoni |, Muratori C, Piacentini V, Giammarioli AM, Federico M: The HIV-1 Nef
protein: how an AIDS pathogenetic factor turns to a tool for combating AIDS.
Curr Drug Targets Immune Endocr Metabol Disord 2004, 4:19-27.

Kyei GB, Dinkins C, Davis AS, Roberts E, Singh SB, Dong C, Wu L, Kominami
E, Ueno T, Yamamoto A, et al: Autophagy pathway intersects with HIV-1
biosynthesis and regulates viral yields in macrophages. J Cell Biol 2009,
186:255-268.

Dinkins C, Arko-Mensah J, Deretic V: Autophagy and HIV. Semin Cell Dev
Biol 2010, 21:712-718.

Evans DT, Tillman KC, Desrosiers RC: Envelope glycoprotein cytoplasmic
domains from diverse lentiviruses interact with the prenylated Rab
acceptor. J Virol 2002, 76:327-337.

. Blancou P, Evans DT, Desrosiers RC: PRA1 co-localizes with envelope but

does not influence primate lentivirus production, infectivity or envelope
incorporation. J Gen Virol 2005, 86:1785-1790.

. Brown DA, London E: Structure and function of sphingolipid- and

cholesterol-rich membrane rafts. J Biol Chem 2000, 275:17221-17224.

. Simons K, Gerl MJ: Revitalizing membrane rafts: new tools and insights.

Nat Rev Mol Cell Biol 2010, 11:688-699.

Munro S: Lipid rafts: elusive or illusive? Cell 2003, 115:377-388.

Aloia RC, Tian H, Jensen FC: Lipid composition and fluidity of the human
immunodeficiency virus envelope and host cell plasma membranes.
Proc Natl Acad Sci USA 1993, 90:5181-5185.

. Brugger B, Glass B, Haberkant P, Leibrecht I, Wieland FT, Krausslich HG: The

HIV lipidome: a raft with an unusual composition. Proc Natl Acad Sci USA
2006, 103:2641-2646.

Bhattacharya J, Peters PJ, Clapham PR: Human immunodeficiency virus
type 1 envelope glycoproteins that lack cytoplasmic domain cysteines:
impact on association with membrane lipid rafts and incorporation onto
budding virus particles. J Virol 2004, 78:5500-5506.

Campbell S, Oshima M, Mirro J, Nagashima K, Rein A: Reversal by
dithiothreitol treatment of the block in murine leukemia virus maturation
induced by disulfide cross-linking. J Virol 2002, 76:10050-10055.

Guyader M, Kiyokawa E, Abrami L, Turelli P, Trono D: Role for human
immunodeficiency virus type 1 membrane cholesterol in viral
internalization. J Virol 2002, 76:10356-10364.

. Graham DR, Chertova E, Hilburn JM, Arthur LO, Hildreth JE: Cholesterol

depletion of human immunodeficiency virus type 1 and simian
immunodeficiency virus with beta-cyclodextrin inactivates and
permeabilizes the virions: evidence for virion-associated lipid rafts. J Viro/
2003, 77:8237-8248.

Liao Z, Graham DR, Hildreth JE: Lipid rafts and HIV pathogenesis: virion-
associated cholesterol is required for fusion and infection of susceptible
cells. AIDS Res Hum Retroviruses 2003, 19:675-687.



Santos da Silva et al. Retrovirology 2013, 10:54
http://www.retrovirology.com/content/10/1/54

203.

204.

205.

206.

207.

208.

209.

210.

211,

212.

213.

214,

215.

216.

217.

218.

219.

220.

221.

222.

223.

Campbell S, Gaus K, Bittman R, Jessup W, Crowe S, Mak J: The raft-
promoting property of virion-associated cholesterol, but not the
presence of virion-associated Brij 98 rafts, is a determinant of
human immunodeficiency virus type 1 infectivity. J Virol 2004,
78:10556-10565.

Yang P, Ai LS, Huang SC, Li HF, Chan WE, Chang CW, Ko CY, Chen SS: The
cytoplasmic domain of human immunodeficiency virus type 1
transmembrane protein gp41 harbors lipid raft association determinants.
J Virol 2010, 84:59-75.

Rousso |, Mixon MB, Chen BK, Kim PS: Palmitoylation of the HIV-1
envelope glycoprotein is critical for viral infectivity. Proc Natl Acad Sci USA
2000, 97:13523-13525.

Bhattacharya J, Repik A, Clapham PR: Gag regulates association of human
immunodeficiency virus type 1 envelope with detergent-resistant
membranes. J Virol 2006, 80:5292-5300.

Chan WE, Lin HH, Chen SS: Wild-type-like viral replication potential of
human immunodeficiency virus type 1 envelope mutants lacking
palmitoylation signals. J Virol 2005, 79:8374-8387.

Bhatia AK, Kaushik R, Campbell NA, Pontow SE, Ratner L: Mutation of
critical serine residues in HIV-1 matrix result in an envelope
incorporation defect which can be rescued by truncation of the gp41
cytoplasmic tail. Virology 2009, 384:233-241.

Ali A, Avalos RT, Ponimaskin E, Nayak DP: Influenza virus assembly: effect
of influenza virus glycoproteins on the membrane association of M1
protein. J Virol 2000, 74:8709-8719.

Henderson G, Murray J, Yeo RP: Sorting of the respiratory syncytial virus
matrix protein into detergent-resistant structures is dependent on
cell-surface expression of the glycoproteins. Virology 2002, 300:244-254.
Day JR, Munk C, Guatelli JC: The membrane-proximal tyrosine-based
sorting signal of human immunodeficiency virus type 1 gp41 is required
for optimal viral infectivity. J Virol 2004, 78:1069-1079.

Schiavoni |, Trapp S, Santarcangelo AC, Piacentini V, Pugliese K, Baur A,
Federico M: HIV-1 Nef enhances both membrane expression and virion
incorporation of Env products. A model for the Nef-dependent increase
of HIV-1 infectivity. J Biol Chem 2004, 279:22996-23006.

Bresnahan PA, Yonemoto W, Ferrell S, Williams-Herman D, Geleziunas R,
Greene WC: A dileucine motif in HIV-1 Nef acts as an internalization
signal for CD4 downregulation and binds the AP-1 clathrin adaptor.
Curr Biol 1998, 8:1235-1238.

Adnan S, Balamurugan A, Trocha A, Bennett MS, Ng HL, Ali A, Brander C,
Yang OO: Nef interference with HIV-1-specific CTL antiviral activity is
epitope specific. Blood 2006, 108:3414-3419.

Schaefer MR, Wonderlich ER, Roeth JF, Leonard JA, Collins KL: HIV-1 Nef
targets MHC-l and CD4 for degradation via a final common beta-COP
-dependent pathway in T cells. PLoS Pathog 2008, 4:21000131.

El-Far M, Isabelle C, Chomont N, Bourbonniere M, Fonseca S, Ancuta P,
Peretz Y, Chouikh Y, Halwani R, Schwartz O, et al: Down-Regulation of
CTLA-4 by HIV-1 Nef Protein. PLoS One 2013, 8:254295.

Stolp B, Fackler OT: How HIV takes advantage of the cytoskeleton in entry
and replication. Viruses 2011, 3:293-311.

Miller MD, Warmerdam MT, Gaston |, Greene WC, Feinberg MB: The human
immunodeficiency virus-1 nef gene product: a positive factor for viral
infection and replication in primary lymphocytes and macrophages.

J Exp Med 1994, 179:101-113.

Roeth JF, Collins KL: Human immunodeficiency virus type 1 Nef: adapting to
intracellular trafficking pathways. Microbiol Mol Biol Rev 2006, 70:548-563.
Zhou J, Aiken C: Nef enhances human immunodeficiency virus type 1
infectivity resulting from intervirion fusion: evidence supporting a role
for Nef at the virion envelope. J Virol 2001, 75:5851-5859.
Stumptner-Cuvelette P, Jouve M, Helft J, Dugast M, Glouzman AS, Jooss
K, Raposo G, Benaroch P: Human immunodeficiency virus-1 Nef
expression induces intracellular accumulation of multivesicular
bodies and major histocompatibility complex class Il complexes:
potential role of phosphatidylinositol 3-kinase. Mol Biol Cell 2003,
14:4857-4870.

Zheng YH, Plemenitas A, Fielding CJ, Peterlin BM: Nef increases the
synthesis of and transports cholesterol to lipid rafts and HIV-1 progeny
virions. Proc Natl Acad Sci USA 2003, 100:8460-8465.

St Gelais C, Colernan CM, Wang JH, Wu L: HIV-1 Nef Enhances Dendritic
Cell-Mediated Viral Transmission to CD4(+) T Cells and Promotes T-Cell
Activation. PLoS One 2012, 7:e34521.

224,

225.

226.

227.

228.

229.

230.

23

232.

233.

234

235.

236.

237.

238.

239.

240.

241.

242.

243.

244,

245,

Page 23 of 24

Wolf D, Witte V, Clark P, Blume K, Lichtenheld MG, Baur AS: HIV Nef
enhances Tat-mediated viral transcription through a hnRNP-K-nucleated
signaling complex. Cell Host Microbe 2008, 4:398-408.

Omoto S, Fujii YR: Regulation of human immunodeficiency virus 1
transcription by nef microRNA. J Gen Virol 2005, 86:751-755.

Witte V, Laffert B, Gintschel P, Krautkramer E, Blume K, Fackler OT, Baur AS:
Induction of HIV transcription by Nef involves Lck activation and protein
kinase C theta raft recruitment leading to activation of ERK1/2 but not
NF kappa B. J Immunol 2008, 181:8425-8432.

Neri F, Giolo G, Potesta M, Petrini S, Doria M: The HIV-1 Nef protein has a
dual role in T cell receptor signaling in infected CD4+ T lymphocytes.
Virology 2011, 410:316-326.

Arold ST, Baur AS: Dynamic Nef and Nef dynamics: how structure could
explain the complex activities of this small HIV protein. Trends Biochem
Sci 2001, 26:356-363.

Chazal N, Singer G, Aiken C, Hammarskjold ML, Rekosh D: Human
immunodeficiency virus type 1 particles pseudotyped with envelope
proteins that fuse at low pH no longer require Nef for optimal
infectivity. J Virol 2001, 75:4014-4018.

Perugi F, Muriaux D, Ramirez BC, Chabani S, Decroly E, Darlix JL, Blot V,
Pique C: Human Discs Large is a new negative regulator of human
immunodeficiency virus-1 infectivity. Mol Biol Cell 2009, 20:498-508.

. Coleman SH, Van Damme N, Day JR, Noviello CM, Hitchin D, Madrid R,

Benichou S, Guatelli JC: Leucine-specific, functional interactions between
human immunodeficiency virus type 1 Nef and adaptor protein
complexes. J Virol 2005, 79:2066-2078.

Madrid R, Janvier K, Hitchin D, Day J, Coleman S, Noviello C, Bouchet J,
Benmerah A, Guatelli J, Benichou S: Nef-induced alteration of the early/
recycling endosomal compartment correlates with enhancement of
HIV-1 infectivity. J Biol Chem 2005, 280:5032-5044.

Costa LJ, Chen N, Lopes A, Aguiar RS, Tanuri A, Plemenitas A, Peterlin BM:
Interactions between Nef and AIP1 proliferate multivesicular bodies and
facilitate egress of HIV-1. Retrovirology 2006, 3:33.

Costa LJ, Zheng YH, Sabotic J, Mak J, Fackler OT, Peterlin BM: Nef binds p6*
in GagPol during replication of human immunodeficiency virus type 1.
J Virol 2004, 78:5311-5323.

Leiherer A, Ludwig C, Wagner R: Influence of extended mutations of the
HIV-1 transframe protein p6 on Nef-dependent viral replication and
infectivity in vitro. Virology 2009, 387:200-210.

He C, Klionsky DJ: Regulation mechanisms and signaling pathways of
autophagy. Annu Rev Genet 2009, 43:67-93.

Fader CM, Colombo MI: Autophagy and multivesicular bodies: two closely
related partners. Cell Death Differ 2009, 16:70-78.

Noda T, Yoshimori T: Molecular basis of canonical and bactericidal
autophagy. Int Immunol 2009, 21:1199-1204.

Welsch S, Muller B, Krausslich HG: More than one door - Budding of
enveloped viruses through cellular membranes. FEBS Lett 2007,
581:2089-2097.

Schibli DJ, Montelaro RC, Vogel HJ: The membrane-proximal
tryptophan-rich region of the HIV glycoprotein, gp41, forms a well-
defined helix in dodecylphosphocholine micelles. Biochemistry 2001,
40:9570-9578.

Sun ZY, Oh KJ, Kim M, Yu J, Brusic V, Song L, Qiao Z, Wang JH, Wagner G,
Reinherz EL: HIV-1 broadly neutralizing antibody extracts its epitope from
a kinked gp41 ectodomain region on the viral membrane.

Immunity 2008, 28:52-63.

Buzon V, Natrajan G, Schibli D, Campelo F, Kozlov MM, Weissenhorn W:
Crystal structure of HIV-1 gp41 including both fusion peptide and
membrane proximal external regions. PLoS Pathog 2010, 6:21000880.

Lai RP, Yan J, Heeney J, McClure MO, Gottlinger H, Luban J, Pizzato M: Nef
decreases HIV-1 sensitivity to neutralizing antibodies that target the
membrane-proximal external region of TMgp41. PLoS Pathog 2011,
7:21002442.

Tokunaga K, Kojima A, Kurata T, Ikuta K, Inubushi R, Shimano R, Kawamura
M, Akari H, Koyama AH, Adachi A: Producer cell-dependent requirement
of the Nef protein for efficient entry of HIV-1 into cells. Biochem Biophys
Res Commun 1998, 250:565-568.

Tokunaga K, Kojima A, Kurata T, Ikuta K, Akari H, Koyama AH, Kawamura M,
Inubushi R, Shimano R, Adachi A: Enhancement of human
immunodeficiency virus type 1 infectivity by Nef is producer cell-
dependent. J Gen Virol 1998, 79(Pt 10):2447-2453.



Santos da Silva et al. Retrovirology 2013, 10:54
http://www.retrovirology.com/content/10/1/54

246.

247.

248.

249.

250.

251.

252.

253.

254.

255.

256.

257.

258.

259.

260.

261.

262.

263.

264.

265.

266.

267.

268.

Srinivas SK, Srinivas RV, Anantharamaiah GM, Compans RW, Segrest JP:
Cytosolic domain of the human immunodeficiency virus envelope
glycoproteins binds to calmodulin and inhibits calmodulin-regulated
proteins. J Biol Chem 1993, 268:22895-22899.

Tencza SB, Mietzner TA, Montelaro RC: Calmodulin-binding function of LLP
segments from the HIV type 1 transmembrane protein is conserved among
natural sequence variants. AIDS Res Hum Retroviruses 1997, 13:263-269.

Pan Z, Radding W, Zhou T, Hunter E, Mountz J, McDonald JM: Role of
calmodulin in HIV-potentiated Fas-mediated apoptosis. Am J Pathol 1996,
149:903-910.

Emerson V, Holtkotte D, Pfeiffer T, Wang IH, Schnolzer M, Kempf T, Bosch V:
Identification of the cellular prohibitin 1/prohibitin 2 heterodimer as an
interaction partner of the C-terminal cytoplasmic domain of the HIV-1
glycoprotein. J Virol 2010, 84:1355-1365.

Zhang H, Wang L, Kao S, Whitehead IP, Hart MJ, Liu B, Duus K, Burridge K,
Der CJ, Su L: Functional interaction between the cytoplasmic leucine-zipper
domain of HIV-1 gp41 and p115-RhoGEF. Curr Biol 1999, 9:1271-1274.

Wang L, Zhang H, Solski PA, Hart MJ, Der CJ, Su L: Modulation of HIV-1
replication by a novel RhoA effector activity. J Immunol 2000, 164:5369-5374.
Adhikari A, Xu M, Chen ZJ: Ubiquitin-mediated activation of TAK1 and
IKK. Oncogene 2007, 26:3214-3226.

Nabel G, Baltimore D: An inducible transcription factor activates
expression of human immunodeficiency virus in T cells. Nature 1987,
326:711-713.

Saksela K, Cheng G, Baltimore D: Proline-rich (PxxP) motifs in HIV-1 Nef
bind to SH3 domains of a subset of Src kinases and are required for the
enhanced growth of Nef + viruses but not for down-regulation of CD4.
EMBO J 1995, 14:484-491.

Alexander L, Du Z, Rosenzweig M, Jung JU, Desrosiers RC: A role for natural
simian immunodeficiency virus and human immunodeficiency virus type
1 nef alleles in lymphocyte activation. J Virol 1997, 71:6094-6099.

Wang JK, Kiyokawa E, Verdin E, Trono D: The Nef protein of HIV-1
associates with rafts and primes T cells for activation. Proc Natl Acad Sci
USA 2000, 97:394-399.

Fenard D, Yonemoto W, De Noronha C, Cavrois M, Williams SA, Greene WC:
Nef is physically recruited into the immunological synapse and
potentiates T cell activation early after TCR engagement. J Immunol 2005,
175:6050-6057.

Biggs TE, Cooke SJ, Barton CH, Harris MP, Saksela K, Mann DA: Induction of
activator protein 1 (AP-1) in macrophages by human immunodeficiency
virus type-1 NEF is a cell-type-specific response that requires both hck
and MAPK signaling events. J Mol Biol 1999, 290:21-35.

Schrager JA, Minassian V, Marsh JW: HIV Nef increases T cell ERK MAP
kinase activity. J Biol Chem 2002, 277:6137-6142.

Janeway CA Jr, Bottomly K: Signals and signs for lymphocyte responses.
Cell 1994, 76:275-285.

Linsley PS, Ledbetter JA: The role of the CD28 receptor during T cell
responses to antigen. Annu Rev Immunol 1993, 11:191-212.

DenBoer LM, Hardy-Smith PW, Hogan MR, Cockram GP, Audas TE, Lu R:
Luman is capable of binding and activating transcription from the
unfolded protein response element. Biochem Biophys Res Commun 2005,
331:113-119.

Liang G, Audas TE, Li Y, Cockram GP, Dean JD, Martyn AC, Kokame K, Lu R:
Luman/CREB3 induces transcription of the endoplasmic reticulum (ER)
stress response protein Herp through an ER stress response element.
Mol Cell Biol 2006, 26:7999-8010.

Audas TE, Li Y, Liang G, Lu R: A novel protein, Luman/CREB3 recruitment
factor, inhibits Luman activation of the unfolded protein response. Mo/
Cell Biol 2008, 28:3952-3966.

Blot G, Lopez-Verges S, Treand C, Kubat NJ, Delcroix-Genete D, Emiliani S,
Benarous R, Berlioz-Torrent C: Luman, a new partner of HIV-1 TMgp41,
interferes with Tat-mediated transcription of the HIV-1 LTR. J Mol Biol
2006, 364:1034-1047.

Neil SJ, Zang T, Bieniasz PD: Tetherin inhibits retrovirus release and is
antagonized by HIV-1 Vpu. Nature 2008, 451:425-430.

Jouvenet N, Neil SJ, Zhadina M, Zang T, Kratovac Z, Lee Y, McNatt M,
Hatziioannou T, Bieniasz PD: Broad-spectrum inhibition of retroviral and
filoviral particle release by tetherin. J Virol 2009, 83:1837-1844.

Douglas JL, Gustin JK, Viswanathan K, Mansouri M, Moses AV, Fruh K: The
great escape: viral strategies to counter BST-2/tetherin. PLoS Pathog 2010,
6:21000913.

269.

270.

271.

272.

273.

Page 24 of 24

Evans DT, Serra-Moreno R, Singh RK, Guatelli JC: BST-2/tetherin: a new
component of the innate immune response to enveloped viruses.
Trends Microbiol 2010, 18:388-396.

Janvier K, Pelchen-Matthews A, Renaud JB, Caillet M, Marsh M, Berlioz-
Torrent C: The ESCRT-0 component HRS is required for HIV-1 Vpu-
mediated BST-2/tetherin down-regulation. PLoS Pathog 2011, 7:21001265.
Kuhl BD, Sloan RD, Donahue DA, Bar-Magen T, Liang C, Wainberg MA:
Tetherin restricts direct cell-to-cell infection of HIV-1. Retrovirology 2010,
7:115.

Serra-Moreno R, Jia B, Breed M, Alvarez X, Evans DT: Compensatory
changes in the cytoplasmic tail of gp41 confer resistance to tetherin/
BST-2 in a pathogenic nef-deleted SIV. Cell Host Microbe 2011, 9:46-57.
Le Tortorec A, Neil SJ: Antagonism to and intracellular sequestration of
human tetherin by the human immunodeficiency virus type 2 envelope
glycoprotein. J Virol 2009, 83:11966-11978.

doi:10.1186/1742-4690-10-54
Cite this article as: Santos da Silva et al: The frantic play of the
concealed HIV envelope cytoplasmic tail. Retrovirology 2013 10:54.

~
Submit your next manuscript to BioMed Central
and take full advantage of:
¢ Convenient online submission
¢ Thorough peer review
* No space constraints or color figure charges
¢ Immediate publication on acceptance
¢ Inclusion in PubMed, CAS, Scopus and Google Scholar
* Research which is freely available for redistribution
Submit your manuscript at ( -
www.biomedcentral.com/submit BiolVed Central
J




	Abstract
	Review
	Background: Env and the entry process
	Aims of the review
	Structural determinants and topology of the gp41-CT
	Structure of the gp41-CT
	Functional domains of the gp41-CT
	Topology of the gp41-CT
	The Kennedy Epitope
	LLP-2
	Open questions

	Viral assembly, Env incorporation into virions and viral infectivity
	Interaction of the gp41-CT with Gag
	Viral stiffness, viral maturation and infectivity
	Control of viral infectivity
	Open questions

	Phenotypes of gp41-CT truncations
	Interactions of the gp41-CT with cellular factors and intracellular regulators
	Env trafficking and sorting through the trans Golgi network (TGN)
	AP-mediated Env endocytosis
	Golgi retention
	TIP47
	Rab7A and other RabGTPases

	Assembly
	Detergent-resistant lipid rafts
	Nef
	Calmodulin
	Prohibitin1/2

	Activation of transcription
	NF-κB
	Luman
	P115-RhoGEF

	Immune evasion: countering intrinsic restriction/countering antiviral restriction factors
	Tetherin
	Open questions


	Conclusions
	Abbreviations
	Competing interests
	Authors’ contributions
	Acknowledgments
	References

