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Abstract

Background: Previous studies suggest that active selection limits the number of HIV-1 variants acquired by a newly
infected individual from the diverse variants circulating in the transmitting partner. We compared HIV-1 envelopes
from 9 newly infected subjects and their linked transmitting partner to explore potential mechanisms for selection.

Results: Recipient virus envelopes had significant genotypic differences compared to those present in the
transmitting partner. Recombinant viruses incorporating pools of recipient and transmitter envelopes showed no
significant difference in their sensitivity to receptor and fusion inhibitors, suggesting they had relatively similar entry
capacity in the presence of low CD4 and CCR5 levels. Aggregate results in primary cells from up to 4 different
blood or skin donors showed that viruses with envelopes from the transmitting partner as compared to recipient
envelopes replicated more efficiently in CD4+ T cells, monocyte derived dendritic cell (MDDC) – CD4+ T cell
co-cultures, Langerhans cells (LCs) – CD4+ T cell co-cultures and CD4+ T cells expressing high levels of the gut
homing receptor, α4β7, and demonstrated greater binding to α4β7 high / CD8+ T cells. These transmitter versus
recipient envelope virus phenotypic differences, however, were not always consistent among the primary cells from
all the different blood or skin donation volunteers.

Conclusion: Although genotypically unique variants are present in newly infected individuals compared to the
diverse swarm circulating in the chronically infected transmitting partner, replication in potential early target cells
and receptor utilization either do not completely dictate this genetic selection, or these potential transmission
phenotypes are lost very soon after HIV-1 acquisition.
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Background
Landmark studies more than 20 years ago demonstrated
that newly infected subjects often harbor a limited num-
ber of HIV-1 variants early after virus acquisition [1-3].
Subsequent studies further showed that naïve individuals
are often infected with a single or multiple variants, and
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the complexity of the early virus population is influenced
by factors present at the time of acquisition, such as
genital tract inflammation [4-7]. More recent studies have
robustly estimated both the number and the characte-
ristics of the strains present early after infection [8-14]. In
aggregate, these diverse studies demonstrate that even
though chronically infected individuals harbor a large
array of variants, only a small number of viruses with
specific characteristics are able to successfully establish a
persistent systemic infection in a naïve host.
The biological mechanisms underlying this observed

bottleneck during transmission remain undefined. Because
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the acquired viruses in the newly infected subject often do
not cluster among the major variants present in the
transmitting partner, stochastic mechanisms likely do not
account for the genetic restriction observed during
transmission [15]. Genotypic and phenotypic studies show
that the acquired variants predominantly utilize the CCR5
coreceptor and contain signature envelope genotypes,
such as shorter and less glycosylated envelope variable
loops that are more closely related to ancestral strains
[11-13,16-20]. In aggregate, these studies suggest that
specific viruses with unique characteristics are favored for
transmission from the quasispecies present in the trans-
mitting partner.
Identifying the virus property that confers fitness dur-

ing transmission has been a high priority within the field
because this understanding may foster the development
of targeted interventions to prevent acquisition. Because
variants with shorter and less glycosylated envelopes
were enriched among the virus populations sampled
early after infection, it was hypothesized that transmitted
viruses may have more exposed receptor binding sites
leading to enhanced receptor utilization and higher
replication capacity. Envelopes from viruses found early
after infection or the inferred transmitted/founder (T/F)
viruses, however, have not demonstrated an enhanced
ability to utilize low CD4 or CCR5 levels or a higher
capacity to enter cells compared to the envelopes from
the variants present in the corresponding transmitting
partner or those present during the chronic stage of
disease [21-26]. These previous studies have often used
virus pseudotypes to investigate potential transmission
phenotypes. Pseudoviruses cannot be used to probe virus
replication in the target cells present at the site of inva-
sion as a potential phenotype that confers fitness during
transmission. One recent study showed that full-length
T/F strains replicated significantly more efficiently com-
pared to unrelated chronic stage variants [27]. Selection
of a relatively small number of unrelated chronic stage
variants, however, may have biased this comparison.
Thus, the previous studies have not adequately exam-
ined replication capacity differences in potential early
target cells among envelopes isolated from transmission
linked partners.
Besides infection capacity in early target cells, a variants’

ability to disseminate from the initial site of invasion could
also potentially influence the observed genetic restriction
during HIV-1 acquisition. After HIV-1 establishes a
beachhead in a new host, the virus cannot be detected in
the systemic circulation for a number of days [28-30].
During this silent phase, the virus presumably replicates at
the local site of invasion and then migrates to gut associ-
ated lymphoid tissue (GALT). Systemic dissemination
early after acquisition is associated with high level replica-
tion within GALT [31]. Newer studies speculate that
binding to the α4β7 integrin may play a crucial role in the
migration of the virus from the exposure site to GALT
[32,33]. Interestingly, HIV-1 envelope glycoprotein sub-
units with characteristics associated with newly acquired
viruses demonstrate high binding to α4β7+ cells, and this
attachment decreased with envelope modifications obser-
ved over the course of infection suggesting that this may
be a highly transient transmission phenotype [34].
In this study, we generated replication competent

recombinant viruses incorporating pooled HIV-1 enve-
lopes isolated from 9 recently infected individuals and
their corresponding heterosexual partner in Rakai,
Uganda. We compared replication in potential early
target cells, coreceptor tropism, receptor utilization
efficiency, and fusion capacity among viruses with HIV-1
envelope glycoproteins isolated from these transmission
pairs. By comparing genotypic and phenotypic features
among viruses found in newly infected subjects com-
pared to those present in the transmitting partner, our
studies provide new insights for the biological mecha-
nisms for the genetic selection during transmission.

Results
Couples and envelope sequences
We retrospectively identified 8 couples from the Rakai
Couple Cohort Study (RCCS) in which the newly
infected subject was sampled prior to HIV-1 seroconver-
sion. We were successfully able to amplify full-length en-
velopes from 9 of the 16 individuals in these partnerships.
In 2 couples envelopes were amplified from both the
newly infected recipient and the transmitting partner, and
in 5 couples envelopes were successfully generated from
only 1 of the 2 partners. Surprisingly, we were unable to
amplify full-length envelopes in five seronegative subjects
even though they had HIV-1 RNA levels greater than
100,000 copies/ml. To increase the number of couples, we
also retrospectively identified 12 other couples in whom
the newly infected subject was sampled within a year after
estimated infection. Transmitter and recipient envelopes
were successfully amplified from both partners in 8
couples. In the remaining partnerships, envelopes were
either amplified from 1 of the 2 partners (n = 3) or in none
of the individuals (n = 1). Various different primer combi-
nations failed to yield full-length envelope PCR product in
the unsuccessful cases.
Amplified product from a minimum of 4 independent

bulk PCRs were pooled to minimize resampling bias [35].
Pooled envelope products were cloned into a HIV-1 NL4-
3 backbone using yeast gap-repair homologous recom-
bination [36]. From each subject, full-length envelope
sequences were examined from 8 to 12 different clones.
Phylogenetic analysis incorporating reference sequences
and other previously isolated full-length envelope se-
quences from the RCCS confirmed the epidemiological
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partnership in 9 of the 10 couples (Figure 1). Recipient
and transmitter sequences failed to cluster in one of the
epidemiologically linked couples suggesting that the newly
infected partner acquired HIV-1 from outside the partner-
ship (data not shown). Further genotypic and phenotypic
analysis was continued in 9 couples with the confirmed
sequence linkage (Table 1) (Figure 1). The 9 couples
examined in this study were all infected with subtype D
HIV-1. The newly infected partner in these nine couples
was sampled a median of 70 days (range 17 – 324 days)
after estimated infection. Longitudinal follow up in the
Rakai cohort suggested that the transmitting partner had
been infected for a minimum of 2 years prior to transmis-
sion to the newly infected recipient. Concurrent samples
were obtained from each partner a median of 19 days
(range 0 – 46 days) apart. If early host pressure selects
against viruses harboring a property that confers fitness
for transmission, we hypothesized that variants isolated
HXB2

Newly infected partner

Transmitting partner

Figure 1 Epidemiologically linked partner’s HIV-1 envelope sequence
(gray) and recipient (red) sequences were aligned with subtype reference s
used to generate the maximum likelihood tree using parameters from Find
were generated from a neighbor joining tree and are noted on each node
within 3 months to 1 year after estimated acquisition
should be relatively similar to the viruses circulating in the
chronically infected transmitter. Thus, observing differ-
ences among recipient transmitter envelope properties
could still yield important information even though the
majority of the recently infected individuals were not
sampled relatively soon after estimated acquisition.
In thirteen couples from the RCCS, we had previously

shown that a limited number of minority variants closely
related to the ancestral sequences were preferentially
acquired by a naïve subject from the variants present in
the transmitter [12]. Adding the nine couples to the
previous thirteen reported partnerships, we confirmed
that sequences present in the newly infected subject
compared to those in the transmitter had a significantly
shorter distance to the estimated most recent common
ancestor (MRCA) (median ratio of recipient versus
transmitter sequences’ distance to MRCA 0.82, range
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Table 1 Demographics, viral and coreceptor characteristics

Couple Type1 Int. days2 Partner
interval3

Recipient
CCR54

Recipient
CXCR45

Recipient
tropism6

Transmitter
CCR5

Transmitter
CXCR4

Transmitter
tropism

HF FTM 17 3 7.24 <0.1 R5 8.27 <0.1 R5

888 MTF 74 19 10.39 <0.1 R5 11.91 <0.1 R5

890 MTF 138 12 3.79 <0.1 R5 2.27 <0.1 R5

394 MTF 93 2 7.79 <0.1 R5 10.85 <0.1 R5

927 MTF 324 46 12.55 <0.1 R5 13.37 <0.1 R5

2769 MTF 149 46 5.69 <0.1 R5 5.34 0.65 R5/X4

2810 MTF 161 23 5.49 <0.1 R5 6.12 <0.1 R5

SR-5 MTF 17 0 12.62 <0.1 R5 9.72 <0.1 R5

SR-20 MTF 91 34 6.70 <0.1 R5 7.24 <0.1 R5
1FTM: female to male; MTF: male to female.
2Interval in days from the estimated date of acquisition to the day of sample collection for the newly infected partner. For seronegative individuals, interval was
estimated as a maximum of 17 days.
3Interval in days between sampling of the two partners within a couple.
4P24 (ug/ml) from U87/CD4/CCR5 cells at day 4 post-infection.
5 P24 (ug/ml) from U87/CD4/CCR5 cells at day 4 post-infection.
6Tropism as determined on U87/CD4+/CCR5 and U87/CD4+/CXCR4 cells.
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0.32 – 1.42, p < 0.001). Recipient sequences as compared
to transmitter envelopes were also less genetically di-
verse (median ratio of recipient versus transmitter gen-
etic diversity range 0.57, range 0.11 – 5.69, p < 0.001)
and were significantly less divergent (median ratio of
recipient versus transmitter genetic divergence 0.39, range
0.06 – 9.89, p < 0.001). Recipient compared to transmitter
envelopes also had significantly lower number of amino
acids in the V1-V2 ((median 66 range (57 – 78) versus 68
(59 – 77) p = 0.014)), V1-V4 ((median 282 range (268 – 297)
versus 284 (266 – 298) p = 0.001)) and V1-V5 ((median
364 range (322 – 392) versus 368 (323 – 393) p < 0.001)).
Similar to the previous results from thirteen couples, there
was no significant difference in predicted Asparagine (N)-
linked glycosylation sites (PNGS) among the recipient and
transmitter sequences in the more comprehensive analysis
of the 22 couples [12]. In addition, envelopes from the
newly infected individual had significantly lower V3 loop
charge (median 4, range 2–7) compared to the transmit-
ting partners sequences (median 4, range 2–9, p < 0.001).
Within each couple, there were multiple amino acids
that were present at different frequencies among the
recipient compared to the transmitter envelopes, but
the previously identified signature pattern at HBX2
position 12 of the signal peptide was not consistently
different among the partners [10]. In addition, a
PNGS at HXB2 position 413–415 was also not over-
represented in the transmitting as compared to recipi-
ent partners’ envelopes as described in the analysis of
subtype B HIV-1 early and chronic infection sequences
[10]. In aggregate, the analysis with the larger number of
couples confirmed our previous finding that shorter less
charged envelopes more closely related to estimated an-
cestral sequences were enriched during the early period
after HIV-1 acquisition [12,19].
Replication competent recombinant viruses and
coreceptor tropism
Previous studies have primarily examined HIV-1 enve-
lope glycoprotein properties using 293T derived virus
pseudotypes capable of a single infection cycle. We
produced peripheral blood mononuclear cell (PBMC)
derived virus stocks to generate replication competent
viruses. Each virus stock contained pooled envelopes
from a minimum of three independent cloning attempts
and was generated from passage on PBMCs from 5
different donors. We confirmed that the short passage
PBMC virus stocks contained similar level of envelope
genotypic diversity as evident in the original clones and
did not demonstrate selection sweep (Additional file 1:
Figure S1). Virus titers were not significantly different
among recipient (median 930 infectious particle (IP)/ul,
range 15 – 18,933 IP/ul) compared to transmitter en-
veloped viruses (median 1233 IP/ul, range 16 – 13,200
IP/ul, p = 0.8). Increased V3 loop charge as observed in
the transmitter in comparison to the recipient envelopes
has been associated with CXCR4 usage [37,38]. All
recipient and the majority of transmitter viruses utilized
the CCR5 and not the CXCR4 receptor (Table 1).

Sensitivity to CD4 and CCR5 receptor and fusion blockers
Target cells at the site of invasion potentially have low
cell surface CD4 and CCR5 concentrations, and viruses
with an enhanced ability to infect these cells may have
an advantage during transmission [39]. We and others
have shown that sensitivity to receptor blockers corre-
lates with a virus’ ability to replicate in cells with limiting
receptor levels [24,40]. Viruses with a capacity to infect
cells that have low receptor levels demonstrate high
inhibitor IC50s, while variants that require high CD4 or
CCR5 show low IC50s against the receptor blocker. We



Pena-Cruz et al. Retrovirology 2013, 10:162 Page 5 of 16
http://www.retrovirology.com/content/10/1/162
measured sensitivity to CD4 monoclonal antibody (MAb),
B4, as a surrogate for CD4 utilization [41]. All viruses were
inhibited by more than 50% at the highest B4 concentra-
tion, 50 ug/ml. Recipient IC50s ranged from 0.5 – 9.6 ug/ml
while transmitter IC50s varied from 1.6 – 17.5 ug/ml
(Figure 2A). In 6 of the 9 couples, transmitter as
compared to the corresponding recipient envelope viruses
displayed higher CD4 B4 MAb IC50 suggesting that trans-
mitter viruses had a greater ability to utilize low CD4
receptor levels. Aggregate pair-wise comparison, however,
showed no significant differences among recipient versus
transmitter envelope virus sensitivity to CD4 B4 MAb
(p = 0.2).
Because newly infected subjects were sampled at

various times after estimated acquisition, the isolated
envelopes potentially had genetic changes that modified
their phenotypic properties compared to those present
in the infecting strains. To assess this possibility, we
examined the correlation between the recipient versus
transmitter ratio for a phenotype of interest and the
duration between estimated acquisition and sampling of
the newly infected subject (referred to as time post
infection). A transient transmission associated phenotype
would potentially display a negative linear, exponential, or
Figure 2 Recipient and transmitter envelope viruses have no significa
to CD4 antibody (A), Maraviroc (B), and T-20 (C) among recipient (hollow c
shows the couple ID. Values represent means from a minimum of 3 indepe
Correlation between interval from estimated infection to sampling and rec
T-20 (F). Each graph shows a correlation coefficient with a Spearman rank
polynomial relationship with time post infection. In these
cases, the recipient to transmitter ratio is higher in
couples where the newly infected subject was sampled
relatively early after acquisition, and the ratio decreases as
time post infection increases. There was a negative correl-
ation between the ratio of recipient to transmitter B4
MAb IC50 and estimated days post infection (ρ = −0.27,
p = 0.49), but it was not statistically significant (Figure 2D).
Furthermore, the goodness of the fit was not significantly
higher assuming either a polynomial or exponential decay
(data not shown).
We examined sensitivity to CCR5 antagonist, Maraviroc

(MVC), as a surrogate measure for the ability to enter cells
expressing low CCR5 receptor concentrations. All viruses
were inhibited by more than 90% at the highest MVC con-
centration of 25 nM. Recipient IC50s ranged from 0.1 –
3.3 nM while transmitter IC50s varied form 0.2 – 3.5 nM
(Figure 2B). In aggregate, there was no significant dif-
ference in MVC sensitivity among two groups of viruses
(p = 0.4). There was, however, a significant positive
correlation between the recipient to transmitter ratio of
Maraviroc IC50 and estimated days post infection (ρ =
0.69, p = 0.04) (Figure 2E). The significant positive correl-
ation suggests that compared to the corresponding
nt differences in sensitivity to receptor and fusion blockers. IC50s
ircle) and transmitter (filled rectangle) envelope viruses. The x-axis
ndent experiments with error bars showing the standard deviation.
ipient to transmitter IC50 ratios to CD4 antibody (D), Maraviroc (E), and
correlation p - value.
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transmitting partner’s envelopes the MVC IC50 is lower in
newly infected subjects sampled relatively early after
acquisition compared to those isolated later in infection.
This observation supports ours and others previous
findings that viruses found early in infection require
higher amounts of the CCR5 receptor for cell entry com-
pared to those present during the chronic phase of disease
[24,36,42-46].
After receptor engagement, virus entry depends on

fusion kinetics. Previous studies have shown that sensi-
tivity to fusion blocker, T-20, directly correlates with
fusion kinetics [47,48]. Highest T-20 concentration
(10 ug/ml) produced around 100% cell entry block
among all viruses. T-20 IC50s ranges were similar among
recipient (range 0.2 – 0.6 ug/ml) and transmitter (range
0.1 – 0.5 ug/ml) envelope viruses. In 7 of the 9 couples,
recipient as compared to the corresponding transmitter
envelope viruses displayed higher T-20 IC50 suggesting
that viruses found in newly infected subjects had enhan-
ced fusion, but these differences were not statistically
significant (p = 0.2) (Figure 2C). In addition, recipient to
transmitter T-20 IC50 ratio did not demonstrate a sig-
nificant negative correlation with days from acquisi-
tion (ρ = 0.28, p = 0.47) (Figure 2F).

Replication in primary peripheral blood mononuclear cells
Replication differences in early target cells potentially
influences which virus establishes a new infection within
a naïve host. We compared replication among viruses
with recipient versus transmitter envelopes in activated
CD4+ T cells from 4 different blood donation volunteers.
There was large variation in AUC between the different
blood donor’s cells suggesting that different blood dona-
tion volunteers CD4+ T cells supported replication to
varying levels (Additional file 1: Figure S2). First, results
from each blood donation volunteer’s cells were analyzed
A
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independently. Recipient and transmitter envelope
viruses displayed no statistically significant replication
differences (p > 0.05) in any of the 4 blood donation
volunteer’s CD4+ T cells. Next, we conducted an aggre-
gate examination of newly infected subject’s virus AUC
relative to the corresponding transmitting partner’s virus
AUC (Figure 3A). The median recipient to transmitter
envelope virus AUC ratio in the CD4+ T cells from 4
different blood donation volunteers was 0.55 (range
0.01 – 5.21). A value below 1 indicates that the transmit-
ter envelope virus replicated to higher level compared to
the corresponding recipient envelope variants. Although,
in 5 of the 9 pairs, the recipient as compared to the
transmitter virus replicated better in at least one blood
donation volunteer’s CD4+ T cells, in aggregate, trans-
mitter envelope viruses were significantly better at
replicating in activated CD4+ T cells compared to reci-
pient envelope viruses (p = 0.03). The interval between
sampling and estimated acquisition did not significantly
correlate with recipient to transmitter AUC ratio (ρ = 0.32,
p = 0.40), suggesting that this difference was relatively
stable (Figure 3B).

Replication in dendritic cells with and without autologous
T cells
Intact mucosa prevents direct access to CD4+ T cells
because these cells are mostly present in deeper sub-
mucosal locations [49-52]. Cells of the monocyte lineage,
such as DCs, are thought to provide a conduit for the
virus to sub-epithelial CD4+ T cells [53]. We compared
replication among recipient and transmitter envelope
viruses in MDDCs in the absence or presence of autolo-
gous activated CD4+ T cells. First, we independently
examined replication in immature and mature MDDC
exposed to infectious virus. None of the 18 different
virus stocks replicated in immature and mature MDDCs
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from 2 of the 3 blood donation volunteers. In one blood
donation volunteer’s immature and mature MDDCs, low
level replication was observed among a small number of
transmitter and recipient envelope viruses (Additional
file 1: Figure S3). These results confirmed that both im-
mature and mature DCs are rarely productively infected
when exposed to low levels of infectious virus potentially
because of low CD4 and CCR5 surface receptor levels
and potent anti-viral responses [39,54].
Next, we examined replication in MDDC – autologous

CD4+ T cell co-cultures. Replication levels varied
between the different blood donation volunteer’s imma-
ture and mature MDDCs – CD4+ T cell co-cultures
(Additional file 1: Figure S4). Transmitter as compared
to recipient envelope viruses replicated significantly
more (p < 0.05) in each of the 4 different blood donation
volunteer’s mature DC - autologous CD4+ T cell co-
cultures. In aggregate, the transmitter envelope viruses
replicated to higher level compared to the corresponding
recipient envelope variants (median 0.32, range 0.009 –
2.77, p < 0.001) (Figure 4A). On the other hand, recipient
and transmitter envelope viruses displayed no statistically
significant replication differences (p > 0.05) in any of the 4
blood donor’s immature DC - CD4+ T cells co-cultures.
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was not statistically significant (p = 0.30) (Figure 4B). The
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not significantly correlate with recipient to transmitter
AUC ratio for either mature (ρ = 0.08, p = 0.85) (Figure 4C)
or immature MDDC (ρ = 0.45, p = 0.23) (Figure 4D).

Replication in skin derived Langerhans cells heterologous
T cell co-cultures
Genital mucosa contain specific tissue resident DCs,
termed LCs [55,56]. Because LCs project dendrites over
the lumen, they are likely the first DC subset that
encounters incoming HIV-1. We compared replication
differences among recipient versus transmitter envelope
viruses in these cells [49,50]. LCs were isolated from
anonymous discarded skin obtained from reduction
mammoplasties using previously described methods
[57,58]. More than 90% of the isolated cells expressed
langerin and CD1a, a hallmark of LCs (Additional file 1:
Figure S5). Similar to the MDDCs, virus failed to
replicate in skin LC cultures alone but did propagate in
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LC - activated CD4+ T cell co-cultures. All viruses
replicated in 1 donor’s LCs – CD4+ T cell co-cultures,
but replication was observed among some of the recipi-
ent and transmitter envelope viruses in the remaining
co-cultures with LCs from 9 other skin tissue donors. In
the 1 donor’s LCs that supported replication of all
variants, higher amounts of infectious virus was ob-
served in transmitter as compared to recipient envelope
viruses in 7 of the 9 couples, and this difference was
marginally significant (p = 0.05). In aggregate, the
transmitter envelope viruses replicated to higher level
compared to the corresponding recipient envelope vari-
ants (median recipient to transmitter AUC 0.75, range
0.07 – 3.83, p = 0.02) among the cases where viruses
from both partners in a relationship demonstrated
replication (Figure 5A). In 19 instances virus from only
1 of the partners in a relationship (13 transmitter and 6
recipient) replicated in the LC – CD4+ T cell co-
cultures. The replication AUC ratio between recipient
and transmitter envelope viruses increased with the
interval of time between estimated infection and
sampling (ρ = 0.78, p = 0.02) (Figure 5B). This suggests
that the recipient envelope viruses most closely related
to the potential infecting strains (i.e. those sampled earli-
est after estimated HIV-1 acquisition) demonstrated the
least efficient replication in LC – heterologous CD4+ T
cells cultures compared to the corresponding transmit-
ting partner’s envelope variants.

Alpha4beta7 integrin usage
It has been suggested that viruses with enhanced binding
to the gut homing integrin, α4β7, are more likely to
disseminate from the initial site of invasion to GALT,
which is potentially important for establishing a systemic
infection [32-34]. Previous studies from our group and
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instances when the recipient envelope viruses replicated to a greater exten
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envelope virus within a partnership respectively. (B) Correlation between in
transmitter replication AUC ratio. Graphs also shows the correlation coeffici
others have shown that α4β7 inhibitors often fail to pre-
vent virus binding to and replication in cells expressing
high levels of α4β7 [26,59]. Thus, retinoic acid (RA)
stimulated CD8+ and CD4+ T cells with flow cytometry
confirmed up-regulated α4β7 expression were used to
compare integrin binding and replication among recipi-
ent and transmitter envelopes in the absence of inhibi-
tors (Additional file 1: Figure S6) [32,33]. Amount of
HIV-1 RNA bound to α4β7 high CD8+ T cells was used
to estimate binding to the gut homing integrin. One of
the 4 blood donor’s cells demonstrated significantly
greater transmitter as compared to recipient envelope
virus binding to α4β7 CD8+ T cells (p = 0.03). In aggre-
gate, transmitter relative to recipient envelope viruses
demonstrated significantly higher binding to α4β7 high
CD8+ T cells (median recipient to transmitter ratio 0.74,
range 0.03 – 6.49, p = 0.04) (Figure 6A). In addition,
there was a positive trend between the recipient to
transmitter α4β7 high CD8+ T cells binding ratio and
days post infection (ρ = 0.60, p = 0.10) (Figure 6B).
We further compared recipient versus transmitter

envelope virus replication in RA exposed flow cytometry
confirmed CD4+ T cells expressing high cell surface
levels of the α4β7 receptor from 4 different blood dona-
tion volunteers. In 1 of the 4 blood donor’s cells, higher
replication was observed among the transmitter as
compared to recipient envelope viruses (p = 0.01). In
aggregate, transmitter as compared to recipient viruses
showed significantly greater replication in α4β7 high
CD4+ T cells (median recipient to transmitter ratio 0.51,
range 0.10 – 6.89, p = 0.01) (Figure 6C). There was, how-
ever, a negative correlation (ρ = −0.36, p = 0.34) between
time post infection and recipient to transmitter repli-
cation ratio in α4β7 high CD4+ T cells, although it was
not statistically significant (Figure 6D). The goodness of
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the fit was not significantly better assuming either a
polynomial or exponential decay (data not shown).

Discussion
The combined envelope analysis from couples examined
in this study and a previous investigation confirm that
there is a selection for envelopes with signature geno-
types, such as smaller less charged envelopes that are
more closely related to ancestral strains [12]. One possi-
bility is that the infectious source, i.e. genital secretions,
contains a limited number of HIV-1 variants that are
enriched in the envelope genotypes commonly observed
in newly infected subjects. Source fluid studies, however,
have failed to confirm this hypothesis [60-70]. Excluding
random chance and infectious source compartmenta-
lization suggests that transmitted viruses possess unique
envelope properties that provide an advantage during
transmission. To assess this issue, we examined various
envelope phenotypic properties. We showed that recipient
in comparison to the transmitter envelopes demonstrated
no significant difference in the ability to use lower levels
of the CD4 or CCR5 receptor, and they also had similar
fusion characteristics. Interestingly, our correlation with
days post infection analysis showed that recipient viruses
isolated close to transmission were more sensitive to
CCR5 inhibition compared to those sampled further from
the estimated acquisition time. This buttresses previous
conclusions that viruses found early compared to those
circulating during the chronic phase of infection require
relatively higher CCR5 levels for infection [24,36,42-46].
Transmitter envelope viruses were better at replicating in
CD4+ T cells and DC/LC – CD4+ T cell co-cultures
compared to recipient envelope recombinants. Transmit-
ter envelope viruses also demonstrated significantly
greater replication and enhanced binding to CD4+ and
CD8+ T cells expressing high levels of the gut homing
integrin. Collectively, viruses found early after infection
have unique envelope genotypic characteristics, and
variants with these genotypes do not have enhanced repli-
cation in potential early target cells or dissemination from
the initial site of invasion using the gut homing integrin.
The SIV – macaque animal model shows that expos-

ure to high levels of infectious virus leads to multiple
small foci of localized infections at the site of invasion
[29]. Other highly susceptible cells, such as CD4+ T
cells, are recruited to these infectious clusters promoting
infection dissemination and systemic spread. Similar to the
SIV – macaque model, HIV-1 infection may begin with
one or a small number of infected cells, and spread from
these foci to other susceptible targets may disseminate the
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infection. We examined infection in LCs because LCs
project their dendrites over lumen exposed epithelia, and
thus they are likely the first DC subset that encounters
incoming HIV-1 [49-52]. Prior studies have documented
that R5 but not X4 viruses can infect LCs [18,71-74]. This
counter-selection against X4 viruses has not been observed
in any other mucosal cells, such as CD4+ T cells or
MDDCs. This strongly suggests that LCs may function as
the gatekeeper determining which viruses establish a
productive infection. In our studies, however, we found
that transmitter as compared to recipient envelope viruses
replicated more efficiently in skin derived LCs – hete-
rologous CD4+ T cell co-cultures. It should be noted,
however, that we obtained LCs from discarded breast skin.
Newer studies suggest that mucosal LCs are phenotypically
different from skin LCs. Murine models demonstrate that
genital LCs have different ontogeny and receptor expres-
sion compared to skin derived LCs [75,76]. Human ex vivo
vaginal tissue studies also show that lumen exposed genital
LCs may not express langerin, which is a hallmark of skin
derived LCs [77]. One study suggests that langerin traffics
low levels of incoming HIV-1 away from a productive
infection pathway towards degradation [78]. Thus, genital
as compared to skin LCs may be inherently more suscep-
tible to HIV-1. Furthermore, it has been suggested that
genital LCs capture infectious virus and disseminate them
to other susceptible target cells without being productively
infected [77]. On the other hand, HIV-1 productively
infects skin derived LCs, and infection can be blocked by
specific receptor inhibitors [71,78-80]. In aggregate, skin
derived LCs are not ideal surrogates for genital LCs.
Infection studies have not been conducted with genital
LCs because it has been difficult to isolate adequate
numbers with sufficient purity. Future studies will need to
examine if genital LCs dictate the observed genetic restric-
tion during transmission.
Besides LCs, mucosal tissues also contain CD4+ T cells

and other DC subsets, such as DC-SIGN +DCs. These
cells, however, have limited direct access to the lumen
within intact mucosa [49,50]. It is possible that LCs
counter-select against X4 HIV-1, and the deeper lying
cells preferentially select specific R5 variants from the
diverse CCR5 using viruses present in the infectious
source. We, however, found that transmitter as
compared to recipient envelope viruses were better at rep-
licating in CD4+ T cells and monocyte derived DC – T
cell co-cultures, a surrogate for the DC-SIGN +DCs
present in the mucosa. It has been demonstrated that DCs
can capture virions and retain them in an infectious state
for an extended period of time and then spread them to
other permissive cells [80-85]. This trans infection path-
way spreads HIV-1 more efficiently compared to cell-free
virus infections. CD4+ T cells and DCs/LCs may still be
some of the earliest cellular targets, but these cells likely
do not dictate which variants circulating in the transmit-
ting partner establishes a disseminated infection in the
newly infected individual.
Disseminating from the initial infection focus could

also influence which virus establishes a new infection in
a naïve host. It has been speculated that attachment to
the α4β7 integrin facilitates virus migration from muco-
sal sites to GALT, where high level replication occurs
early after HIV-1 acquisition [31-33]. Indeed, some HIV-
1 envelope surface subunits, gp120s, with transmission/
early infection genotypes, such as shorter and less glyco-
sylated variable loops, had higher binding to the α4β7
receptor compared to chronic phase gp120s [34,59]. We,
however, found recipient as compared to transmitter
envelope viruses demonstrated decreased attachment to
CD8+ T cells and lower replication in CD4+ T cells
expressing high levels of the α4β7 receptor, although
this finding was not consistent among all the blood
donor cells. This suggests that further studies on
α4β7 utilization may be necessary to determine its
exact role in transmission. In contrast to the previous
study, we examined α4β7 interactions with envelope
glycoproteins in the context of a virus particle and
not with a gp120 envelope subunit [34]. Recent struc-
tural studies suggest that exposure of important envelope
domains, such as the α4β7 binding site, potentially differs
between a gp120 subunit compared to trimers on virus
particles [86,87]. Although, our results suggest that
enhanced α4β7 utilization may not provide a selective
advantage during transmission, we did observe a non-
significant negative correlation between replication in
α4β7 high CD4+ T cells and days post-infection, suggest-
ing that if this is a potential transmission phenotype it is
lost relatively early after infection.
A recent study showed that full-length T/F as com-

pared to chronic stage viruses have both enhanced cell
free infectivity and MDDC usage potentially due to
increased envelope expression [27]. In contrast to our
investigation of subtype D HIV-1, they examined sub-
type B and C viruses. Because HIV-1 subtype D may
have different phenotypic characteristics compared to
the other clades, properties of the envelope variants
found early after infection may be subtype dependent
[88-91]. Most importantly, the T/F viruses were not
compared to the variants circulating in the transmitting
partner. Specific variants are acquired presumably because
they possess a phenotypic property that confers fitness for
transmission compared to the swarm circulating in the
transmitting partner. This transmission phenotype may
not necessarily distinguish all T/F viruses from unrelated
chronic phase variants. Viruses present in a transmitter
likely possess different phenotypic properties compared to
those isolated from unrelated subjects sampled during the
chronic phase of disease. Thus, comparing full-length T/F
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to unrelated chronic stage variants is not ideal. Future
studies that use full-length molecular clones from recipi-
ent transmitter pairs may be better able to identify a virus
property that confers an advantage during mucosal HIV-1
transmission.
Unlike prior investigations that compared full-length

envelopes from recipient transmitter pairs or phylogen-
etically estimated T/F against unrelated chronic infection
envelopes, we examined envelope properties in the con-
text of a infectious clone as opposed to 293T derived
single cycle virus pseudotypes [21-23,26]. Single cycle
infections limit the ability to interrogate small replica-
tion differences in relatively impermissible cells, such as
LCs/DCs. Furthermore, PBMC generated virus has
different number of envelope spikes with distinct types
of glycans compared to the virions produced from 293T
transfections, which can influence receptor binding,
neutralization and other properties [34,92,93]. Because
glycan characteristics influence α4β7 binding and recep-
tors present on LCs/DCs often interact with envelope
carbohydrate moieties, PBMC generated viruses have
more physiologically relevant phenotypes compared to
the 293T transfection derived virions [34,94,95].
Although virus phenotypes can be altered among our
PBMC passaged viruses, changes generally occur in long
term cultures [96].
One of the primary limitations with our study is that

we were not able to sample all the newly infected
subjects at the earliest time after HIV-1 acquisition.
Thus, we could not phylogenetically estimate the T/F
sequence. Envelope gene modifications occur relatively
early after HIV-1 acquisition [97,98]. These changes
potentially affect envelope characteristics, and thus,
viruses isolated early after acquisition may have different
phenotypes compared to the transmitted strains. To
partially address this concern, we examined correlations
between the phenotype of interest and time post infec-
tion reasoning that a transient transmission property
would demonstrate a significant negative correlation.
Sensitivity to CD4 inhibitors and replication in α4β7
high CD4+ T cells showed a negative correlation al-
though they were not statistically significant. Because we
were not able to evaluate the T/F variant, we used bulk
PCR to better recapitulate the properties of the virus
swarm at the time of sampling. Although, bulk PCR has
been associated with polymerase induced recombination
changes, this strategy allowed us to compare the enve-
lopes from the newly infected subjects to the diverse
variants circulating in the chronically infected transmit-
ter and not just a small number of chronic infection
strains [9]. We reasoned that if a transmission pheno-
type changed dramatically within the first year after
acquisition, recipient and transmitter swarms should
have similar characteristics. In contrast, we found that
viruses found in recently infected subjects compared to
those present in the transmitting partner had sig-
nificantly lower infectivity and decreased binding. If
enhanced replication capacity in primary cells and/or in-
creased binding to the α4β7 integrin is the property that
allows for the selection observed during transmission,
then viruses with these potential transmission pheno-
types must be selected against early after acquisition and
subsequently enriched during the chronic phase of
disease. Examination of longitudinally sampled viruses
may help differentiate among these possibilities.

Conclusion
Counter-selection against X4 variants and preferential
acquisition of R5 viruses with signature genotypes
strongly suggests that the genetic restriction observed
during mucosal HIV-1 acquisition is not a stochastic
process. Mucosal LCs likely prevent CXCR4 using
viruses from establishing a new infection. The biological
mechanism, however, that favors specific R5 variants
amongst the complex CCR5 using quasispecies circulat-
ing in the chronically infected transmitting partner still
remains unclear. Our study of viruses incorporating
recipient and transmitter envelopes suggests that repli-
cation capacity in potential early target cells and α4β7
integrin usage likely do not confer fitness for transmis-
sion. Comparing virus properties of full-length molecu-
lar clones from transmission pairs in the most relevant
cells, such as mucosal LCs could shed valuable insights
about the selective bottleneck during transmission.
Vaccine and microbicide strategies that specifically target
the virus characteristic that confers a fitness advantage
during acquisition may be especially efficacious in
preventing transmission.

Methods
Subjects
We examined newly infected monogamous subjects with
their epidemiologically linked heterosexual partner from
the RCCS in the Rakai district of southwestern Uganda
[99,100]. In the RCCS, serum was collected approxi-
mately every 10 months for HIV-1 antibody testing, and
newly seropositive subjects’ previously seronegative sam-
ple was tested for HIV-1 RNA with a pooled viral load
assay as previously described [101,102]. In seropositive
incident subjects, the HIV-1 acquisition date was estima-
ted as the midpoint between the last seronegative visit
and the first HIV-1 antibody positive collection day. In
seronegative individuals with HIV-1 RNA positive
samples, acquisition was estimated as 17 days prior to
sampling. This study was approved by human subjects
review boards at the Uganda Virus Research Institute,
the AIDS Research Subcommittee of the Ugandan
National Council for Science and Technology, Johns
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Hopkins University, Brigham and Women’s Hospital,
and Boston University Medical Center. All subjects pro-
vided written informed consent.

Envelope amplification and analysis
HIV-1 RNA was isolated from around 100 ul of the serum
samples, and RT-PCR was used to amplify a library of full-
length envelope genes using previously described primers
and amplification conditions [9]. For each subject, a mini-
mum of four independent PCRs were pooled to generate a
library of envelope genes from each serum sample. Pooled
envelope amplifications were inserted into linearized
pCMV-NL4-3-PBS→LTRΔGp160 plasmid using yeast
gap-repair homologous recombination as previously
described [36,103]. All recombinant NL4-3 clones con-
taining a subject’s envelope genes were pooled to generate
plasmids containing a library of the subjects’ envelopes
(pCMV-NL4-3-PBS→LTR + Envs). Eight to 12 individual
full-length envelopes were isolated and sequenced from
each subject’s clones. The NL4-3 recombinants contained
chimeric Vpu, Tat, and Rev genes because the full-length
envelope overlaps with these accessory virus proteins
[104]. All unique sequences reported in this publication
have been submitted to Genbank (KF985982 - KF986146).
Transmission among individuals within a partnership was
confirmed by the observed clustering in ML phylogenetic
analysis. For each couple, ML phylogenies were generated
using Paup with parameters from FindModel best fit
evolutionary model as described previously [12]. The ML
trees were used to estimate a MRCA and the distance
from each sequence to the MRCA. Average of pair-
wise distances was used to estimate genetic diversity.
Recipient and transmitter sequence divergence was
estimated as the average distance from the recipient
or transmitter estimated ancestor respectively as de-
scribed previously [12]. Different envelope segments
amino acid lengths and PNGS were analyzed as previ-
ously described [12].

Replication competent recombinant viruses
Viruses were generated by co-transfecting 293T cells
with equivalent quantities of CMV-NL4-3-LTR→Gag4
and the library of recombinant NL4-3 with subject’s
envelopes (pCMV-NL4-3-PBS→LTR + Envs) as previ-
ously described [36]. Supernatants were collected 48 to
72 hours after transfection. Supernatants from 293T
cells were passaged for a maximum of 7 days in acti-
vated PBMCs to generate higher titer virus stocks. The
number of infectious particles was estimated on TZM-bl
cells as previously described [25,105].

Inhibitor sensitivity
TZM-bl, U87/CD4/CXCR4 and U87/CD4/CCR5 cells,
T-20, Maraviroc, and CD4 B4 monoclonal antibody were
obtained through Research and Reference Reagent Pro-
gram, Division of AIDS, NIAID, NIH [41,106,107]. Infec-
tion of TZM-bl cells in the absence and presence of
two-fold serial dilution of the inhibitor was used to
estimate the 50% inhibitory concentration (IC50) as
previously described [24]. All reported IC50s are mean
estimates from a minimum of 3 independent assays.
Coreceptor usage was determined by monitoring p24
production in U87/CD4/CXCR4 and U87/CD4/CCR5
cells infected with 500 IP of each virus supernatant.

Primary cells and infections
Peripheral blood mononuclear cells were isolated from
HIV-1 negative blood donation volunteer’s buffy coats
using Ficoll Hypaque density centrifugation. Monocytes
were isolated from PBMCs using the percoll gradient
method [108]. Primary human immature DCs were
derived from monocytes, as described previously [109].
Briefly, monocytes were cultured in RPMI/10% FBS
containing recombinant human GM-CSF (0.5 μg/ml;
Leukine, Berlex) and recombinant human IL-4, 100 U/ml
(BD Biosciences) for 6 days. Mature DCs were obtained
by culturing immature DCs at day six of culture for two
additional days in the presence of 100 ng/ml of ultra-pure
E. coli LPS (Sigma). Primary human CD4+ and CD8+ T
cells were isolated from monocyte depleted PBMCs using
antibody conjugated magnetic beads (Miltenyi Biotech)
according to manufacturer’s instructions. CD4+ T cells
were activated with 2% phytohaemagglutinin (PHA) and
20 ug/ml recombinant human IL-2 (r-IL-2) for 2 days.
LCs were obtained using previously described methods
[57]. Briefly, normal human skin from reduction mammo-
plasties was acquired as discarded surgical tissue. The
epidermis was mechanically separated from adipose tissue,
and overnight dispase incubation was used to remove the
dermis. Further trypsin digestion was used to extract
individual cells. Immature LCs were obtained from the
trypsinized epidermal cells by fractionating through a
discontinuous OptiPrep density gradient. Langerhans cells
were further purified from the epidermal cells using a
magnetic CD1a microbead kit (Miltenyi Biotech) [57,58].
Around 2×106 CD4+ T cells were exposed to 1,000 in-

fectious particles in the presence of 20 ug/ml diethylami-
noethyl(DEAE)-Dextran. After two hours, cultures were
washed a minimum of three times. Around 0.5 × 106

immature or mature DCs were independently exposed
to 1,000 infectious particles. After three hours, DC
cultures were washed a minimum of three times to re-
move unbound virus. Virus exposed DC infections were
cultured either with or without autologous activated
CD4+ T cells. Around 1 × 104 skin LCs and were ex-
posed to 5,000 to 25,000 infectious virus. Cultures were
washed after 72 hours to remove unbound virus, and
then co-cultured with heterologous activated CD4+ T
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cells. Around 50% of the culture supernatant was re-
moved every 3 to 4 days and replaced with fresh media.
Culture supernatants were assessed for p24 antigen con-
tent using an in house assay as previously described
[110]. Infectious virus concentration was also esti-
mated by infecting 1 × 104 TZM-bl cells with 8 ser-
ial two-fold dilutions of supernatant culture starting
at 50 ul. All infections were done in triplicate in a
96 well format. Two days post-infection, TZM-bls
were examined for beta-galactosidase production
using Galacto-Light Plus System (Applied Biosys-
tems). A linear interpolated curve of the relative
light units (RLUs) versus supernatant dilution was
used to estimate RLU/ul. The AUC was generated
from the RLU/ul from various days post infection.
Primary cell infections were repeated a minimum of
4 times with cells from 4 different buffy coats or
discarded surgical tissue.
Replication in CD4+ and binding to CD8+ T cells
expressing high α4β7 integrin levels
Both CD8+ and CD4+ T cells were activated with
PHA, r-IL-2, and RA for 6 days. Around 1 × 106

CD8+ and CD4+ T cells were exposed to 1 × 105 in-
fectious virus for 1 hour at 4°C in binding buffer
(10 mM HEPES, 150 mM NaCl (HBS Buffer) buffer
with 100 μM CaCl2 and 1 mM MnCl2). Cells were
washed a minimum of 3 times to remove unbound
virus. RNA was isolated from the CD8+ T cells using
the QIAAMP Viral RNA kit (QIAGEN). HIV-1 copies
were quantified using quantitative RT-PCR using previ-
ously described methods [111,112]. The CD4+ T cells
were incubated at 37°C 5% C02, and the infectious virus
concentration in the culture supernatants was measured
after 3 days as detailed above.
Statistical analysis
Summary characteristics of recipient virus envelopes
were compared to the transmitter envelope variants
using the Wilcoxon rank-sum test. Aggregate compar-
isons of the multiple recipient and transmitter enve-
lopes among the different couples were done using
the Wilcoxon rank-sum test stratified by pair. Recipi-
ent to transmitter ratios were compared to the ex-
pected value of 1 using the one-sample Wilcoxon
signed-rank test. Recipient to transmitter ratio com-
parisons were stratified by different volunteers cells
during the aggregate assessments. Correlations were
assessed using the non-parametric Spearman rank
correlation. All p-values were based on a two-sided
test. All statistical analyses were done with either
Intercooled Stata version 8.0 (Stata Corporation, College
Station, TX) or SAS version 8.2 (SAS Institute, Cary NC).
Additional file

Additional file 1: Figure S1. Compares genetic diversity among virus
stocks and bacterial clones. Figure S2-S4. Show replication characteristics in
primary cells. Figure S5-S6. Show phenotypic characteristics of Langerhans
cells and alpha4 beta7 expression in primary T cells.
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