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HIV integrase and the swan song of the CD4 T
cells?
Jérôme Estaquier1,2*, John Zaunders3 and Mireille Laforge1
Abstract

T cell apoptosis represents one pathophysiological mechanism associated with AIDS. Herein, we discuss the recent
report published by A. Cooper et al. in Nature (June 2013) regarding HIV viral DNA integration-mediated apoptosis.
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Background
Over twenty years ago it was hypothesized that CD4+ T
lymphocyte depletion during HIV infection resulted
from apoptosis [1,2], and since then numerous research
teams have strived to identify the associated cellular
and molecular mechanisms. As early as 1991, studies
by Drs. D. Richman [3] and A. Hovanessian [4] showed
that the virus induces apoptosis in lymphoblastoid T
cell lines or mitogen-activated primary CD4+ T cells
in vitro. This programmed cell death is independent of
caspase activation [5-10], the main effector proteases
involved in apoptosis [11].
Main text
A paper recently published by A. Cooper et al. in Nature
[12] suggests that integration of viral DNA is responsible
for this apoptosis via activation of p53 by DNA-dependent
protein kinase (DNA-PK), a protein kinase participating in
DNA damage response. The authors show that apoptosis
is only displayed by cells that do not express p24 antigen.
An analysis of in vitro stimulated cells obtained from
three HIV-infected individuals not receiving therapy
suggested that the cells not expressing p24 antigen died
in a proportion of 70 to >90%, but only 10 – 25% of
these cells contained HIV DNA by qPCR. Furthermore,
p24+ cells – representing 0.1-0.5% of CD4 T cells – died
at a rate of 30–70%. This result implies that overall more
than 90% of the CD4 T lymphocytes from HIV infected
individuals underwent apoptosis in vitro, a proportion
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that seems to be incompatible with the in vivo status of
these HIV-infected patients having CD4 cell counts up
to 600 per mm3. The study also shows that blocking
viral integration with raltegravir, an inhibitor of HIV
integrase, decreased the occurrence of cell death not
only in T/B lymphoblastoid cell line CEMX174, but also
in primary CD4 T cells activated with PHA/IL-2. Likewise,
a virus bearing a mutated integrase (D64V) caused less
apoptosis. The authors propose that viral integration was
responsible for cell death. Thus, lymphocytes would die
before the virus gets a chance to replicate. Considering
this, one has to wonder what advantage a pathogenic
agent may gain from such a mechanism. Previous work
by Dr. F. Bushman [13] had shown that it may be the
accumulation of viral DNA and not its integration that
could induce this apoptosis during activation of CD4+ T
lymphocytes. This accumulation of viral DNA has also
been proposed to induce the death of T cells in a human
tonsil model [14] – described as early as the 1990s by
Margolis’ group as supporting viral replication [15]. This
process is accompanied by chronic inflammatory response
that can be associated with caspase-1 activation, a caspase
involved in pyroptotic cell death [16].
Cooper et al. furthermore propose that a phosphorylation

of proteins p53 and H2AX accompanies this process
via DNA-PK activation. Pharmacological inhibition of
DNA-PK activation not only prevents phosphorylation
of these two molecules, but cell death as well. The role
of the DNA-PK pathway is largely studied in the context
of double-strand break repair through non-homologous
end joining (NHEJ). In 1999, Daniel and colleagues [17]
reported that DNA-PK activity increases as a consequence
of retroviral integration. The authors also showed that an
al Ltd. This is an open access article distributed under the terms of the Creative
ommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
iginal work is properly cited.

mailto:estaquier@yahoo.fr
http://creativecommons.org/licenses/by/2.0


Estaquier et al. Retrovirology 2013, 10:149 Page 2 of 5
http://www.retrovirology.com/content/10/1/149
HIV-1–based virus vector induced death in scid pre-B
cell lines This death was proposed to be due to a defect
in DNA-PK in these cell lines, resulting in a lack of
DNA repair needed to complete the retroviral integration.
Several groups subsequently showed that DNA damage
sensors ATM, ATR, DNA-PK, and PARP-1 were, however,
not required for efficient HIV-1 integration [18,19], and a
protective role of DNA-PK was only observed against
death induced by high levels of retrovirus integration.
Thus, DNA-PK may exert a protective effect on the
infected cells, a claim exactly opposite to that of
Cooper and colleagues. Moreover, it has been reported
that the activity of HIV-1 integrase stimulates an ATM-
dependent DNA damage response, and that a deficiency
of this kinase sensitizes cells to retrovirus-induced cell
death [20]. Paradoxically, the inhibitor used in that study
was KU55933, which was the same molecule utilized by
Cooper and colleagues to show that ATM inhibition
does not relieve cell death upon HIV infection. A possible
explanation of such controversial results should be the
difference of cells used in these studies, cell lines versus
primary T cells.
Lastly, the authors show that inhibiting p53 activation

with a pharmacological agent, pifithrin, also blocks
CD4 T cell apoptosis. However, the nature of the cells
expressing p53 and DNA-PK was not assessed by the
authors, although implicitly they suggested p24- cells.
On the contrary, several groups, including ours, have
previously shown that phosphorylation of p53 and
expression of target genes only occurred in cells repli-
cating the virus (p24+) [21-23]. We have also recently
shown that silencing p53 with interfering RNA reduces
apoptosis [23] and increases viral replication in primary
CD4 T cells. Therefore, we favour the hypothesis that
p53 activation constitutes a stress-sensing mechanism,
allowing auto-elimination of infected cells, and thus a host
altruistic defence mechanism limiting viral dissemination.
This programmed cell death is associated with lysosomal
destabilization [10,23], which requires viral replication,
since bystander cells – exposed to the virus, but not
infected – do not display lysosomal destabilization.
Although increased activation of CD4 T cells during

HIV-1 infection promotes viral production, the fact
remains that the proportion of productively infected
CD4 T cells in lymphoid tissue is very low, 0.25 - 1% or
less of the cells that contain HIV DNA, which in turn
represent about 10 - 20% of all CD4 T cells (reviewed
in [24]). Much of this HIV DNA, at least in circulating
memory CD4 T cells during untreated HIV infection, is in
a labile unintegrated linear form or in episomal 2-LTR
circles, [25]. After extended antiretroviral treatment of
HIV-infected subjects, the cells containing integrated
HIV DNA are long-lived [25,26]. The analysis of related
simian immunodeficiency viruses (SIV), comparing those
that are pathogenic for their hosts, such SIVmac239
or SIVmac251, to the non-pathogenic SIVagm, SIVsm
or SIVmnd, has shown that, despite a sustained viral
replication in both pathogenic and non-pathogenic infec-
tions, only pathogenic models display an exacerbated
apoptosis of CD4 T lymphocytes [27-30], beginning during
primary infection [31-33]. Studies have shown that
non-infected cells die mostly by apoptosis [34,35]. The
level of apoptosis is a predictor of the rate of progression
to AIDS and correlates with the innate immune response
[36,37]. Furthermore, other work has shown in patients
said to be discordant with respect to their immunovirolo-
gical status - i.e. individuals for whom antiviral therapy
is efficient, but in whom CD4 depletion continues –
that there is an abnormal level of CD4+ T lymphocyte
apoptosis [38]. Taken all together, it seems unlikely that
integration of HIV DNA per se is responsible for the
apoptosis observed in lymphoid tissues in vivo and
clinically relevant CD4 depletion.
Considering the various non-human primate (NHP)

models, it is noteworthy that the immune response of CD4
T lymphocytes of AGM monkeys or sooty mangabeys is
extremely limited [29,39,40] and that their weakly activated
central memory cells contain most of the viral DNA [41].
Several studies have indeed shown that chronic activation
of the immune system may induce an activation-induced
cell death (AICD)-type apoptosis via death receptors,
particularly Fas and its ligand [32,42-48], with the latter
being more weakly expressed in non-pathogenic infection
models [49]. Furthermore, a role has been proposed for
Trail and its death receptors, TRAIL-R1/R2, via type-1
interferons [50], although this work remains controversial
[46,49,51,52]. Moreover, Trail has little influence on T
lymphocyte homeostasis, as opposed to Fas, or the major
part played by Bim, a pro-apoptotic member of the Bcl-2
family [53-55]. A role for Bim has been described, first
in NHPs infected by SIV [46], but also in HIV patients
[56]. Therefore, increased apoptosis could be due to
activation, rather than infection of cells by HIV-1.
However, addition of cyclosporine A, an inhibitor of T cell
activation, to antiretroviral therapy (ART) does not provide
apparent virologic or immunologic benefit [57].
Furthermore, the absence of co-signals by APCs [58]

and the production of immunosuppressive cytokines,
such as interleukin-10 or TGF-β, may trigger T cell apop-
tosis [43,59,60] involving Bim. It is noteworthy that adding
exogenous factors, such as interleukins-2, -12 or −15, can
prevent apoptosis of CD4 T lymphocytes ex vivo [44,61,62],
via induction of anti-apoptotic cellular factors such as Bcl-
2 or Bcl-x, antagonists of Bim. However, immunotherapy
based on IL-2 did not yield any benefit during the chronic
phase of either HIV or SIV-infections [63,64].
IL-7 is the most important anti-apoptotic exogenous

signal for T cell survival in vivo. We have shown directly
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that highly activated CD8 T cells in subjects during primary
HIV-1 infection have reduced IL-7 receptor and reduced
Bcl-2 and rapidly undergo apoptosis spontaneously in vitro,
unless cultured with the common gamma-chain cytokines
IL-2 or IL-15 [65]. However, IL-7 signalling may addition-
ally enhance integration of HIV-1 into the genome of target
CD4 T cells [66] as well as re-activation of productive
infection from latently infected cells [67]. Furthermore,
its impact on CD4 T death seems to depend on the
duration of exposure to this cytokine or on production
of accessory cytokines. It indeed displays no discernible
effect on purified CD4 T lymphocytes [44], whereas
added to PBMCs it prevents apoptosis after 4 days of
culture [68].
Increased IL-7 levels in progressive HIV-1 infection may

also increase the expression of the coreceptor CXCR4,
resulting in a greater risk of emergence of an X4-using
viral strain [69], and in turn IL-7 may prove to be more
deleterious and pro-apoptogenic with these X4 viral
strains, as it causes an increase of Fas [70-72]. Not only
does the interaction between the viral envelope and the
CD4 molecule prime the cells to undergo apoptosis
[73-77], but interaction with viral coreceptors CCR5
and CXCR4 may also induce apoptosis and enhance
Fas-mediated cell death independently of immune activa-
tion [32,78-80]. Given this possible role of co-receptors in
initiating apoptosis, does Maraviroc, a CCR5 inhibitor, have
an enhanced role in vivo in inhibiting CD4 Tcell death?
Considering NHP models, a simple question must be

asked –WHY do these viruses, albeit “cytolytic” after
in vitro stimulation, not cause in their hosts a very
rapid depletion of CD4 T lymphocytes, in all models of
infection? In fact, based on the suggestion by Cooper
et al. that every cell integrating HIV DNA automatically
dies, non-pathogenic SIV infection in NHP should not be
possible. Moreover, what would be the possible advantage
for the virus to activate and deplete the immune system
if this leads to a very rapid death of its host? It should
be remembered that HIV-1 infection is a recent zoonosis,
to which HIV-1 has presumably not yet completely
adapted. Clearly the activation of the immune system
that results from HIV-1 infection may increase target
cells for productive infection in the short term, but
may also relatively rapidly lead to the demise of the
host and presumably reduce overall the chance of
transmission (notwithstanding the size of the HIV-1
pandemic). Conversely, does a non-pathogenic SIV in its
natural host intentionally limit lymphocyte activation
more than the strong activation of a pathogenic strain
of SIV or HIV? Is the virus trying to minimize the CD4
response, to render it relatively anergic, in order to
facilitate its own dissemination? Likewise, does the
localization of the virus into sites where the immune
response is tightly controlled, such as the intestine,
represent an evasion strategy, a way to hide in sanctuaries
characterized by weak activation? This could account
for viral persistence in HIV-infected patients in spite of
several years of highly-active therapy. Therefore, like
Orpheus do non-pathogenic viruses render the cells
resistant to the song of death.

Conclusions
In conclusion, this new study from Cooper et al. proposes
an apoptosis molecular mechanism linked to viral integra-
tion associated with the activation of p53 and DNA-PK.
However, this concept is difficult to reconcile with known
in vivo events, and, furthermore, an eventual therapeutic
strategy aimed at blocking p53 or DNA-PK could be
highly risky, by promoting either viral replication or
cancer. Due to the complexity of the biochemical apoptotic
pathways described leading to CD4 cell death, inhibiting
this process in vivo presents a real challenge.
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