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Abstract

block HIV-1 infection.

Background: SAMHD1 is a restriction factor that potently blocks infection by HIV-1 and other retroviruses. We
have previously demonstrated that SAMHD1 oligomerizes in mammalian cells by immunoprecipitation. Here we
investigated the contribution of SAMHD1 oligomerization to retroviral restriction.

Results: Structural analysis of SAMHD1 and homologous HD domain proteins revealed that key hydrophobic
residues Y146, Y154, L428 and Y432 stabilize the extensive dimer interface observed in the SAMHD1 crystal
structure. Full-length SAMHD1 variants Y1465/Y154S and L4285/Y432S lost their ability to oligomerize tested by
immunoprecipitation in mammalian cells. In agreement with these observations, the Y146S/Y154S variant of a
bacterial construct expressing the HD domain of human SAMHD1 (residues 109-626) disrupted the dGTP-
dependent tetramerization of SAMHD1 in vitro. Tetramerization-defective variants of the full-length SAMHD1
immunoprecipitated from mammalian cells and of the bacterially-expressed HD domain construct lost their
dNTPase activity. The nuclease activity of the HD domain construct was not perturbed by the Y1465/Y154S
mutations. Remarkably, oligomerization-deficient SAMHD1 variants potently restricted HIV-1 infection.

Conclusions: These results suggested that SAMHD1 oligomerization is not required for the ability of the protein to

Keywords: SAMHD1, Oligomerization, Tetramer, HIV-1, Restriction, Deoxynucleotides, Nuclease activity

Background

Efficient infection of human primary macrophages, den-
dritic cells and resting CD4" T-cells by simian immuno-
deficiency virus (SIV ) requires the accessory protein
Vpx [1-6]. Vpx is essential for both SIV infection of pri-
mary macrophages and viral pathogenesis in vivo [7-10].
Vpx is incorporated into viral particles suggesting that it
might be acting immediately after viral fusion [11-14]. Viral
reverse transcription is prevented in primary macrophages
when cells are infected with either Vpx-deficient SIV ;.. or
HIV-2 [4,15-18]. Interestingly, Vpx also increases the ability
of HIV-1 to efficiently infect macrophages, dendritic cells
and resting CD4+ T cells when Vpx is incorporated into
HIV-1 particles or supplied in trans [1,5,6,19]. Recent work
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identified SAMHDI1 as the protein that blocks infection
of SIVAVpx, HIV-2AVpx and HIV-1 before reverse
transcription in macrophages, dendritic cells and resting
CD4+ T cells [1,6,20-22]. Mechanistic studies have sug-
gested that Vpx induces the proteasomal degradation of
SAMHDI [20-22]. In agreement, the C-terminal region of
SAMHDI contains a Vpx binding motif, which is import-
ant for the ability of Vpx to degrade SAMHD1 [23-26].
SAMHDL1 is a dGTP-regulated deoxynucleotide tripho-
sphohydrolase (ANTPase) that decreases the overall cellu-
lar levels of ANTPs [27-30].

SAMHDI1 is comprised of the sterile alpha motif
(SAM) and histidine-aspartic (HD) domains. The HD
domain of SAMHDL1 is a dGTP-regulated deoxynucleo-
tide triphosphohydrolase that decreases the cellular
levels of dN'TPs [27-30]. The sole HD domain is suffi-
cient to potently restrict infection by different viruses
[31]. The HD domain is also necessary for the ability of
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SAMHDL1 to oligomerize and to bind RNA [31]. The abil-
ity of SAMHDI1 to block retroviral infection in non-
cycling cells, such as macrophages, dendritic cells and
resting CD4+ T cells, is controlled by phosphorylation of
T592 [32-34]. Phosphorylation of SAMHDI regulates the
capability of SAMHDI1 to block HIV-1 infection but not
the ability to decrease the cellular levels of ANTPs [33].

In agreement with Goldstone and colleagues, we have
established that SAMHDI is an oligomeric protein in
mammalian cells [31,33]; however, the contribution of
oligomerization to the ability of SAMHD]1 to block HIV-
1 infection is not understood. Previous studies have sug-
gested that oligomerization is essential for the enzymatic
activity of the HD domain [35]. This work explores the
contribution of SAMHDI1 oligomerization to HIV-1 re-
striction, dNTPase activity and nuclease activity. Using the
SAMHD1 structure provided by Goldstone and colleagues,
we identify key interfacial residues and demonstrate that
their mutations disrupt SAMHD1 oligomerization. Recom-
binant purified oligomerization-deficient SAMHD1 mu-
tants lost their dNTPase but not nuclease activity. In
agreement, oligomerization-deficient SAMHDI1 mutants
immunoprecipitated from mammalian cells lost their
dNTPase activity. Remarkably, oligomerization-deficient
SAMHDI1 variants potently restricted HIV-1 infection.
These results suggest that SAMHD1 oligomerization is not
required for the ability of the protein to block HIV-1
infection.

Results
Mutations of hydrophobic interfacial residues disrupt
SAMHD1 oligomerization in mammalian cells
The recently discovered restriction factor SAMHDI1
blocks infection of HIV-1 and other retroviruses
[20,21,27-31,36,37]. In the crystal structure by Goldstone
and colleagues the HD domain of the human SAMHD1
appears as a dimer with extensive dimerization interface
[29] (Figure 1A). A very similar interface was observed
in the structure of EF1143, an HD domain protein from
Enterococcus faecalis, although the bacterial protein was
found to be tetrameric in the crystal [35]. It has been
proposed that SAMHDI1 also functions as a tetramer
[38]. To understand the contribution of oligomerization
to the antiviral activity of SAMHDI, we set out to ex-
plore the antiviral activity of oligomerization-defective
SAMHDI1 variants. Inspection of the SAMHDI1 crystal
structure reveals that the extensive dimer interface is
stabilized by two hydrophobic patches formed by resi-
dues Y146, Y154, L428 and Y432 (Figure 1B), thus we
investigated how mutations of these residues affect
SAMHDI1 oligomerization and activity.

To test the hypothesis that residues in the hydropho-
bic patches stabilized the dimer interface, we tested the
ability of these mutants to oligomerize by using our
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Figure 1 SAMHD1 dimer interface is stabilized by hydrophobic
interactions. (A) SAMHD1 dimer as observed in the crystal structure
(PDB ID: 3UTN) [29]. The extensive dimer interface is stabilized by two
hydrophobic patches formed by residues Y146, Y154, L428 and Y432
shown in green and magenta. (B) The close-up view showing the
packing of the four hydrophobic residues at the interface. The two
patches are related by the 2-fold rotational symmetry of the dimer.

previously described oligomerization assay [31]. As shown
in Figure 2A and Table 1, FLAG-tagged SAMHDI1
variants Y146S/Y154S, 1428S/Y432S and Y146S/Y154S/
L428S/Y432S lost the ability to oligomerize with the HA-
tagged wild-type SAMHD1 (mutant association to wild
type), suggesting that these variants are no longer able
to form oligomers. We also tested the ability of each
FLAG-tagged variant to interact with its corresponding
HA-tagged mutant (Figure 2B and Table 1) (mutant self-
association). These results showed that the SAMHDI1
oligomerization-defective variants were not able to inter-
act with themselves.

To indirectly rule out the possibility that SAMHD1
oligomerization-defective variants are not misfolded
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Figure 2 Oligomerization, RNA binding and intracellular distribution of SAMHD1 variants. (A) Oligomerization of SAMHD1 variants was
tested as previously described [31]. Briefly, human 293 T cells were co-transfected with a plasmid expressing wild type SAMHD1-HA and a plasmid
either expressing wild type or mutant SAMHD1-FLAG proteins. Cells were lysed 24 hours after transfection and analyzed by Western blotting
using anti-HA and anti-FLAG antibodies (Input). Subsequently, lysates were immunoprecipitated by using anti-FLAG agarose beads. Anti-FLAG
agarose beads were eluted using FLAG peptide, and elutions were analyzed by Western blotting using anti-HA and anti-FLAG antibodies
(Immunoprecipitation). Similar results were obtained in two independent experiments and representative data is shown. WB, Western blot; IP,
Immunoprecipitation; WT, wild type. (B) Similar immunoprecipitations were performed by pulling down an HA-tagged variant with its corre-
sponding FLAG-tagged variant. (C) The ability of SAMHD?1 variants to bind nucleic acids was tested as previously described [31]. Human 293 T
cells were transfected with plasmids expressing the SAMHD1 variants were lysed (Input) and incubated with the RNA analog ISD-PS immobilized
to Strep Tactin Superflow affinity resin. Eluted proteins from the resin were visualized by Western blotting using anti-FLAG antibodies (Bound).
Similar results were obtained in three independent experiments and a representative experiment is shown. ISD-PS, interferon-stimulatory DNA
sequence containing a phosphorothioate backbone. (D) Intracellular distribution of SAMHD1 variants in Hela cells. Hela cells expressing the
indicated SAMHD1-FLAG variants were fixed and immunostained using antibodies against FLAG (red) as previously described [31,44]. Cellular
nuclei were stained by using DAPI (blue). Image quantification for three independent experiments is shown in Additional file 1.
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Table 1 SAMHD1 oligomerization variants

SAMHD1 variant HIV-1 Oligomerization® RNA Localization® Cellular Association with Self-association + SD?
Restriction® Binding® dNTP Level® WT +SDf

WT + + + N Low 100 100

Y1465/Y154S + - + N Low 10.15+ 148 246+ 069

14285/Y432S + - + N Low 259+£9.19 16.04 +1.50

Y146S/Y1545/1.4285/Y432S  ND - + N/C Low 14+025 22.04+7.70

®HIV-1 restriction was measured by infecting U937 cells stably expressing the indicated SAMHD1 variants with HIV-1-GFP. After 48 hours, the percentage of GFP-
positive cells (infected cells) was determined by flow cytometry.

bOligomerization of the different SAMHD1 variants was determined by measuring the ability of the SAMHD1-FLAG variant to interact with wild type SAMHD1-HA
variant, as described [31]. “ + " indicates 100% oligomerization, which corresponds to the amount of wild type SAMHD1-HA that interacts with wild type SAMHD1-
FLAG. “ - " indicates the absence of oligomerization.

“SAMHD1-FLAG variants were assayed for their ability to bind the double-stranded RNA analog ISD-PS, as described [31]. “+” indicates the RNA binding achieved
by wild type SAMHD1.

9Subcellular localization of the different SAMHD1 variants in HeLa cells was performed as described [311. “N” indicates nuclear localization; “N/C” indicates nuclear

and cytoplasmic localization.

€The cellular dATP levels of PMA-treated U937 cells stably expressing the different SAMHD1 variants were determined by primer extension as described [31].
“Low” indicates similar to the dATP levels observed in PMA-treated U937 cells stably expressing wild type SAMHD1.

fWT and SAMHD1-FLAG variants were assayed for association with wild-type SAMHD1-HA as described [31]. Percentages are an average of two independent
experiments. The percentage represents the fraction of the SAMHD?1 variant coprecipitated with wild-type SAMHD1 relative to the amount of wild-type SAMHD1

coprecipitated with itself.

9WT and SAMHD1-FLAG variants were assayed for association with wild-type and variant SAMHD1-HA as described [33]. Percentages are an average of two
independent experiments. The percentage represents the fraction of the SAMHD1 variant coprecipitated with itself relative to the coprecipitation of wild-type

SAMHD1 with itself.

proteins, we tested for the ability of these variants to bind
RNA (Figure 2C and Table 1), as described [31]. For this
purpose we tested the ability of SAMHD]1 to interact with
the interferon-stimulatory DNA sequence containing a
phosphorothioate backbone (ISD-PS), which is an RNA
analog [31,39]. As shown in Figure 2C, all tested
SAMHDI variants were able to interact with the RNA
analog ISD-PS. These results indicated that oligomeriza-
ton is not required for the ability of SAMHDI to bind
RNA (Table 1). Next we tested the ability of the
SAMHDI1 variants to localize to the nuclear compart-
ment (Figure 2D). SAMHD]1 variants Y146S/Y154S and
L428S5/Y432S exclusively localized to the nuclear com-
partment (Figure 2D and Table 1). By contrast, image
quantification of the SAMHD1 variant Y146S/Y154S/
L428S5/Y432S showed that this variant does not exhibit
complete nuclear localization suggesting that this par-
ticular variant has lost a function or its partially mis-
folded (Figure 2D and Additional file 1). Because the
SAMHDI1 variant Y146S/Y154S/1428S/Y432S has lost
nuclear localization, we will no longer pursue its
analysis.

The SAMHD1 variant Y146S/Y154S loses dGTP-dependent
tetramerization in vitro.

To get a more refined mechanistic understanding of
the effect of the interfacial SAMHD1 mutations we per-
formed in vitro comparative studies of SAMHDI1
oligomerization. The HD domain construct of human
SAMHD1 used by Goldstone and colleagues in the
crystallographic studies (residues 120-626) [29] lacks
several N-terminal residues that are important for the
binding of dGTP at the allosteric site, as observed in

the bacterial HD domain homologue to SAMHDI1 [35].
Therefore, we used an extended construct that com-
prises SAMHDI residues 109-626 for our in vitro
studies.

Size-exclusion chromatography of the purified wild
type and Y146S/Y154S variant of the SAMHDI1 con-
struct 109-626 were performed on the HiLoad 16/60
Superdex 200 media (GE Life Sciences), and showed that
both proteins elute as single peaks at the retention vol-
ume of approximately 82 mL indicating that both re-
combinant proteins are predominantly monomeric in
solution (Figure 3A). Following incubation of the pro-
teins with dGTPaS, a dGTP analog that is hydrolyzed by
SAMHDI at a slower rate, size exclusion chromatog-
raphy revealed an additional peak at ~69 mL in the
chromatogram of the wild type protein, which is absent
in the Y146S/Y154S sample. This peak is distinct from
the high molecular weight aggregates, which elute in the
excluded volume (42-45 mlL) of the HiLoad 16/60
Superdex 200 column. Most likely the 69 mL peak cor-
responds to the previously reported tetrameric form of
the HD domain [38].

The effect of dGTPaS incubation on the oligomeric
state of the protein was investigated using sedimentation
velocity as described in [40]. Diffusion-corrected van
Holde — Weischet sedimentation coefficient distribu-
tions [41] of the purified proteins (Figure 3B) revealed
mono-disperse species with sedimentation coefficient
close to 4. Additional 2DSA-Monte Carlo analysis
[42,43] reports a frictional ratio of ~1.5, which corre-
sponds to a molecular weight of ~60 kDa, in agreement
with a monomeric state. Incubation of wild type mono-
meric SAMHD1 with dGTPaS induced the formation of
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Figure 3 Analysis of SAMHD1 oligomerization by size-exclusion chromatography and analytical ultracentrifugation. (A) Size exclusion
chromatograms of the wild type (WT) and Y1465/Y154S 109-626 SAMHD1 constructs before and after incubation with dGTPaS. (B-E) Comparison
plots of the diffusion-corrected integral sedimentation coefficient distributions obtained from a van Holde — Weischet analysis. WT and Y1465/
Y154S without dGTPaS (B); WT incubated with 0, 25 and 50 uM dGTPaS (C); Y1465/Y154S incubated with 0, 25 and 50 uM dGTPaS (D); comparison of
WT and Y146S/Y154S distributions following incubation with dGTPaS (E). Similar results were obtained in three independent experiments and
a representative experiment is shown.

high molecular weight species; this oligomer sediments
at approximately 9.7 s consistent with a 240 kDa tetra-
mer with a frictional ratio of 1.5 (Figure 3C and E). By
contrast, dGTPaS had no effect on the oligomerization
state of the Y146S/Y154S variant (Figure 3D-E), which is
in agreement with the results obtained by size-exclusion
chromatography. In all samples, we observed the appear-
ance of a low sedimentation component (< 2) most likely
the result of dGTPaS absorption at 280 nm. Collectively,
this data demonstrates that the recombinant wild type
HD domain of SAMHDI1 can form a tetramer in a
dGTP-dependent manner, and that tetramerization is
disrupted by the Y146S5/Y154S mutation.

Y146S/Y154S mutation disrupts the deoxynucleotide
triphosphohydrolase (dNTPase) but not the nuclease
activity of SAMHD1.

To understand the contribution of dGTP-mediated tet-
ramerization to SAMHDI1 enzymatic activity, we investi-
gated the dNTPase and nuclease activity of Y146S/
Y154S and wild type SAMHD]1 proteins.

To study the dNTPase activity, we used an NMR-
based dGTP hydrolysis assay to monitor the dNTPase
activity of SAMHD]1 (Figure 4A). The H8 proton of the
guanine base appears as a narrow singlet peak at
8.04 ppm in the "H NMR spectrum of dGTP. This signal is
shifted to 7.92 ppm upon hydrolysis of dGTP to deoxygua-
nosine, and can thus be used to monitor SAMHDI1-

catalyzed dGTP hydrolysis reaction in real time (Figure 4A).
The assay revealed that the wild type construct hydrolyzed
dGTP whereas the activity of the Y146S/Y154S mutant
was virtually undetectable (Figure 4B).

Subsequently, we tested the nuclease activity of the
two SAMHDI1 constructs using a quenched fluorescent
single-stranded DNA substrate as described in Methods.
The measured activity of the Y146S/Y154S variant is
slightly lower when compared to the nuclease activity of
the wild type protein (Figure 4C). These results indicated
that in contrast to the dNTPase activity, the nuclease
activity of SAMHDI is not subject to allosteric regulation
via dGTP-dependent tetramerization.

Y146S/Y154S and L428S/Y432S SAMHD1 variants disrupt
the dNTPase activity of full-length SAMHD1 immunopreci-
pitated from mammalian cells.

To directly analyze the dNTPase activity of SAMHD1
full-length variants, we tested the ability of immunopre-
cipitated SAMHDI1 variants (Figure 5A) to hydrolyze
a-?P-TTP to dT and a->*PPP, in the presence of the
allosteric activator dGTP. For this purpose we incubated
the indicated SAMHD]1 variant in the presence of radio-
labeled o-*P-TTP. Reaction products were separated
using thin-layer chromatography in order to determine
the amount of hydrolyzed a-**PPP (Figure 5B), as previ-
ously shown [31,33]. In agreement with our results using
bacterially purified protein, immunoprecipitated Y146S/
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Y154S and L1428S/Y432S SAMHDI1 variants lost
dNTPase activity when compared to wild type SAMHD1
(Figure 5B). As expected, the SAMHD1 variant HD206AA
completely lost dNTPase activity [31,33]. These results
suggested that mutants that lost the ability to form tetra-
mers in a dGTP-dependent manner were also defective in
their dNTPase activity.

Ability of SAMHD1 variants to restrict HIV-1 infection

To understand whether dGTP-dependent tetrameriza-
tion contributes to the antiretroviral properties of
SAMHDI1, we tested the ability of dGTP-dependent
tetramerization-defective SAMHD1 variants to restrict
HIV-1 infection. For this purpose, we stably expressed
the indicated SAMHDI1 variants in human monocytic
U937 cells (Figure 6A), and tested them for the ability to
block HIV-1 infection. PMA-treated U937 cells stably
expressing SAMHDI1 variants were challenged with in-
creasing amounts of HIV-1 virus expressing GEP as a re-
porter of infection (Figure 6B and Table 1). Remarkably,
SAMHDI variants that lost dGTP-dependent tetrameri-
zation potently restricted HIV-1 infection. These results
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suggested that SAMHD1 dGTP-dependent tetrameriza-
tion is not required for the ability of SAMHDI to block
infection.

Because expression of SAMHDI1 in U937 cell de-
creases the cellular levels of deoxynucleotides (ANTPs),
we measured the cellular levels of ANTPs in U937 cells
expressing the different SAMHDI variants, as previously
described (Figure 6C and Table 1) [31]. Interestingly,
SAMHDI1 oligomerization variants decreased the cellu-
lar levels of ANTPs (Figure 6C and Table 1) indicating
that the dNTPase activity of SAMHD1 in mammalian
cells may be upregulated by a mechanism that does not
depend on tetramerization and dGTP binding.

Vpx-mediated degradation of SAMHD1 variants

Finally, we explored the ability of Vpx from HIV-1-
ROD (Vpx,oq) to degrade SAMHDI1 oligomerization-
defective variants, as previously described [44]. As
shown in Figure 7, tetramerization-defective SAMHD1
variants were degraded by Vpx,.q. As a control, we
used the Vpx protein from red-capped mangabeys
(Vpxrcm), which does not induce the degradation of
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is shown. (C) Quantification of dNTP levels on PMA-treated U937 cells expressing the indicated SAMHD1 variants was performed by a primer
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Figure 7 Vpx-induced degradation of SAMHD1 variants. Hel.a
cells were cotransfected with plasmids allowing expression of
SAMHD1-FLAG variants and the Vpx protein of HIV-2gop (VpXpop) Or
the Vpx protein of SIVrcm (VpX,cr), as described [44]. Thirty-six hours
post-transfection the cells were harvested, and the expression levels of
SAMHD1 and Vpx were analyzed by Western blot using anti-FLAG
antibodies. As a loading control, cell extracts were Western blotted
using antibodies against GAPDH. Similar results were obtained in three
independent experiments and a representative experiment is shown.
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SAMHDI. These results indicated that dGTP-induced
tetramerization is not required for the ability of Vpx to
degrade SAMHDI1.

Discussion

Overall, the work presented here analyzes the contribu-
tion of oligomerization to the different functions of
SAMHDI. Close analysis of the interfacial residues in
the structure presented by Goldstone and colleagues re-
vealed four residues (Y146, Y154, 1428 and Y432) that
might be stabilizing the hydrophobic interactions be-
tween the monomers in the dimer structure [29]. To test
this hypothesis we tested the ability of the double mu-
tants Y146S/Y154S and L428S/Y432S to form oligomers.
Using our oligomerization assay that utilizes proteins
extracted from mammalian cells [31], we found that
SAMHD]1 variants Y146S/Y154S and L428S/Y432S com-
pletely lost their ability to form oligomers. In agreement,
the recombinant Y146S/Y154S variant of the HD do-
main construct (SAMHDI residues 109-626) lost its
dGTP-dependent tetramerization ability when compared
to wild type protein, as measured by gel filtration and
analytical ultracentrifugation. These results show that
hydrophobic interfacial residues Y146, Y154, L428 and
Y432 are critical for the dGTP-dependent tetrameriza-
tion ability of SAMHDI.

Next we explored the contribution of oligomerization to
the described enzymatic activities of SAMHD1. The HD
domain of SAMHD]1 exhibits dNTPase and nuclease ac-
tivity [28-31,45]. Interestingly, SAMHD1 oligomerization-
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defective variants lost their dNTPase activity when
SAMHD1 proteins were prepared in bacteria or in mam-
malian cells. These results suggested that tetramerization
is important for dNTPase activity, as previously suggested
[29,35,38]. In contrast, the nuclease activity of the Y146S/
Y154S oligomerization-defective SAMHDI1 variant was
not significantly perturbed. Overall, these findings sug-
gested that dGTP-dependent SAMHD] tetramerization is
important for dN'TPase but not nuclease activity. These
results are interesting in the light of the new discovery
that SAMHDI1 exhibit nuclease activity [45], suggesting
that RNAase might be part of the mechanism by which
SAMHD1 blocks HIV-1 infection.

We found that SAMHDI1 variants that are defective
for dGTP-dependent tetramerization potently blocked
HIV-1 infection when compared to wild type SAMHD]1,
which suggested that oligomerization is not required for
the antiretroviral properties of SAMHDI. Surprisingly,
SAMHDI1 oligomerization-deficient mutants were able
to decrease the dN'TP cellular levels when compared to
wild type SAMHDI. These results suggest that the
dNTPase activity of SAMHD1 might be regulated in
cells by a yet unknown mechanism that does not require
tetramerization. Another possibility is that SAMHDI1
mutants that are strongly oligomerization-deficient in
our in-vitro and immunoprecipitation assays described
here, are still capable of forming tetramers when inside
mammalian cells through interaction with other factors
or some other compensatory mechanism. Future experi-
ments will determine whether dN'TPase and/or nuclease
activities are required to block HIV-1 infection.

Conclusions

These results suggested that SAMHDI1 oligomerization
is not required for the ability of the protein to block
HIV-1 infection.

Methods

Generation of U937 cells stably expressing SAMHD1 variants
Retroviral vectors encoding wild type or mutant SAMHD1
proteins fused to FLAG were created using the LPCX
vector (Clontech). Recombinant viruses were produced
in 293 T cells by co-transfecting the LPCX plasmids
with the pVPack-GP and pVPack-VSV-G packaging
plasmids (Stratagene). The pVPack- VSV-G plasmid en-
codes the vesicular stomatitis virus G envelope glycopro-
tein, which allows efficient entry into a wide range of
vertebrate cells [46]. Transduced human monocytic U937
cells were selected in 0.4 mg/ml puromycin (Sigma).

Infection with HIV-1 expressing the green fluorescent
protein (GFP)

HIV-1 expressing GFP, pseudotyped with the VSV-G glyco-
protein, were prepared as described [47]. For infections,
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6 x 10* cells seeded in 24-well plates were either
treated with 10 ng/ml phorbol-12-myristate-3-acetate
(PMA) or DMSO for 16 h. PMA stock solution was
prepared in DMSO at 250 mg/ml. Subsequently, cells
were incubated with HIV-1-GEP for 48 h at 37°C. The
percentage of GFP-positive cells was determined by
flow cytometry (Becton Dickinson). Viral stocks were
titrated by serial dilution on dog Cf2Th cells.

SAMHD1 oligomerization assay

Approximately 1.0 x 10" human 293 T cells were cotrans-
fected with plasmids encoding SAMHDI1 variants tagged
with FLAG and HA. After 24 h, cells were lysed in 0.5 ml
of whole-cell extract (WCE) buffer [50 mM Tris (pH 8.0),
280 mM NaCl, 0.5% IGEPAL, 10% glycerol, 5 mM MgCl2,
50 pg/ml ethidium bromide, 50 U/ml benzonase tail
(Roche)]. Lysates were centrifuged at 14,000 rpm for 1 h
at 4°C. Post-spin lysates were then pre-cleared using pro-
tein A-agarose (Sigma) for 1 h at 4°C; a small aliquot of
each of these lysates was stored as input. Pre- cleared ly-
sates containing the tagged proteins were incubated with
anti-FLAG-agarose beads (Sigma) for 2 h at 4°C. Anti-
FLAG- agarose beads were washed three times in WCE
buffer, and immune complexes were eluted using 200 mg
of FLAG tripeptide/ml in WCE buffer. The eluted samples
were separated by SDS-PAGE and analyzed by Western
blotting using either anti-HA or anti-FLAG antibodies
(Sigma).

Nucleic-acid binding assay

Nucleic-acid binding assay was performed as previously de-
scribed [31,39]. In brief, the synthetic DNA phosphorothioate-
containing interferon-stimulatory DNA (ISD-PS), which
is an RNA analog, was synthesized with a 50-biotin tag
using the following primers:

ISD sense 5'-tacagatctactagtgatctatgactgatctgtacatgatc
taca-3',

ISD antisense 5'-tgtagatcatgtacagatcagtcatagatcactagta
gatctgta-3'.

Sense and antisense primers were incubated at 65°C
for 20 min, and primers were allowed to anneal by cool-
ing down to room temperature. Annealed primers were
immobilized on an Ultralink Immobilized Streptavidin
Plus Gel (Pierce). Cells were lysed using TAP lysis buffer
(50 mM Tris pH 7.5, 100 mM NaCl, 5% glycerol, 0.2%
NP-40, 1.5 mM MgCl2, 25 mM NaF, 1 mM Na3VO4,
protease inhibitors) and lysates were cleared by centrifu-
gation. Cleared lysates (Input) were incubated with
immobilized nucleic acids at 4°C on a rotary wheel for
2 h in the presence of 10 mg/ml of Calf-thymus DNA
(Sigma) as a competitor. Unbound proteins were re-
moved by three consecutive washes in TAP lysis buffer.
Bound proteins to nucleic acids (Bound) were eluted by
boiling samples in SDS sample buffer (63 mM Tris—HCl,
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10% Glycerol 2% SDS, 0.0025% Bromophenol Blue) and
analyzed by Western blot- ting using anti-FLAG anti-
bodies (Sigma).

In vitro oligomerization assays.

WT and Y146S/Y154S variant of the strep-tagged HD do-
main construct of human SAMHDI (residue 109-626)
were expressed in BL21(DE3) E.coli using a pET expres-
sion vector. Protein was purified by affinity chromatog-
raphy [29].

SAMHDI constructs at 8 uM concentration were in-
cubated with or without 50 pM dGTPaS for 4 days at
4C. After the incubation the samples were analyzed by
size-exclusion chromatography using a HiLoad 16/60
Superdex 200 column. (GE Life Sciences).

Sedimentation velocity analytical ultracentrifugation was
performed on a Beckman XLA analytical ultracentrifuge
using an AN50 Ti rotor with standard Epon 2-channel
centerpieces. The samples were spun at 40000 rpm for ~
12 hrs at 20 C. 25 scans measuring absorbance at 280 nm
were collected. The van Holde — Weischet and 2DSA-
Monte Carlo analysis was performed using Ultrascan 3 as
described elsewhere [40-43].

In vitro dNTPase and nuclease assays

dNTPase. SAMHD1 was buffer-exchanged into NMR
buffer (50 mM d11-Tris, pH 7.4, 50 mM NaCl, 5 mM
MgCl2, 50uM Zn2+). NMR samples were prepared as
follows: 2 mM dGTP, 2uM SAMHDI1, 10% D20 in
NMR buffer. 'H 1D NMR spectra were recorded every
4 min using SampleJet on a 500 MHz Bruker spectrom-
eter equipped with TCI cryo-probe. NMR 1D spectra
were processed using NMRPipe.

Nuclease. A quenched fluorescent single-stranded DNA
substrate was used to measure the nuclease activity of
SAMHDI1 HD domain constructs. The single-stranded 45-
base DNA oligo 5’-tacagatctactagtgatctatgactgatctgtacat-
gatctaca-3" was ordered from MWG operon with 5'-FAM
and 3’-BHQI1 modifications. The substrate (100 pM) and
the enzyme (12.5 pM and 3.25 pM) stocks were prepared
in the assay buffer (50 mM tris, pH 7.4, 5 mM MgCI2,
50 uM Zn2+ and 50 mM NaCl). 20 pL of the substrate
stock was mixed with 20 pL of the enzyme stock in a 384-
well microplate and the fluorescence signal measured on a
Biotek Synergy 2 microplate reader using 485/20 excita-
tion and 528/20 emission filters. The fluorescence inten-
sities were plotted as a function of the reaction time.

Determination of dNTPs cellular levels.

2 x 10° to 3 x 10° cells werecollected for each cell type.
Cells were washed twice with 1x PBS, pelleted and re-
suspended in ice cold 65% methanol. Cells were vor-
texed for 2 min and incubated at 95°C for 3 min. Cells
were centrifuged at 14000 rpm for 3 min and the
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supernatant was transferred to a new tube for the
complete drying of the methanol in a speed vac. The dried
samples were resuspended in molecular grade dH20O.
An 18-nucleotide primer labeled at the 5 end with 32 P
(5-'GTCCCTGTTCGGGCGCCA-3) was annealed at a
1:2 ratio to four different 19-nucleotide templates (5'-NT
GGCGCCCGAACAGGGAC-3’), where'N’ represents the
nucleotide variation at the 5" end. Reaction condition con-
tains 200 fmoles of template primer, 2 ml of 0.5 mM
dNTP mix for positive control or ANTP cell extract, 4 ml
of excess HIV-1 RT, 25 mM Tris—HCIl, pH 8.0, 2 mM di-
thiothreitol, 100 mM KCl, 5 mM MgCl,, and 10 uM oligo
(dT) to a final volume of 20 mL. The reaction was incu-
bated at 37°C for 5 min before being quenched with
10 mL of 40 mM EDTA and 99% (vol/vol) formamideat
95°C for 5 min.The extended primer products were re-
solved on a 14% urea—PAGE gel and analyzed using a
phosphoimager. The extended products were quantified
using QuantityOne software to quantify percent volume
of saturation. The quantified dNTP content of each sam-
ple was accounted for based on its dilution factor, so that
each sample volume was adjusted to obtain a signal within
the linear range of the assay.

Immunofluorescence microscopy

Transfections of cell monolayers were performed using
Lipofectamine Plus reagent (Invitrogen), according to
the manufacturer’s instructions. Transfections were in-
cubated at 37°C for 24 h. Indirect immunofluorescence
microscopy was perfomed as previously described [44].
Transfected monolayers grown on coverslips were
washed twice with PBS1X (137 mM NaCl, KCl 2.7 mM,
Na,HPO32H,O 10 mM, KH,PO, mM) and fixed for
15 min in 3.9% paraformaldehyde in PBS1X. Fixed cells
were washed twice in PBS1X, permeabilized for 4 min in
permeabilizing buffer (0.5% Triton X-100 in PBS), and
then blocked in PBS1X containing 2% bovine serum al-
bumin (blocking buffer) for 1 h at room temperature.
Cells were then incubated for 1 h at room temperature
with primary antibodies diluted in blocking buffer. After
three washes with PBS, cells were incubated for 30 min
in secondary antibodies and 1 mg of DAPI (49, 69-
diamidino-2-phenylindole)/ml. Samples were mounted
for fluorescence microscopy by using the ProLong Anti-
fade Kit (Molecular Probes, Eugene, OR). Images were
obtained with a ZeissObserver Z1 microscope using a
63x objective, and deconvolution was performed using
the software AxioVision V4.8.1.0 (Carl Zeiss Imaging
Solutions).

Assay to determine dNTPase activity of SAMHD1 by thin-
liquid chromatography

Wild type and mutant SAMHDI proteins immunopreci-
piated from mammalian cells were incubated with or
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without 100 pM dGTP, 500 uM dTTP and 0.25 pl «32P-
dTTP (PerkinElmer) in SAMHDI1 reaction buffer
(50 mM Tris—HCl pH 8, 50 mM KCI, 5 mM MgCl,,
0.1% Triton-X 100) in a 17.5 pl final volume. Reactions
were initiated by addition of SAMHDI, incubated for
1 h at 37°C, and terminated by incubation for 10 min at
70°C. The no enzyme control reaction and the antarctic
phosphatase reaction contained dGTP. The antarctic
phosphatase reaction (2 ul, New England BioLabs) was
used to show the mobility of monophosphates on the
plate as a comparison to triphosphate mobility. Reac-
tions were spotted (0.5 pl) on a TLC PEI Cellulose F
plate (EMD Chemicals) and separated in a 0.8 M LiCl
solvent. Product formation was analyzed on a Bio-Rad
Personal Molecular Imager.

Additional file

Additional file 1: Image quantification. Cells were scored visually for
nuclear and cytoplasmic distribution. In every experiment two hundred
cells were counted. The analysis of the distribution was performed in
human Hela cells.
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