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The trinity of the cortical actin in the initiation of

HIV-1 infection
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Abstract

of how HIV utilizes actin dynamics to initiate infection.

For an infecting viral pathogen, the actin cortex inside the host cell is the first line of intracellular components that
it encounters. Viruses devise various strategies to actively engage or circumvent the actin structure. In this regard,
the human immunodeficiency virus-1 (HIV-1) exemplifies command of cellular processes to take control of actin
dynamics for the initiation of infection. It has becomes increasingly evident that cortical actin presents itself both as
a barrier to viral intracellular migration and as a necessary cofactor that the virus must actively engage, particularly,
in the infection of resting CD4 blood T cells, the primary targets of HIV-1. The coercion of this most fundamental
cellular component permits infection by facilitating entry, reverse transcription, and nuclear migration, three
essential processes for the establishment of viral infection and latency in blood T cells. It is the purpose of this
review to examine, in detail, the manifestation of viral dependence on the actin cytoskeleton, and present a model

Keywords: HIV-1, gp120, Nef, Actin, Cofilin, LIMKT, Arp2/3, CD4, CXCR4, Chemokine, Chemotaxis

Review

Background

The cytoskeleton is a dynamic structure composed of
microfilaments (filamentous actin or F-actin), intermedi-
ate filaments, and microtubules that are mainly respon-
sible for defining cell shape, mediating motility, and
transporting macromolecules and organelles. The actin
cytoskeleton, in particular, has been shown to be the driv-
ing force for cell motility and migration [1], and is
involved in multiple cellular processes in the host immune
response [2,3]. As an integral component of intracellular
molecular networks, the actin cytoskeleton is also a target
for pathogens, as originally recognized in studies of the
human pathogens Listeria monocytogenes [2,3] and vac-
cinia virus [4]. Complex viruses such as vaccinia virus
(200 kb dsDNA genome, encoding approximately 250
genes) or baculovirus (130 kb dsDNA genome, encoding
approximately 150 genes) utilize dedicated viral proteins
such as A36R and P78/83 to hijack the cellular actin
polymerization process to propel essential viral activities
[4,5]. In vaccina viral infection, the virus mimics normal
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cellular signaling pathways to mediate actin-based motility
for spreading between cells. This is achieved through tyro-
sine phosphorylation of A36R that recruits host N-
Wiskott-Aldrich syndrome protein (N-WASP) to the site
for actin assembly [4]. In baculovirus, actin-based viral
motility is required for viral intracellular migration and
nuclear entry early in the infection process and viral
spread towards the end of the viral life cycle [6]. Remark-
ably, to trigger actin polymerization in the nucleus, the
virus translocates the host Arp2/3 complex into the nu-
cleus where it is activated by P78/83, a viral mimic of the
host WASP protein [5]. However, small viruses such as
HIV (9 kb ssRNA genome, encoding 9 genes) may not
have proteins with such a high specificity for the actin net-
work. It remains unknown if any of the HIV-encoded es-
sential or accessory proteins has a dedicated role for
utilizing the actin network.

From a historical perspective, early indications that HIV
may interact with cytoskeletal elements came from several
studies. Hottiger et al. described a potential interaction
between actin and either the large subunit of HIV-1 re-
verse transcriptase or Pol polyprotein precursor [7]. Rey
et al. described cofractionation and interaction of HIV
Gag with F-actin [8], which was later mapped to the Gag
nucleocapsid (NC) domain [9-11]. HIV integrase and Nef
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were also found to bind to actin [12-14]. However, these
and similar findings were not given sufficient attention for
several reasons: the degree to which these interactions
were specific was uncertain, as actin can interact non-
specifically with many proteins; secondly, the lack of a
clear mechanistic process by which actin could contribute
to HIV infection may have lessened overall interest in the
role of the cytoskeleton; and, last but not least, targeting
actin as an antiretroviral strategy is typically viewed as
problematic since targeting fundamental cellular elements
would result in severe cytotoxicity. As such, the thera-
peutic applicability of these findings was questionable.

On the other hand, there were some indications that
interacting with the actin cytoskeleton may not be so crit-
ical for the virus. It has been known that pseudotyping
HIV particles with the vesicular stomatitis virus glycopro-
tein (VSV-G) can generate highly infectious particles in
the laboratory [15]. VSV-G pseudotyping mediates viral
entry through endocytosis, circumventing the viral recep-
tors and the actin cortex. These results suggest that for
HIV, interacting with the cortical actin may be unneces-
sary and avoidable, as least at postentry steps in trans-
formed cells. However, two pieces of evidence suggest that
these observations may not reflect the genuine cellular en-
vironment that the virus encounters in vivo. Firstly, the
HIV Nef protein, a critical factor involved in HIV patho-
genesis, no longer plays a role during VSV-G-pseudotyped
virus infection of target cells [15-17]. Coincidentally, it
was found that treatment of cells with actin inhibitors also
eliminated Nef-mediated enhancement of viral infectivity
[18]. These results suggest that at least one viral protein,
Nef, may need the involvement of actin to facilitate viral
infection and pathogenesis. Secondly, it was recently
demonstrated by two independent laboratories that the
VSV-G-pseudotyped virus, although highly infectious for
transformed cells, is not capable of infecting resting CD4
T cells, the primary targets of HIV infection [19,20]. The
VSV-G-pseudotyped virus was either incapable of entering
resting CD4 T cells [20] or was destroyed in the endocytic
pathway within 1-2 days following entry [19]. If the endo-
cytic pathway [21] is defective in resting T cells [19,20],
HIV envelope-mediated membrane fusion would directly
deliver the viral core in front of the cortical actin [22-26];
an encounter and engagement with the cortical actin is
unavoidable, either actively or passively.

Cortical actin dynamics in T cells are normally con-
trolled by chemokine receptor binding and signal trans-
duction [1]. The fact that HIV selects two chemokine
receptors, CCR5 and CXCR4, as the main entry corecep-
tors implies an urgent need for the virus to engage the
chemotactic process to initiate infection [19]. This has
been explicitly demonstrated recently in HIV-1 latent in-
fection of resting CD4 T cells [27,28]. In this process,
HIV utilizes gpl20 to trigger the activation of actin
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regulators such as cofilin and the LIM domain kinase 1
(LIMK1) to increase actin dynamics [27,28]. It has be-
come evident that a dynamic cytoskeleton is important
for viral entry, postentry DNA synthesis, and nuclear
migration in resting T cells [19,27-30]. These recent
studies have rekindled an interest in the role of the actin
cytoskeleton in HIV biology and in viral pathogenesis
[31-35]. It is the purpose of this review to integrate re-
cent findings with the scattered pieces of data from the
past, and to provide a prototype model to facilitate our
understanding of this complicated process. In addition,
the pathogenic implications of HIV hijacking host actin
activity in blood CD4 T cells will also be discussed in
this review.

Role of actin in HIV-1 entry

HIV entry into target cells requires serial engagement of
the primary viral receptor, CD4 [36-41], and coreceptor,
CXCR4 [42] or CCR5 [43-48]. This binding event ultim-
ately culminates in viral fusion, wherein the viral core is
deposited into the cytoplasmic compartment. A debat-
able question is to what extent cellular factors determine
the outcome of viral receptor/coreceptor engagement.
Lapham et al. [49] and others [50-52] produced some of
the first data indicating that CD4/coreceptor colocaliza-
tion at the cell surface is an active process. Specifically,
the association of CD4 and the coreceptors is increased
upon gpl20 binding in T cells or macrophages. It was
also speculated that this association might occur in
membrane microdomains [49]. Ugolini et al. observed
that CD4/CXCR4 colocalization was increased in re-
sponse to HIV-1 soluble gp120 treatment [53]. However,
this response to gp120 treatment was not experimentally
correlated with any infection process, and, as such, its
contribution to HIV entry is rather speculative. In
addition to receptor colocalization, there is growing evi-
dence indicating that viral entry may be dependent on
the actin cytoskeleton as well as dynamic inputs asso-
ciated with CD4 and coreceptor signal transduction
[27,28,53-59]. However, the modeling of an entry re-
quirement for active receptor clustering and receptor
signaling must take into account existing evidence on
the constitutive association and juxtaposition of CD4
with CCR5 or CXCR4 in the absence of viral binding
[49,53,60-63]. Xiao et al. described a constitutive associ-
ation between CD4 and CCR5 or CXCR4 in cell lines,
primary T cells and macrophages [61], but did not ob-
serve a significant increase in CD4/CCR5 coimmunopre-
cipitation upon gpl20 binding [61]. This result was
corroborated by a fluorescent resonance energy transfer
(FRET) study by Toth et al, showing that CD4 and
CXCR4 are constitutively associated to a significant ex-
tent on the cell surface, and this interaction is not
altered by gp120 binding [64]. Similarly, Singer et al
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observed a constitutive association between CD4 and
CXCR4 or CCR5 on microvilli in PBMC-derived macro-
phages and T cells [62]. Immuno-gold electron micros-
copy showed that CD4 and coreceptors exist as
homogenous microclusters that are typically within
100 nm, or one viral diameter, of each other [62]. These
findings were again supported by a Fluorescence Recov-
ery After Photo Bleaching (FRAP) study performed by
Baker et al., who described a constitutive association of
CD4 with multiple CCR5 at the plasma membrane [63].
From these studies, a question arises as to why HIV
requires an active process to cocap receptors when these
molecules are already abundantly associated. An explan-
ation given by Baker et al. is that although the basal
CD4-CCR5 interaction is maximal, the addition of
gp120 brings the two receptors closer [63]. This process
may be energy-dependent and require active participa-
tion of other cellular components [65]. Indeed, it has
been suggested that an active infection process requires
clustering of multiple gp120 with multiple CD4 and cor-
eceptors [61,66-69]. The recruitment of the gp120-CD4-
coreceptor complex is believed to occur mainly in lipid
rafts [70-74]. Nevertheless, controversies exist regarding
whether lipid raft localization of CD4 and the receptors
is necessary for entry and productive viral replication
[75,76]. Regardless of its virological significance, CD4-
binding beads induced lipid raft recruitment of CXCR4,
which was suggested to be actin-dependent as cytochala-
sin D (CytoD) partially inhibited CXCR4 clustering [74].
This observation seems to resonate with an earlier ob-
servation by lyenger et al [54], showing that HIV-1
entry can be inhibited by treatment with CytoD. Specif-
ically, CytoD treatment prevents gpl120-induced CD4/
CXCR4 colocalization [54]. A remaining issue with the
study is that it is not clear why actin needs to be
involved when CD4 and CXCR4 are naturally associated
in most cases. In addition, it is unknown whether actin
is actively involved in driving the receptor clustering
process or actin activity is simply an outcome following
receptor clustering and signaling.

Binding of HIV particles to resting CD4 T cells was
shown to trigger transient actin polymerization [27,28,77].
Vorster and Guo et al. further identified that the actin
polymerization process is mediated through transient acti-
vation of the LIM Domain Kinase 1, LIMK1, a cellular
serine/threonine kinase responsible for phosphorylation
and inactivation of the actin-depolymerizing factor, cofilin
[28]. Intriguingly, the signaling appears to be transduced
sequentially from two sources, one from CD4 and one
from CXCR4 [28]. Indeed, it has been estimated that
gp120 engagement of CD4 only lasts for about 0.2 s [78],
whereas fusion takes a much longer time to occur and
complete [79]. Thus, gpl20 may use both CD4 and
CXCR4 to initiate signaling to sustain actin activity for
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successful fusion. Vorster and Guo et al. have suggested
that this actin polymerization process is required to block
the internalization of CXCR4 following gp120 binding, as
shRNA knockdown of LIMK1 decreases the cortical actin
density and causes a significant increase in the rate of
CXCR4 internalization [28]. These results suggest a model
in which actin is mainly involved in the stabilization of the
gp120-CD4-CXCR4 complex for fusion rather than to
promote the initial receptor migration and colocalization
upon gp120 binding. Consistent with this mode of action,
treatment of cells with CytoB inhibited fusion mediated by
the CD4-independent gp120 [80], suggesting that steps
sensitive to the actin inhibitor may not involve CD4 bind-
ing or CD4-CXCR4 clustering. Additionally, in HIV
gp120-mediated cell-cell fusion, blocking Abl-mediated
actin activity arrested fusion at the hemifusion step [59],
suggesting again that the steps affected by actin dynamics
are directly related to the fusion process and, more specif-
ically, the formation of the fusion pore. In a single-
molecule analysis of gpl20 interaction with CD4 and
CCR5, it was found that only those CCR5 receptors in
close proximity to CD4 can be engaged, since this engage-
ment has to occur very fast when gp120 is still attached to
CD4 [78]. This spatial and temporal constraint likely
excludes an active role of actin activity in receptor cluster-
ing and colocalization because of the relatively slower pace
of HIV-mediated actin dynamics. Thus, gp120-mediatd
actin activity likely plays several key roles following recep-
tor clustering: (1) to provide a physical support to stabilize
the large gp120-CD4-coreceptor aggregates on the plasma
membrane; (2) to block immediate coreceptor internal-
ization to give sufficient time for fusion to occur and
complete; and (3) to prolong coreceptor signaling for
priming post entry events.

The direct signaling pathway regulating this virus-
mediated actin process has been partially mapped by
Vorster and Guo et al. to be the Racl-PAK1/2-LIMK-
Cofilin pathway in resting CD4 T cells [28]. Consistently,
kinases such as IL-2-inducible T-cell Kinase (ITK), a
tyrosine kinase required for SDF-1-mediated actin
polarization and Rac activation, has been shown to be
required for HIV entry [81]. Treatment of Jurkat T cells
with gp120 leads to a low, but reproducible level of ITK
activation [81], which can be inhibited by ITK inhibitors
or siRNA knockdown of ITK. In ITK knockdown T cells,
the actin polymerization induced by gp120-coated beads
was also impaired and this correlates with the decreases
in viral entry [81].

Racl activation has also been observed during gp120-
mediated cell-cell fusion between human astroglioma
U87 cells and monkey BSC40 cells [57]. Expression of
dominant-negative mutant of RacN17, but not Cdc42N17
or RhoN19, eliminated syncytium formation [57]; Rac ac-
tivation was also inhibited by a CCR5 antagonist [57].
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These results suggest that CCR5-derived signal transduc-
tion, resulting in the activation of Rac, is required for
gp120-mediated cell-cell syncytium formation. Harmon
et al. further studied multiple signaling molecules in U87
cells and suggested that Gaq, but not Gai or Gas, may be
required for cell-cell fusion [58]. This process may involve
calcium mobilization [82] and actin regulators such as
Arp2/3, as cell-cell fusion can be inhibited either by siR-
NAs or inhibitors of upstream regulators [59]; though, an
early study found that Arp2/3 inhibition, which inhibited
HIV infection, did not impact cell-cell fusion [83]. These
studies emphasized the complexity of the signaling net-
work regulating actin dynamics during cell-cell syncytium
formation. They also greatly expanded the scope for
examining possible signaling requirements for viral entry.
It is imperative to test whether similar molecules are in-
deed activated and specifically involved in HIV entry into
its natural target cells.

In addition to direct actin regulators, recent studies have
also implicated a number of actin-binding adaptor pro-
teins and crosslinkers. For instance, Jiménez-Baranda
et al. identified filamin-A as a cofactor for HIV entry [55].
Filamin-A, an actin-crosslinker and adaptor, was also
shown to bind CD4, CCR5, and CXCR4. The authors con-
cluded that filamin-A might be required for stability of the
fusion complex. Similarly, Naghavi et al. identified moesin
as a cellular factor whose overexpression blocks HIV and
MLYV infection [84]. Moesin belongs to the Ezrin-Radaxin-
Moesin (ERM) family of proteins that act as crosslinkers
between the plasma membrane and actin filaments and
are involved in actin-directed signal transduction. Intri-
guingly, siRNA knockdown of moesin resulted in
enhanced infection [84]. This seems to be consistent with
the proposal that the cytoskeleton itself is a barrier for
viral infection, and slightly disrupting the stability of actin
network through actin modulators or spinoculation
enhances viral infection [27-29]. Barrero-Villar et al.
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further studied the role of ERM proteins in HIV infection,
and suggested that binding of gpl20 to CD4 alone
increases ezrin and moesin phosphorylation that might be
involved in active receptor clustering [56]. In addition,
siRNA knockdown of moesin, but not ezrin, resulted in an
inhibition of infection. Once again, this phenomenon was
attributed to an effect in receptor clustering and entry;
specifically, that the association and clustering of CD4/
CXCR4 induced by gpl20 requires moesin-mediated
anchoring of actin to the plasma membrane. Nevertheless,
moesin knockdown-mediated HIV inhibition was in con-
trast to the enhancement observed by Naghavi et al. [84].
This difference could result from different cell lines used
or the degrees of siRNA silencing that may affect viral
processes differently.

In summary, from the studies discussed above, we
propose a prototype model in which the role of actin dy-
namics in HIV entry is described in Figure 1A to 1C: (1)
binding of HIV gp120 to target T cells initiates a transi-
ent course of actin polymerization which is mediated
through CD4/CXCR4 signal transduction that activates
Pyk2, ITK and downstream Racl, PAK1/2, LIMK1 and
cofilin. (2) In the meantime, CD4 signaling or CD4/
CXCR4 signaling also activates actin-anchoring proteins,
such as moesin and filamin-A, to anchor F-actin to the
plasma membrane and to CD4 and CXCR4. (3) Actin
polymerization provides a physical support to stabilize
the large gp120-CD4-CXCR4 aggregates on the plasma
membrane; (4) F-actin also functions to block immediate
CXCR4 internalization to give sufficient time for fusion
to occur and complete. (5) Additionally, actin-supported
stability of the gp120-CD4-CXCR4 complex may pro-
long coreceptor signaling for priming postentry events.

Role of actin in HIV-1 postentry DNA synthesis
Following viral fusion and entry, HIV goes through the
processes of uncoating and reverse transcription. The
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Figure 1 Model of actin dynamics in HIV-1 infection of T cells. Binding of gp120 to CD4 T cells activates Rac-PAK-LIMK-cofilin pathway,
triggering early actin polymerization, transiently blocking CXCR4 internalization. Actin-anchoring proteins such as moesin and filamin-A may also
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involvement of the actin cytoskeleton in viral postentry
steps, particularly in the process of reverse transcription,
remains poorly characterized. Early indications that
components of HIV particles may interact with the cyto-
skeleton came from studies in 1992 by Arthur et al. who
identified actin, among other cellular proteins, in virions
collected from sucrose gradient centrifugation [85]. Ott
et al. also found three types of actin-related factors
present inside HIV virions in various molar ratios to
HIV Gag: actin (10-15%), ezrin and moesin (2%), and
cofilin (2-10%) [86,87]. The functional significance of the
virion-incorporation of these proteins is unknown, al-
though Wilk ez al. demonstrated that the packaged actin
filaments are specifically associated with the nucleocap-
sid (NC) [11]. Through various screening strategies such
as yeast two-hybrid system, several other viral proteins
have also been found to interact with actin. These in-
clude the large subunit of the reverse transcriptase [7],
the integrase [13], Nef [12,14], and part of the Gag poly-
protein or the nucleocapsid [8-11]. All of these proteins
are integral components of the viral preintegration com-
plex (PIC) delivered into cells. These findings seem to
suggest that actin may play a role in defining the struc-
ture of the virion particle or the PIC. Whether this
actin-supported structural integrity is important for viral
postentry process such as reverse transcription has not
been clearly resolved.

There is some indication that a direct interaction with
the actin cytoskeleton following viral entry may be un-
necessary or avoidable. Firstly, reverse transcription can
be initiated from permeabilized virion particles [88,89],
and naturally, HIV particles also contain partially reverse
transcribed genomes [90-92]. Secondly, pseudotyping
HIV particles with VSV-G, which mediates viral entry
through endocytosis, generates highly infectious virus
that infects cells with minimal contact with the cortical
actin [15,17,93,94]. Nevertheless, the DNA molecules
found in virion particles are mostly early products of re-
verse transcription [90,91], and the process of intravirion
DNA synthesis is also inefficient; the ratio of genomic
RNA to viral DNA is very low, at 10*:1 for the early
“strong stop” DNA and 101 for the late “gag” DNA
[89]. These findings are somewhat reminiscent of the re-
verse transcription reaction using purified reverse tran-
scriptase, in which only the early product of the reverse
transcription can be generated [95]. These data suggest
that there may be structural constraints in the virion,
limiting reverse transcription; alternatively, cellular
cofactors such as actin or actin-associated factors may
be required. Intriguingly, intravirion reverse transcrip-
tion can be stimulated using deoxyribonucleoside tripho-
sphates (AN'TPs) and detergent to partially disrupt virion
structure [89,96,97]. These detergent-induced changes
include dissolution of the p24 shell in the viral core and
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disappearance of the core-envelope linkage region [98].
Based on these findings, Zhang et al. suggested that
intravirion or intracellular reverse transcription of HIV-1
is unlikely to take place within intact viral cores [98].
Thus, effective viral reverse transcription inside cells
may involve an organized process of uncoating or core
rearrangement following entry [99-101].

In VSV-G pseudotyped HIV infection, the role of cor-
tical actin in VSV-G-mediated endocytosis is limited to
membrane scission of clathrin-coated pits, which does
not involve direct contact between the cortical actin and
viral particles [102]. The higher infectivity of VSV-G
pseudotyped virus could suggest that HIV uncoating or
reverse transcription may not need the extensive in-
volvement of the cortical actin in cells. However, Yu
et al. demonstrated that, though nuclear migration is
more efficient following VSV-G-mediated entry, viral
DNA synthesis is decreased [19]. These data suggest that
the higher infectivity of the VSV-G pseudotyped particles
does not result from higher levels of viral entry, uncoat-
ing or reverse transcription, but is largely attributed to
the greater ability of VSV-G to deliver the PIC deep into
the cytoplasm for nuclear entry. On the other hand, the
particles generated by VSV-G pseudotyping may be un-
natural or imperfectly formed, especially in the core-
envelope linkage region [15,98]. Thus, the uncoating
process during VSV-G-mediated endocytic entry may
not be as tightly regulated as in the natural HIV particle.
Indeed, Brun et al. demonstrated that certain CA
mutants that affect core assembly and stability, though
defective during wild-type HIV replication, could be res-
cued by pseudotyping with VSV-G [103]. These results
indicate that proper core structure is required for
uncoating, reverse transcription and nuclear import
when the core is delivered by fusion at the plasma mem-
brane; however, such a requirement is dispensable when
the core is delivered through the endocytic pathway.
Therefore, the VSV-G-mediated infection may not re-
flect the genuine uncoating requirements, which may re-
quire cortical actin or cortical actin-associated factors.
In addition, both Agosto et al. [20] and Yu et al. [19]
demonstrated that, although highly infectious in trans-
formed cells, the VSV-G pseudotyped virus is not cap-
able of infecting resting CD4 T cells, as viral DNA
synthesis is highly diminished [19]. These results, al-
though they do not demonstrate a direct role of cyto-
skeletal actin in HIV reverse transcription, do suggest
that the cortical actin may be involved in the process of
uncoating and/or reverse transcription, especially in HIV
infection of its natural target cells.

The process of HIV uncoating is poorly studied [104],
and there is no specific cellular cofactor identified so far,
although there are some suggestions that cellular kinases
may be involved [101]. Additionally, it has also been
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suggested that activated T cells may contain an uncoat-
ing factor, whereas resting CD4 T cells do not [105].
Given that the cortical actin is the immediate structure
intercepting the virus after membrane fusion, there is a
possibility that actin-associated factors or actin activity
itself may be a direct driving force for uncoating. The
mechanical force generated by actin polymerization and
exerted by the lamellipodium on a moving cell has been
measured to be in the range of a few nanonewtons (nN)
[106,107]. It would be interesting to know whether the
actin forces triggered during HIV entry are sufficient to
destabilize the core structure.

Some of the direct evidence demonstrating a require-
ment for cytoskeletal actin in HIV reverse transcription
came from multiple inhibitor studies as well as recent
siRNA knockdown studies of the actin modulators. Iyen-
gar et al. demonstrated that CytoD treatment (0.2 to
1 uM) of PHA-activated peripheral blood mononuclear
cells (PBMC) led to inhibition of HIV infection [54].
Nevertheless, the authors concluded that the inhibitory ef-
fect of CytoD resulted from specific blockage of viral entry
and CD4 and CXCR4 receptor clustering [54]. Bukrins-
kaya et al. also reported that CytoA, CytoD, and CytoE
(5 uM) all inhibited HIV infection of a HeLa-CD4 indica-
tor cell [108]. Specifically, CytoD reduced viral early DNA
synthesis 4- to 5-fold in MT-4 cells [108]. The study did
not distinguish whether the decrease of viral DNA
resulted from a loss of entry as proposed by Iyengar [54].
However, the authors argued that the inhibitory effects of
cytochalasins were mainly from inhibiting viral DNA syn-
thesis rather than from inhibiting entry, since early viral
DNA was abundantly detected in treated cells [108].

Yoder et al. also reported that the actin inhibitor jas-
plakinolide (Jas) effectively inhibited HIV latent infection
of resting CD4 T cells at dosages around 120 nM when
T cell activation was not inhibited by Jas [27]. The inhib-
ition was largely attributed to the inhibition of viral
DNA synthesis and nuclear migration, although viral
entry was also slightly inhibited by 120 nM Jas [27]. Guo
et al. further demonstrated that the Jas inhibition of
HIV infection was also dependent on cellular states [29].
For resting CD4 T cells, in which the cytoskeletal actin
is relatively static [27], the Jas IC50 dosage for HIV-1 in-
fection was 60 nM, whereas for transformed Rev-CEM
indicator cells [109,110], the Jas ICs, for HIV-1 infection
was 250-500 nM [29]. In addition, increasing actin dy-
namics through spinoculation increased the ICs, to ap-
proximately 1 uM for Rev-CEM cells [29]. These results
demonstrate that increasing actin dynamics can partially
overcome the Jas inhibitory effect on HIV infection. Guo
et al. further suggested that the relative sensitivity to Jas
could be used as a correlative of actin dynamics in dif-
ferent cell types, and hence, part of their capacity to sup-
port HIV infection [29].
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A major caveat of using actin inhibitors to study HIV
infection is that most of them are associated with gen-
eral cytotoxicity and have broad effects on cell physi-
ology. Thus, proper controls need to be used to ensure
that the inhibition observed is virus specific. Neverthe-
less, these actin inhibitor studies do appear to be con-
sistent with several siRNA knockdown studies in which
the activity of actin modulators such as cofilin and
LIMK1 was directly targeted. Yoder et al. demonstrated
that slight shRNA-mediated inhibition of cofilin, an
actin-depolymerizing factor, in pre-activated blood CD4
T triggered a drastic increase in the cortical actin density
[27]; however, similar knockdown of cofilin in trans-
formed CEM-SS T cells triggered apoptosis [27]. Even in
the background of potential cytotoxicity, the increase in
the cortical actin in blood CD4 T cells correlated with
an increase in HIV DNA synthesis [27]. Consistently,
shRNA knockdown of the cofilin kinase LIMK1
decreased the cortical actin density, yet increased
CXCR4 receptor trafficking [28]. In the LIMKI1 knock-
down cells, a decrease in cortical actin was associated
with an impairment of viral DNA synthesis following in-
fection with wild type HIV-1, but not with the VSV-G
pseudotyped virus [28]. These results demonstrate a dir-
ect role of the cortical actin in early viral DNA synthesis.
However, these actin inhibitor and siRNA knockdown
studies do not provide a mechanistic understanding of
why altering actin density or dynamics affect HIV DNA
synthesis. Vorster and Guo et al. suggest that the
process of actin polymerization may simply act as a driv-
ing force for viral uncoating, and thus, decreasing actin
dynamics may impair proper uncoating [28]. Alterna-
tively or additionally, the cortical actin may function as
an anchorage for the viral reverse transcription complex,
and a decrease in the actin cortex density may result in
less contact time and suboptimal reverse transcription
[28]. Bukrinskaya et al. has also demonstrated that phos-
phorylated Gag matrix protein (MA) is mainly associated
with the HIV preintegration complex (PIC) and with the
actin cytoskeleton during early stages of HIV infection,
and suggested that actin filaments may be a major site
for viral reverse transcription in infected cells [108].
Others have demonstrated that the Gag nucleocapsid
protein (NC) rather than MA is the factor that directly
interacts with actin [8-11]. Certainly, besides Gag NC,
multiple HIV proteins such as the large subunit of the
viral reverse transcriptase, the viral integrase, and Nef in
the preintegration complex (PIC) are known to directly
interact with actin [7,12-14], suggesting possible anchor-
age of PIC onto the cortical actin for efficient reverse
transcription. Among these actin interacting proteins,
Nef in particular has been known to enhance viral in-
fectivity by a factor of 4 to 40 [111-113]. This enhance-
ment has been attributed to a positive effect of Nef at



Spear et al. Retrovirology 2012, 9:45
http://www.retrovirology.com/content/9/1/45

early steps postentry, such as uncoating or reverse tran-
scription [114-116]. Nef has been known to also interact
with the HIV core [117,118] and requires cellular cofac-
tors for enhancement, since Nef-defective virions display
normal levels of endogenous reverse transcriptase activ-
ity [116]. This positive effect of Nef in infected cells is
diminished by actin inhibitors [18] or pseudotyping with
VSV-G [15]. These results indicate that the Nef-
mediated enhancement of viral DNA synthesis is likely
related to the cortical actin.

In HIV infection of resting CD4 T cells, viral DNA syn-
thesis is a slow process that takes about 2 days to
maximize [27]. After reaching its peak level, viral DNA
decreases with time, likely resulting from a concurrent
decay process [27,119]. Korin and Zack suggested that a
lower dNTP level in resting CD4 T cells may limit viral
DNA synthesis [120,121]. Yoder and Yu et al. demon-
strated that the slower synthesis and decay of viral DNA
are also correlated with lower cortical actin dynamics in
resting T cells [27]. To increase actin dynamics, the virus
utilizes gp120 binding to CXCR4 to trigger a transient
course of actin activity through LIMK1 and cofilin
[27,28,32]. This actin process facilitates viral DNA synthe-
sis and nuclear migration, which may mitigate the viral
DNA decay process. As early as 2 h post infection, a sig-
nificant fraction of viral DNA is translocated into the nu-
cleus, concurrent with HIV-mediated signaling and actin
activity [27]. HIV DNA synthesized in the absence of actin
activity may be excluded from nuclear entry and gradually
degraded in the cytoplasm of resting T cells [27]. Consist-
ently, pre-stimulation of resting CD4 T cells with anti-
CD4/CXCR4 beads reorganized the cortical actin and
increased actin dynamics, and this stimulation enhanced
viral DNA synthesis and nuclear migration [27]. In
addition, Guo et al. demonstrated that spinoculation trig-
gered dynamic actin and cofilin activity, and this process
dramatically increased viral DNA synthesis and nuclear
migration in resting CD4 T cells [29]. Furthermore,
Campbell et al. demonstrated that stimulation of resting
CDA4 T cells with CCL2 augmented gp120-induced F-actin
polymerization, which enhanced viral DNA synthesis
about 5-fold [122]. These results are in agreement with a
model in which actin may be involved in viral uncoating
and DNA synthesis. In resting T cells, a lessened amount
of actin activity may be associated with a slower uncoating
rate, which could result in a slower course of viral DNA
synthesis and nuclear migration and an increased rate of
viral DNA decay.

In summary, based on the above discussion, a possible
role of the cortical actin in viral postentry DNA synthe-
sis is described in Figure 1D. Following viral fusion and
entry, HIV-mediated actin polymerization may facilitate
viral uncoating; the viral preintegration complex may
also be directly anchored onto actin filaments through
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multiple proteins such as the viral nucleocapsid, the
large subunit of RT, integrase, and Nef. The anchorage
of the preintegration complex onto actin filaments may
be important for optimal reverse transcription and sub-
sequent nuclear migration.

Role of actin in HIV intracellular migration

After, or concomitant with reverse transcription, the
viral preintegration complex (PIC) must migrate to the
nucleus for integration. The PIC retains many of the
viral factors associated with reverse transcription; most
notably, the reverse transcriptase, the integrase, the
matrix, the nucleocapsid, Vif, Vpr, and Nef [123]. Among
these PIC components, the large subunit of the reverse
transcriptase, the integrase, the nucleocapsid, and Nef
are also known to interact with actin [7-14]. Until re-
cently, there has been very little insight into the possible
role of actin in PIC intracellular migration and delivery
to the nuclear peripheral zone; however, recent evidence
seems to suggest that, once again, actin may play a piv-
otal role in this essential infective process.

Live cell imaging of GFP-tagged HIV-1 by McDonald
et al. [124] revealed microtubule-associated intracellular
motility in HeLa and Hos cells, which could be inhibited
by microinjection of an anti-dynein motor complex anti-
body. By 2 h post-infection, a significant proportion of the
labeled particles accumulated in the perinuclear region,
often at the microtubule-organizing center (MTOC).
Though microtubule or F-actin inhibition alone did not
inhibit intracellular migration, a combination of nocoda-
zole and latrunculin B, which disrupt microtubule and
actin polymerization respectively, did diminish particle
motility [124], suggesting that this process may involve
both microtubules and actin. Similarly, Arhel et al., used
labeled integrase to track the intracellular movements of
VSV-G-pseudotyped HIV-1 in HeLa cells, and suggested
that both microtubule- and actin-dependent movements
may be involved in HIV migration [125]. Treatment of
cells with a dominant-negative dynactin or latrunculin B
impaired viral cytosolic movement [125].

Given that a majority of particles in a viral preparation
are often not infectious [126] and funneled for degrad-
ation after entry [127,128], a cautionary note has been
made that these and similar imaging studies [129] may
not distinguish replication-competent viruses from the
non-infectious particles or particle aggregates, which rep-
resent the majority [130]. Yoder et al used multiple
microtubule modulators such as taxol, vinblastine, colchi-
cine, and nocodazole to provide direct biological evidence
for the involvement of microtubules in early steps of HIV
infection of CD4 T cells [131]. However, the authors
observed almost no inhibition of HIV-1 infection, al-
though these drugs disrupted microtubule integrity. These
results do not appear to support an essential role of
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microtubules in the initiation of HIV infection of CD4 T
cells. In contrast, Yoder et al. observed effective inhibition
of HIV latent infection of blood CD4 by the actin inhibitor
jasplakinolide at 120 nM [131]. The authors postulated
that CD4 T cells do not have an extensive microtubule
network as do HeLa cells, and that the relative thin cyto-
plasm in T cells may require only actin-based, short-
distance travel for nuclear localization.

Yoder and Yu et al. furthered this line of evidence sup-
porting a critical role of the actin cytoskeleton in HIV-1
infection and nuclear migration [27]. The authors suggest
that the cortical actin in resting blood CD4 T cells is rela-
tively static in the absence of T cell activation or chemo-
tactic stimulation. This lack of actin activity may represent
a realistic limitation for viral early processes such as entry
and intracellular migration. To overcome this limitation,
HIV uses the chemokine receptor CXCR4 to trigger the
activation of actin modulators such as LIMK1 and cofilin
to increase actin dynamics [27,28]. Indeed, the authors
demonstrated that inhibition of CXCR4-associated Gai
signaling with pertussis toxin inhibited HIV-mediated
cofilin activation and actin dynamics, which resulted in a
decrease of viral nuclear DNA as early as 2 h post infec-
tion [27]. Similarly, treatment of cells with jasplakinolide
diminished both HIV-1 DNA synthesis and nuclear mi-
gration [27]. In addition, knockdown of cofilin induced a
marked increase in the cortical actin density, which
enhanced early HIV DNA synthesis while hindering HIV
nuclear migration [27]. These findings were corroborated
using supplemental methodologies for increasing actin dy-
namics. For instance, treatment of cells with anti-CD4
/CXCR4 antibody-conjugated magnetic beads, which
mimic viral binding and signaling, greatly stimulates actin
dynamics and viral early DNA synthesis and nuclear mi-
gration [27]. Induction of actin dynamics through transi-
ent treatment with latrunculin A or a cofilin-activating
peptide also enhanced HIV latent infection of CD4 T cells
[27]. These findings suggest that actin dynamics play a
critical role in viral DNA synthesis and nuclear migration
in the infection of resting T cells. Furthermore, these find-
ings also demonstrate that HIV actively promotes actin ac-
tivity through exploiting the chemokine signaling network
by choosing the chemokine receptors, CXCR4 and CCR5,
as the co-receptors for binding and entry [31].

Yu et al. supported these findings in a subsequent study
regarding the potential role of signaling and actin in the
infection of primary CD4 T cells [19]. As per previous
studies, VSV-G-pseudotyped HIV-1, which enters cells
through endocytosis, exhibits a more efficacious infection
in transformed and activated T cells [15,17]. However, this
effect was not recapitulated in latent infection of resting T
cells: Only the HIV envelope-mediated entry, but not the
VSV-G-mediated endocytosis, can lead to viral DNA syn-
thesis and nuclear migration [19]. The viral particles

Page 8 of 13

entering through the endocytic pathways were destroyed
within 1-2 days. Notably, these findings indicate that the
pH-dependent route of entry may not be a viable mechan-
ism in primary resting CD4 T cells [21]; the capacity of
HIV gp120 to trigger signaling and to engage the cortical
actin seems to be critical for viral postentry stability.
Though, this study does not directly lend evidence for the
role of actin in viral nuclear migration, within the broader
contexts of accumulated findings, this extrapolation is
most consistent with that model.

A study by Cameron and Saleh et al. furthered the nas-
cent model regarding the roles of chemokine signaling
and actin dynamics in HIV-1 latent infection of blood
CD4 T cells [30]. This study focused on the role of chemo-
kines—especially CCL19—in HIV-1 latent infection of
resting T cells: Pre-treatment of resting CD4 T cells with
the chemokines CCL19, CXCL9, CXCL10, and CCL20 led
to a significant increase in integrated viral DNA
[30,132,133]. More detailed analysis of CCL19 indicated
that the mechanism was associated with CCL19-mediated
cofilin activation and changes in actin filaments, as the
CCL19-mediated  enhancement of viral nuclear
localization and integration was inhibited by the actin in-
hibitor jasplakinolide [30]. Cumulatively, these findings
suggest that chemokine-mediated actin dynamics play a
pivotal role in HIV-1 nuclear migration, and the establish-
ment of latent infection of resting T cells [33].

A recent study by Vorster and Guo et al. further iden-
tified the key signaling event involved in HIV-mediated
reorganization of actin filaments in resting T cells [28].
In this study, it was shown that HIV-1 gp120 led to actin
dynamics in a manner that correlated with the activation
of the Rac-PAK-LIMK-cofilin pathway. Brief treatment
of resting T cells with okadaic acid, a non-specific LIMK
activator and phosphatase inhibitor, triggered dramatic
LIMK activation and actin polymerization, which led to
a significant increase in HIV-1 latent infection. Further-
more, ShRNA-mediated knockdown of LIMK1 decreased
filamentous actin, increased surface CXCR4 trafficking,
and diminished viral DNA synthesis and nuclear migra-
tion. These results support the model in which HIV-
mediated early actin dynamics directly regulates the
CXCR4 receptor during viral entry and is involved in
viral DNA synthesis and nuclear migration.

The above study also stimulated Guo et al. to postu-
late that the centrifugal force generated during spinocu-
lation, a technique commonly used to enhance viral
infectivity through low speed spinning of cells (1,000 —
2,000 x g) [134-138], may induce stress-related signaling
and actin dynamics [29]. Indeed, spinoculation was
found to trigger both cofilin activation and actin dynam-
ics in transformed and resting CD4 T cells [29]. This led
to the upregulation of CXCR4 and a great enhancement
of HIV-1 DNA synthesis and nuclear migration, which
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can be inhibited by jasplakinolide and shRNA knock-
down of LIMK1 [29]. These results highlight the import-
ance of cofilin and a dynamic actin cytoskeleton in the
initiation of HIV infection.

Based on these recent studies, the role of the cortical
actin in viral postentry migration in CD4 T cells is sum-
marized in Figure 1D. At the early time following HIV
entry, concurrent with the anchorage of the PIC onto
actin filaments for reverse transcription, HIV-mediated
cofilin activation stimulates actin treadmilling, which
may carry the PIC across the cortical actin. Further trav-
eling of the PIC to the perinuclear region may continue
to rely on actin filaments or some viral factors such as
Nef to trigger localized actin activity.

Relationship between HIV-mediated receptor signaling
and actin dynamics

While it is increasingly clear that cytoskeletal actin is
required for viral infection, the relationship between
HIV-mediated receptor signaling and actin dynamics is
not straightforward. Chemokine receptor signaling nor-
mally leads to actin dynamics for driving cell migration.
However, multiple previous studies have demonstrated
that chemokine coreceptor signaling is not required for
viral entry or replication in transformed cell lines [139-
148]. For example, Farzan et al. created three CCR5
mutants that abolished their signaling ability to mobilize
calcium, but detected minimal effects on viral entry or
replication [140]. Consistently, CXCR4 mutations that
eliminate G protein-coupled signaling show no inhib-
ition of HIV entry and replication [146,147]; for in-
stance, truncation of the C-terminal tail of CXCR4 or
CCR5 effectively blocked calcium flux, but did not affect
HIV entry or replication [141,142,144,145]. This is in
great contrast to the extensive dependency on signaling
molecules observed during cell-cell fusion [59] or HIV-1
infection of resting CD4 T cells [27,28], which appears
to require a different signaling environment.

Yoder and Yu et al. have given an explanation regarding
the conflicting observation between viral requirement for
actin dynamics and the dispensable role of chemotactic
signaling for HIV infection of transformed cells [27]. The
authors suggested that in transformed cell lines, the cell
cycle takes control of actin dynamics and HIV-mediated
signal transduction to the actin cytoskeleton may be
diverted or become secondary. This is particularly
reflected in HIV infection of transformed versus resting
blood CD4 T cells. Yoder and Yu et al. demonstrated that
treatment of resting T cells with HIV particles triggers a
transient course of actin activity, indicative of active signal
transduction to the actin cytoskeleton; whereas similar
treatment of transformed CEM-SS T cells did not trigger
any measurable actin activity [27], suggestive of reduced
or derailed signals to the actin cytoskeleton. Thus, in

Page 9 of 13

cycling cells, while targeting signal transduction from the
chemokine coreceptor may not inhibit HIV, directly tar-
geting actin or actin modulators such as cofilin, LIMK,
Racl, WAVE2, and Arp2/3 [27,29,59] would lead to the
inhibition of actin dynamics. This may specifically or non-
specifically impact HIV entry or early postentry processes
depending on whether the actual activation of signaling
molecules occurs in response to HIV binding.

Given the fundamental need for HIV to interact with
the actin cytoskeleton, the virus may redundantly use
multiple resources to engage the actin network. The
virus may use both CD4 and the chemokine coreceptors
to trigger actin dynamics [28]. In addition, HIV may
transduce signals leading to actin dynamics from both
Gai [27] and Gaq [58]. Thus, inhibition of signal trans-
duction from one receptor may not inhibit similar sig-
nals from the other. This signaling redundancy may be
an evolved functionality of gp120 to ensure that the crit-
ical requirements for actin dynamics are met early.

Conclusions
Recent findings have begun to highlight actin and actin
dynamics in HIV replication [149,150]: Actin activity has
been shown to be important for viral entry, either for re-
ceptor dynamics or stabilization of the fusion complex;
actin may additionally be necessary for proper uncoating
and efficient reverse transcription; actin dynamics and
actin regulators such as LIMK and cofilin are required for
efficient nuclear migration in primary target cells such as
resting CD4 T cells. In addition, although beyond the
scope of this review, actin may be involved in HIV cell-cell
transmission [151-153] and viral assembly and the bud-
ding process [86,87,152,154-157]. Furthermore, it has also
been demonstrated recently that signal transduction from
chemokines such as CCL2, CCL19, and CCL21 increases
the permissiveness of resting T cells to HIV-1 through in-
duction of actin dynamics [33,122,132,158-160]. These
studies not only shed light on the molecular aspects of the
HIV life cycle, but also have implications in viral patho-
genesis. It is possible that HIV- or viral protein-mediated
disruption of actin regulatory network may contribute to
viral pathogenesis through disruption of normal chemo-
tactic responses and T cell activity [31,32,161].
Pharmacologically, targeting the actin cytoskeleton may
not be practical because of the known cytotoxicity of actin
drugs and the need for long-term treatment. However, by
interfering with the chemokine receptors or the down-
stream signaling molecules, a less pervasive disruption of
HIV-mediated actin activity is achieved. Approximately
50% of all marketed therapeutic drugs target G protein-
coupled receptors such as the ones HIV uses [162]. As
such, a much-needed future focus should be on the illu-
mination of signal transduction events associated with
HIV infection and HIV-mediated actin activity, particularly
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in the primary target cells of HIV. Any so-discovered cel-
lular protein, ideally one of narrow tissue distribution and
function, could be a hypothetical target for therapeutic
intervention with acceptable adverse effects.
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