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Abstract

Macrophages in the central nervous system (CNS) and other tissues are an important cellular
reservoir for human immunodeficiency virus type | (HIV) infection, particularly in the later stages
of disease. Macrophage-tropic HIV strains have an enhanced capacity to enter cells expressing low
levels of CD4 through mechanisms that are not well understood. Here, we use a panel of primary
HIV envelopes from brain and lymphoid tissues to examine the relationship between neutralization
sensitivity to reagents targeting the CD4 binding site and virus entry into macrophages.
Neutralization assays using pseudotyped viruses showed an association between the capacity of
HIV to enter macrophages and increased sensitivity to the broadly neutralizing monoclonal
antibody (mAb) bl2, which recognizes a conserved epitope overlapping the CD4 binding site, but
not sensitivity to soluble CD4 (sCD4) or b6, a non-neutralizing CD4 binding site mAb.
Furthermore, loss of an N-linked glycosylation site at position 386 in the V4 region of Env enhanced
macrophage tropism together with b|2 sensitivity, but not neutralization by sCD4, b6, or a broadly
neutralizing AIDS patient serum. These findings suggest that exposure of the bl2 epitope, rather
than exposure of the CD4 binding site per se, enhances HIV macrophage tropism, possibly by
exposing a region on the outer domain of gp120 that is initially recognized by CD4. These findings
suggest overlap between specific gpl20 determinants in or near the bl2 epitope and those
conferring macrophage tropism.

Background

Human immunodeficiency virus type 1 (HIV) infects tis-
sue macrophages, microglia, and other mononuclear
phagocytes, which represent an important cellular reser-
voir for viral replication and persistence in brain and
other macrophage-rich tissues (i.e., lung, gut, and bone
marrow) [1-3]. HIV entry into cells is initiated by interac-
tion between the envelope glycoprotein (Env) surface sub-

unit gp120 and CD4, which induces a conformational
change in gp120 that exposes the coreceptor binding site
[4]. The interaction of CD4-bound gp120 with a corecep-
tor, usually CCR5 or CXCR4, triggers conformational
changes in gp120 and the transmembrane subunit gp41
that enable fusion and virus entry. CCRS5 is the primary
coreceptor used for infection of macrophages [4-7]. CCR5
usage is neither necessary nor sufficient for macrophage
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tropism [8], however, suggesting that determinants other
than those that specify coreceptor usage influence the
capacity of HIV to replicate in macrophages.

Macrophages express lower levels of CD4 compared to
CD4+ T-lymphocytes. Previous studies demonstrated that
HIV macrophage tropism is associated with an enhanced
capacity to use low levels of CD4 for fusion and entry [9-
14]. We previously identified amino acid variants in the
HIV Env that increase viral tropism for macrophages by
enhancing gp120-CD4 affinity (N283 in the C2 region) or
exposure of the CD4 binding site (loss of an N-linked gly-
cosylation site at position 386 in the V4 region) [9,10].
However, HIV can also acquire an enhanced ability to
enter macrophages by additional mechanisms that are not
well defined.

The HIV envelope glycoproteins are the primary target for
neutralizing antibodies in vivo [15,16]. The antibody
response to acute HIV infection develops rapidly, and
evolves concurrently with viral diversity during the course
of disease, exerting strong selection pressure on viral evo-
lution and leading to emergence of neutralization-resist-
ant HIV wvariants [17,18]. The ability to generate
neutralizing antibodies diminishes during disease pro-
gression, reflecting progressive loss of CD4 T-cell help and
B-cell dysfunction.

HIV isolates that replicate efficiently in macrophages and
microglia frequently exhibit increased sensitivity to neu-
tralizing antibodies [11-13,19,20]. Consistent with these
findings, a simian-human immunodeficiency virus
(SHIV) isolated from infected rhesus macaques with neu-
rological disease exhibited enhanced macrophage tropism
together with increased sensitivity to neutralizing anti-
bodies [21]. The HIV Env amino acid variant D386, which
eliminates an N-linked glycosylation site and increases
exposure of the conserved broadly neutralizing mono-
clonal antibody (mAb) b12 epitope overlapping the CD4
binding site, also enhances HIV macrophage tropism
[10,22,23]. Previous studies reported that HIV macro-
phage tropism correlates with increased neutralization
sensitivity to mAbs and other reagents that block Env-
CD4 interactions but not with sensitivity to other entry
inhibitors [22,23]. Collectively, these findings suggest
that an association between enhanced HIV entry into
macrophages and increased sensitivity to reagents target-
ing the CD4 binding site.

Here, we use a panel of viruses expressing primary HIV
Envs from brain and lymphoid tissues [9,10,14] to further
examine the association between neutralization sensitiv-
ity to reagents targeting the CD4 binding site and macro-
phage tropism. The capacity of HIV to enter macrophages
correlated with neutralization sensitivity to the CD4 bind-
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ing site mAb b12 and a broadly neutralizing HIV-infected
patient serum, but not sensitivity to soluble CD4 (sCD4)
or mAb b6, another mAb that targets the CD4 binding
site. The loss of an N-linked glycosylation site at position
386 enhanced macrophage tropism together with sensi-
tivity to mAb b12, but not sensitivity to sCD4, mAb b6, or
HIV-infected patient serum. These findings suggest that
exposure of the b12 epitope overlapping the CD4 binding
site, rather than exposure of the CD4 binding site per se,
enhances HIV macrophage tropism, possibly by exposing
aregion on the outer domain of gp120 that is initially rec-
ognized by CD4.

Findings

We previously demonstrated that loss of an N-linked gly-
cosylation site at position 386 in the V4 region of primary
HIV Envs increases exposure of the b12 epitope and
enhances macrophage tropism [10]. To better understand
the relationship between macrophage tropism and sensi-
tivity to reagents targeting the CD4 binding site, we used
a panel of viruses containing CCR5-tropic (R5) primary
HIV Envs cloned directly from brain and lymphoid tissues
[9,10,14] to determine neutralization sensitivity to sCD4
and mAbs b12 and b6, which recognize neutralizing and
non-neutralizing epitopes overlapping the CD4 binding
site [24], respectively, and a broadly-neutralizing HIV-
infected patient serum (Table 1). Env genes cloned into
PCR3.1 from primary virus isolates or autopsy brain and
lymphoid tissues from AIDS patients with HIV-associated
dementia (HAD) were described previously [9,14,19].
HIV luciferase reporter viruses were generated by cotrans-
fection of 293T cells with an HIV provirus with env deleted
and nef replaced by luciferase (pNL4-3env-luc,) and
PCR3.1-Env as described [19]. Cf2 cells [19] used as target
cells for neutralization assays were cotransfected with
pcDNA3-CD4 and pcDNA3-CCR5. HIV luciferase
reporter viruses were incubated with a range of concentra-
tions of human monoclonal Abs (mAbs), soluble CD4
(sCD4; Immunodiagnostics, Inc.,, Woburn, MA), or a
broadly neutralizing HIV-1 serum (HIV-1 neutralizing
serum (serum 2; [25]) obtained from L. Vujcic through
the AIDS Research and Reference Reagent Program) 1 h
prior to infection of Cf2 cells transiently expressing CD4
and CCRS5. Cells were harvested 48 h post infection and
assayed for luciferase activity.

Viruses pseudotyped with HIV Envs that mediate high lev-
els of entry into macrophages had increased sensitivity to
mAb b12 and the HIV-infected patient serum compared
to viruses expressing Envs that mediate low levels of entry
in macrophages (Figure 1A, C, D, F; Aand 1C, R=-0.5944,
p=0.0093 and R=-0.5021, p = 0.034, respectively, Spear-
man correlation; 1D and 1F, p = 0.022 and 0.034, respec-
tively, Mann-Whitney test). In contrast, sensitivity to
sCD4 or the non-neutralizing mAb b6 did not correlate
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Table I: Neutralization sensitivity of primary HIV-1 Envs with variable macrophage tropism to gpl20 mAbs, soluble CD4, and a

broadly neutralizing HIV-infected patient serum

Patient Tissue2 Env clone MDM entryb b12 ICgc b6 1C5yc sCD4 IC;c PS I1C;,c
MACS2 FL 8-12 35478 3.37 >20 1.03 80.9
9-15 1765 I.15 >20 0.22 76.4

LN 10-15 13001 0.99 >20 >20 <50

SP 6-18 59224 10.89 >20 >20 <50

MACS3 FL 12-27 13810 >20 1.87 1.10 <50
5 3402 >20 6.78 0.40 <50

LN 2 1957 >20 >20 3.22 <50

20 16658 >20 >20 >20 <50

UK FL 2-13b 4378 0.05 >20 5.44 <50
SP 6-20 812689 0.03 >20 2.39 124.2

20 35723 0.03 >20 0.27 230.2

UK7 FL 6-24 9659 5.53 >20 7.68 145
1—4 13207 11.37 >20 >20 128

isolate br34 496588 0.26 >20 0.45 332.2

LN 7-6 5260 5.55 >20 >20 <50

controls YU2 38052 5.47 >20 1.14 724
YU2 N386D 114755 2.79 >20 0.45 115.2

JRFL 215305 0.18 >20 3.72 107.3

JRFL N386D 320642 0.09 >20 6.05 92.7

aFL, frontal lobe (brain); LN, lymph node; SP, spleen

b Luciferase activity in monocyte-derived macrophages (MDM) infected with pseudotyped luciferase-expressing reporter viruses [10,14].
<mAb (ug/ml), soluble CD4 (sCD4; pg/ml), or HIV-infected patient serum (PS; reciprocal serum dilution) concentration at which luciferase
expression was reduced by 50% compared to infection in the absence of mAb (ICy).

with levels of HIV entry into macrophages (Figure 1B, E, p
= 0.9141; and data not shown). Furthermore, there was
no correlation between neutralization sensitivity to mAb
b12 and neutralization sensitivity to sCD4 (p = 0.3279;
Additional file 1). These results suggest that macrophage
tropism is associated with increased sensitivity to mAb
b12, but not sensitivity to sCD4 or the non-neutralizing
CD4 binding site mAb b6. Thus, macrophage tropism was
associated with increased exposure of the b12 epitope
overlapping the CD4 binding site, rather than exposure of
the CD4 binding site per se.

Elimination of an N-linked glycan at position 386 in the
macrophage-tropic primary HIV Envs YU2 and JRFL
enhances entry into macrophages by 200% and 49%,
respectively (Table 1, Figure 2A and [10]). To determine
whether removal of the N-linked glycan at position 386
also influences sensitivity to b12 or other reagents that tar-
get the CD4 binding site, we investigated neutralization of
viruses expressing YU2 and JRFL wild-type and N386D
mutant Envs with mAbs b12 and b6, sCD4 and the
broadly neutralizing HIV-infected patient serum. The
N386D change in both YU2 and JRFL resulted in a 2-fold
increase in sensitivity to neutralization by mAb b12 com-
pared to that of the wild-type parental Envs (Table 1 and
Figure 2B). The N386D change in YU2 resulted in
increased sensitivity to sCD4, whereas the N386D change
in JRFL decreased sCD4 sensitivity compared to the wild-
type parental Envs (Table 1 and Figure 2C). YU2 and JRFL

wild-type and N386D mutant viruses had similar sensitiv-
ities to neutralization by mAb b6 and the HIV-infected
patient serum (Table 1, Figure 2D, and data not shown).
These results are consistent with our previous study in
which the reverse mutation D386N, which restored the N-
linked glycan at position 386 in the macrophage-tropic
UK1br and Macs2br13 Envs, decreased sensitivity to neu-
tralization by mAb b12 along with replication in macro-
phages [10].

Our findings demonstrate an association between the
capacity of HIV to enter macrophages (i.e., macrophage
tropism) and neutralization sensitivity to the CD4 bind-
ing site mAb b12, but not sensitivity to the non-neutraliz-
ing mAb b6 or sCD4. Furthermore, we show that loss of
an N-linked glycosylation site at position 386 in the mac-
rophage-tropic HIV YU2 and JRFL Envs enhances macro-
phage tropism along with neutralization sensitivity to
b12, but not neutralization sensitivity to sCD4, b6, or a
broadly neutralizing AIDS patient serum. These findings
suggest overlap between specific gp120 determinants in or
near the b12 epitope and those conferring macrophage
tropism.

CD4, b12, and b6 have overlapping binding sites on
gp120 [24,26]. The b12 mAb recognizes a conserved
epitope on the neutralizing face of gp120 overlapping the
CD4 binding site, while b6 recognizes a different epitope
that partially overlaps the binding sites for b12 and CD4
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Enhanced HIV entry into macrophages is associated with sensitivity to neutralizing mAb b12 and a broadly
neutralizing HIV-infected patient serum. HIV luciferase reporter viruses pseudotyped with primary HIV Envs cloned
directly from brain, spleen, or lymph node tissues from AIDS patients with HAD were incubated with a range of concentra-

tions of human mAb b12 (A and D), soluble CD4 (sCD4; B and E), or HIV-I neutralizing patient serum (PS; C and F) | h prior
to infection of Cf2 cells transiently expressing CD4 and CCR5. Cells were harvested 48 h post infection and assayed for luci-
ferase activity. (A, B, C) The concentrations at which luciferase expression was reduced by 50% compared to infection in the
absence of mAb (IC;,) were calculated and plotted as a function of MDM entry [10,14]. R and p values were determined by
Spearman correlation. (D, E, F) bl2, sCD4, and PS IC50s of HIV Envs with low to intermediate MDM infectivity (< median;
median = 16,658 relative luciferase units) were compared to Envs with intermediate to high MDM infectivity (> median).
Monocyte-derived macrophages (MDM) were isolated from peripheral blood mononuclear cells from healthy HIV-1-negative
donors by plastic adherence and cultured in RPMI 1640 medium supplemented with 10% FBS, and 10 ng/ml macrophage colony
stimulating factor (M-CSF) [8]. The MDM entry and sequence data were reported previously [10,14]. Env clones containing
either the N386 or D386 variant are indicated by closed and open symbols, respectively. MDM were prepared as above in 48-
well plates and infected with 2 x 1043H cpm RT units of Env pseudotyped virus stock. Cells were lysed 6 days post-infection

and assayed for luciferase activity. Significant differences between groups (p < 0.05, Mann-Whitney test) are indicated by a *.

[24]. The initial Env-CD4 interaction readily dissociates,
and conformational changes in Env induced by CD4
binding increase the stability of the Env-CD4 complex
before subsequent structural rearrangements allow core-
ceptor binding [26,27]. b12 contact occurs at the exposed
surface on the outer domain of gp120 that is initially rec-
ognized by CD4 [26]. Furthermore, b12 is the only anti-
body that targets the CD4 binding site and also recognizes
Env in the CD4-bound, stabilized conformation adopted
before coreceptor binding [26]. These observations sup-
port the idea that exposure of the b12 epitope enhances
HIV entry into macrophages, which express low levels of
CD4 compared to T-cells, possibly by exposing a region

on the outer domain of gp120 initially recognized by
CD4.

The loss of a glycosylation site at HIV Env position 386
increases exposure of the b12 epitope [10,22,28], proba-
bly due to loss of steric hindrance, and also enhances mac-
rophage tropism in a strain-dependent manner [10]. Loss
of a glycosylation site at 386 does not predict b12 sensitiv-
ity [10,22,28], however, suggesting that other Env deter-
minants influence exposure of the b12 epitope. Duenas-
Decamp et al. showed that an arginine at position 373 in
the C3 region, proximal to the CD4 binding site, increased
resistance to b12 neutralization [22]. However, the HIV
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Figure 2

Loss of an N-linked glycan at position 386 in primary
HIV Envs enhances macrophage tropism and neu-
tralization sensitivity to mAb b12. (A) MDM were
infected with luciferase-expressing reporter viruses express-
ing wild-type or N386D mutant Envs. Cells were lysed 6 days
post-infection and analyzed for luciferase activity. (B, C, D)
Luciferase-expressing reporter viruses expressing wild-type
or N386D mutant Envs were incubated with a range of con-
centrations of human mAb bl2 (B), sCD4 (C), or a HIV-I
neutralizing patient serum (PS; D) | h prior to infection of
Cf2 cells transiently expressing CD4 and CCRS5. Cells were
harvested 48 h post infection and assayed for luciferase activ-
ity. Data are expressed as the concentrations at which luci-
ferase expression was reduced by 50% compared to infection
in the absence of mAb (ICs). Error bars represent standard
deviations.

Envs in the present study all have methionine or threo-
nine at position 373, and b12 neutralization did not cor-
relate with amino acid differences at this position (data
not shown). Thus, the influence of amino acid changes at
position 373 on exposure of the b12 epitope is highly
strain-dependent.

We found that a majority of macrophage-tropic HIV Envs
are sensitive to b12 neutralization. A recent study demon-
strated that early transmitted HIV variants replicate in T-
cells but have relatively low capacity to replication in
MDM [29]. HIV viruses isolated from late-stage AIDS
patients have enhanced macrophage tropism together
with increased neutralization sensitivity to b12 compared
to viruses isolated from asymptomatic HIV-infected indi-
viduals [30]. Anti-CD4 binding site antibodies are gener-
ated after HIV infection, and can be detected in most HIV-
infected individuals [31-33]. Broader and more potent
neutralizing antibody responses are often due to the pres-
ence of neutralizing antibodies targeting the CD4 binding
site [31-33]. However, only rare individuals develop
broadly neutralizing anti-CD4 binding site antibodies, so
b12-like antibodies are uncommon in HIV-infected
patients. The neutralizing activity of sera from long-term
nonprogressors is partially attributable to the presence of
antibodies that target the CD4 binding site [32,34], sug-
gesting these antibodies may play a role in controlling
viral replication in vivo. Neutralizing antibody responses
that target the b12 binding site may exert negative selec-
tion pressure against macrophage-tropic HIV variants
until the later stages of HIV disease. The brain may be a
site for emergence and persistence of neutralization-sensi-
tive macrophage-tropic HIV variants, particularly in the
setting of a weak humoral immune response [35,36].
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In conclusion, macrophage-tropic HIV strains play a role
in the establishing long-lived cellular reservoirs in macro-
phage-rich tissues that include brain, lung, gut, and bone
marrow [1-3]. Furthermore, macrophages are the princi-
pal source of virus after CD4+ T cells are depleted [37]. In
this study, we demonstrate an association between HIV
macrophage tropism and neutralization sensitivity to the
CD4 binding site mAb b12. In contrast, there was no asso-
ciation with neutralization sensitivity to the non-neutral-
izing CD4 binding site mAb b6 or sCD4. These findings
suggest overlap between specific gp120 determinants that
increase exposure of the b12 epitope and those conferring
macrophage tropism. Future studies will be important to
better understand immune selection pressures that drive
HIV evolution towards variants with enhanced macro-
phage tropism, and the role of neutralizing antibodies
that target the CD4 binding site in these processes.
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