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Abstract

Background: The acute phase of immunodeficiency virus infection plays a crucial role in
determining steady-state virus load and subsequent progression of disease in both humans and
nonhuman primates. The acute period is also the time when vaccine-mediated effects on host
immunity are likely to exert their major effects on virus infection. Recently we developed a Monte-
Carlo (MC) simulation with mathematical analysis of viral evolution during primary HIV-1 infection
that enables classification of new HIV-I infections originating from multiple versus single
transmitted viral strains and the estimation of time elapsed following infection.

Results: A total of 322 SIV nef SIV sequences, collected during the first 3 weeks following
experimental infection of two rhesus macaques with the SIVmac239 clone, were analyzed and
found to display a comparable level of genetic diversity, 0.015% to 0.052%, with that of env
sequences from acute HIV-I infection, 0.005% to 0.127%. We confirmed that the acute HIV-I
infection model correctly identified the experimental SIV infections in rhesus macaques as
"homogenous" infections, initiated by a single founder strain. The consensus sequence of the
sampled strains corresponded to the transmitted sequence as the model predicted. However,
measured sequential decrease in diversity at day 7, |1, and 18 post infection violated the model
assumption, neutral evolution without any selection.

Conclusion: While nef gene evolution over the first 3 weeks of SIV infection originating from a
single transmitted strain showed a comparable rate of sequence evolution to that observed during
acute HIV-I infection, a purifying selection for the founder nef gene was observed during the early
phase of experimental infection of a nonhuman primate.
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Background

Genetic evolution in the primary phase of HIV-1 infection
has been characterized by single genome amplification
and nested polymerase chain reaction (PCR) of HIV-1
genes in parallel with mathematical/computational mod-
eling [1-3]. Major goals of such analyses include the char-
acterization of the transmitted strains, estimating the
timing of infection based on the level of sequence diver-
sity, and distinguishing between single virus strain/variant
infections (referred to hereafter as "homogenous" infec-
tion) versus two or more virus strains/variants infections
(referred to hereafter as "heterogenous" infection). Heter-
ogeneous infection is associated with faster sequence
diversification and accelerated disease progression due to
the rapid emergence of virus variants with enhanced rep-
licative fitness [4-7].

To quantitatively assess whether HIV-1 infections were
initiated by single or multiple viral strains, we recently
developed a mathematical model and Monte-Carlo (MC)
simulation model of HIV-1 evolution early in infection
and applied this to the analysis of 102 individuals with
acute HIV-1 infection [2]. Further, in cases of single strain
(homogeneous) infections, the model provided a theoret-
ical basis for identifying early founder (possibly transmit-
ted) env genes.

In this study, we tested the validity of our primary HIV-1
infection model using a non-human primate (NHP)
model for HIV-1/AIDS. This model has played a key role
in the development of candidate HIV-1 vaccines, and pro-
vided critical insights into disease pathogenesis [8-10].
Studies in the macaque/simian immunodeficiency virus
(SIV) model have contributed to our understanding of the
close association between the extent of virus replication
during the acute phase of infection and the subsequent
virus set point and disease course [11] as reported in HIV-
1 infections [12-14]. Genetic evolution during SIV infec-
tion has been well documented in comparison with the
evolution of HIV-1 population [15-18].

We examined evolution of the viral nef genes from a single
transmitted strain. Nef, a small accessory protein, was
selected because the virus can tolerate significant variabil-
ity in the nef protein, as evidenced by high levels of poly-
morphism longitudinally throughout infection and at the
population level [19-22]. We sequenced full-length nef
genes longitudinally during the very early phase of SIV
infection using the method of single genome amplifica-
tion (SGA). The SGA method more accurately represents
HIV-1 quasispecies when compared to conventional PCR
amplification [1,23,24]. We showed that our sequence
evolution model correctly classified the experimental SIV
infections as homogeneous infections. As predicted by the
model, the consensus sequence of the sampled strains
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from these homogeneous infections corresponded to the
transmitted sequence. However, our systematic evalua-
tion showed that a sequential decrease of the diversity
within the first 3 weeks of infection was associated with a
purifying selection for the transmitted sequence (and was
not a consequence of the limited sample size in our anal-

ysis).

Results

Longitudinal nucleotide and amino acid mutations

We visualized longitudinal sequence evolution, nucle-
otide and amino acid point mutations in reference to the
founder nef gene/Nef protein in Figure 1. From a total of
322 nef sequences sampled from the two animals, we
observed 41 nucleotide base substitutions (excluding
gaps) from the infecting nef sequence of SIVmac239,
within the first 21 days following virus infection; out of
these 41 mutations, 10 were determined to be G-to-A
hypermutation patterns with APOBEC signatures (red
characters in Figure 1) [25]. However, none of these
APOBEC signatures were statistically significant (p > 0.05
from a Fisher exact test, Hypermut tool http://
www.hiv.lanl.gov). As we predicted in our model [2], the
group sequences identical to the consensus sequence
indeed corresponded to the transmitted nef sequence.
Limited base substitutions observed in all nef genes were
sparse and did not align with each other - as we have seen
in env genes sampled from HIV-1 acute subjects classified
as having homogeneous infection [2]. Out of 41 total
mutations, 16 mutations were synonymous and the rest
were non-synonymous base substitutions.

Figure 1 shows that all the mutant nef genes except one
were not sampled again in the next time point, while the
transmitted nef gene was conserved in sequential samples
from both animals. A single mutation fixed in the
sequence population from animal 100065, C-to-T at posi-
tion 520, was synonymous one. We examined whether
loss of mutant sequences in the sequential samples could
be reproduced in the MC simulation. We sampled 30
sequences at days 6, 12, 18, and 24 post infection in the
asynchronous infection MC simulation, and then counted
the number of mutant sequences that remained at more
than one time point, by repeating 102 simulations. Figure
2 shows the histogram of the observed number of mutant
sequences sampled in any of the sequential time points,
N,,- The 95% confidence intervals were calculated by
repeating 102 of 102 MC runs. The simulation confirmed
that loss of mutant sequences is frequent. While the trans-
mitted, founder nef gene remains as the majority of the
sampled sequences throughout the early infection period,
the mutant sequences are not fixed in the population due
to i) only a finite number of sequences are sampled in an
exponentially growing population and ii) more muta-
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Nucleotide and amino acid base substitutions within 3 weeks post SIV infection. Longitudinal nucleotide (A) and
amino acid (B) base substitutions from the founder nef gene/Nef protein of sequence samples taken at day 4, 7, | | and |8 post-
infection from animal r00065, which was infected intravenously with SIVmac239. C and D display base substitutions in refer-
ence to the founder sequence from the samples taken at day 7, 14, and 21 post-infection from animal r98018, which was
infected by intrarectal inoculation with SIVmac239. Numbers in the left column in each figure represent the number of a spe-
cific sequence out of total sampled sequences at a given day post infection. Each clone was obtained via the method of single

genome amplification.

tions to the mutant genes are accumulated by further
reverse transcription events.

Dynamics of divergence, diversity, variance, maximum HD,
and sequence identity

Viral diversification in early infection can be probed with
several quantities based on Hamming distances among
the sampled sequences. Here Hamming distance denotes
the number of bases at which any two sequences differ.
We measured the kinetics of divergence, diversity, vari-
ance, maximum Hamming distance (HD), and sequence
identity in the two experimentally infected macaques
(Table 1). Divergence is defined as average Hamming dis-
tance per site from the transmitted nef gene. Diversity is
defined as average intersequence Hamming distance per
site, variance as variance of intersequence per base Ham-

ming distance distribution, maximum HD as measured
maximum Hamming distance between all sequence pairs,
and sequence identity as the proportion of identical
sequences to the transmitted strain.

Figure 3 displays the kinetics of these quantities compared
to the viral load dynamics for animal r00065 and animal
r98018. Each measurement was in the range of the predic-
tion made by our acute HIV-1 sequence evolution model,
however, the dynamics of each quantity from the two
serial samples was not consistent with that from the
model prediction. For instance, the average HD from the
founder nef gene, divergence, decreases from 0.018% to
0.0081% over a time interval of 11 days for animal
100065, which is opposite to the trend predicted by the
model. Also the proportion of identical sequences to the
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Distribution

Figure 2

Histogram of the observed number of mutant
sequences sampled at more than one time point, N,
At day 6, 12, 18, and 24 post infection, 30 nef sequences
were sampled. The observed number of mutant sequences
which were present at more than one time point was
counted from the total of 120 sequences sampled sequen-
tially over 4 time points. For example, N,, = 0 denotes that
no mutant sequence from the founder gene appeared at
more than one time point. The histogram of N, with 95% Cls
was constructed by repeating 102 asynchronous MC infection
simulations. While the founder nef gene remains as the
majority of the sampled sequences, loss of mutant sequences
in the serial samples was frequently observed.

transmitted one was serially elevated from day 7 to day
18, suggesting either a purifying selection back to the
founder strain during the early stage of infection or sto-
chastic fluctuations due to the limited sample size.

To address whether the acute stage sequence evolution in
animal r00065 indeed shows a purifying selection back to
the founder strain, we performed a MC simulation by
starting with 41 nef sequences identical to those sampled
at day 7 from animal r00065. Then we sampled 50
sequences at day 11 (4 days since the "starting" day 7) and
31 sequences at day 18 (11 days since the "starting" day 7)
to replicate the experimental sampling from animal
r00065. Figure 4 shows each measure of divergence, diver-
sity, variance, and sequence identity with 95% confidence
intervals from 1000 MC runs. The measured divergence at
day 18, 0.0081%, from animal r00065 is located outside
of the 95% confidence intervals of the predicted diver-
gence at day 18, [0.00815%, 0.057%], denoting a viola-
tion of the model assumption, neutral evolution without
selection. We conclude that the serial decrease in diver-
gence observed in animal 00065 is reflective of a purify-
ing selection rather than a stochastic effect from the finite
size of sampling.

The maximum HD of 198018 at day 21 is 5 due to the
presence of a strain with 3 base substitutions from the
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founder strain. All three of these mutations are G to A
hypermutation with APOBEC3G/F signatures [25-27],
although the signatures were not found to be statistically
significant (p > 0.05 from a Fisher exact test, Hypermut
tool http://www.hiv.lanl.gov). Nonetheless, we tenta-
tively attribute the deviation from the prediction gener-
ated by our model to these putative APOBEC3G/F
signatures. The rate of virus sequence evolution in animal
r00065 was slower than in animal 198018 - even though
the virus replication rate (virus load) in animal r00065
was higher than that for animal r98018.

Single Variant (Homogeneous) Infection with Neutral
Evolution

Our MC simulation and mathematical calculation is
based on the premise that the SIV sequence population
diversifies through random base substitutions without
any selection or recombination during the first 2-3 weeks
of infection, prior to initiation of the host nef-specific
immune response that could select viral escape variant.
Based on this assumption, the Hamming distance distri-
bution can be approximated as a Poission distribution
which is characterized as mean (diversity) equals variance
[2,28]. The equality will not be exact due to stochastic
effects and sample size dependency. However, we can use
the simulation output to capture these effects, and con-
struct a conical region delimited by 95% ClIs over mean
and variance within which values from a sample from
homogeneous infection should lie (Figure 5). If we sam-
ple more sequences, the area of the cone decreases. The
two conditions for the single variant homogeneous infec-
tion without any selection or recombination are: i) meas-
ured diversity and variance of the sequence sample should
be located inside the cone, between the upper and lower
limits of the 95% Cls, and ii) diversity should be less than
the upper limit of the 95% Cls of simulated diversity at a
given time point (grey lines in Figure 5). Here the cone
diagram in Figure 5 was constructed by measuring diver-
sity and variance for 20 (red) or 60 (blue) nef genes at
each time point of each MC run. We performed 5000 MC
runs. All the homogeneous 7 sequence samples from the
two animals satisfy the above two conditions, as Figure 5
depicts. Our model successfully classified the virus
sequence pattern in the two animals as being derived from
a "homogeneous" infection as opposed to a "heterogene-
ous" infection with two or more strains.

Estimating Days since Infection: Poisson Fit

For each sequence data set, which was sampled from each
animal at a time point following infection, we constructed
the distribution of Hamming distances from the founder
strain, HD,, (Figure 6). The distribution of Hamming dis-
tances from the founder strain, HD,, was calculated as a
weighted sum of Binomial distributions in the asynchro-
nous infection mathematical model. The weighted sum of
Binomial was approximated as a Poisson distribution,
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Table I: Animal Information and analysis using the acute HIV-I infection model.

Animal Index viral load Number of Sampled  Divergence Diversity Variance Max. Sequence Estimated  jy2goodness of fit P
-sample date (copies/ml) Sequences HD  Identity days post value
infection
(95% Cls)
r00065-day4 18,600 31 0.016% 0.033%  0.027% 2 87.1% 14 [4-35] 0.79
r00065-day7 1,660,000 41 0.018% 0.037%  0.043% 3 87.8% 16 [6-34] 0.52
r00065-day | | 90,800,000 50 0.013% 0.025%  0.022% 2 90.0% 11 [4-25] 0.82
r00065-day 18 39,750,000 31 0.0081% 0.016%  0.015% 2 93.5% 7 [1-25] 0.93
r98018-day7 20,000 33 0.0077% 0.015%  0.014% 2 93.9% 7 [1-23] 0.93
r98018-day 14 12,380,625 67 0.026% 0.052%  0.055% 4 82.1% 22 [12-37] 0.70
r98018-day21 1,391,000 69 0.016% 0.033%  0.057% 5 91.3% 14 [7-27] 0.86

Animal information including time of sampling, viral load, and number of nef sequences obtained. For each sample, we calculate divergence, diversity,
variance, maximum HD, and sequence identity. Estimated days since infection with 95% confidence intervals and p-values were calculated via Maximum
Likelihood method to fit a Poisson distribution to Hamming distance distribution from the founder strain and the goodness of fit through a Chi-Square

statistic.

go(t)de—io(t)
d!

P(HD, =d|t) = (1)

’

with the mean of

ho()) ={t(1+ ) 30)+(1 - 9) /(20") }eN, (2)

where ¢ =.,/1+8/R,, . Here ¢ is days post infection, ¢ is

the HIV-1 single replication cycle error rate per base, Ny is
the number of bases of sampled genes, and R, is the basic

reproductive ratio.

We used a Maximum Likelihood method to fit a Poisson
distribution to the observed data, and then assessed the
goodness of fit through a Chi-Square statistic. Table 1
summarizes the estimated days since infection obtained
from the Poisson fit using the relationship between mean
of Poisson distribution, 4,and days post infection, t in Eq.
(2), along with 95% ClIs obtained by bootstrapping the
HD, distribution 10> times. All of the 7 samples yielded a
goodness-of-fit p-value of greater than 0.5, suggesting that
measured HD,, statistically follows a Poisson distribution.
In this goodness of fit test the null hypothesis was that the
two distributions tested were statistically the same, hence
a low p-value would yield rejection of the null hypothesis.
Analysis of all the sequence samples showed that the
actual number of days elapsed following infection for the
sequence samples fell within the 95% CIs of estimated
days post infection by a Poisson fit to the HD,, distribution
(Table 1). However, as we expected from the observed

decrease in divergence and the increase in sequence iden-
tity as infection progresses, the correlation coefficient
between actual days since infection and the estimated
days post infection (based on the Poisson fit for animal
r00065) was -0.91. The correlation coefficient for animal
r98018 was 0.47.

Discussion

The present study was undertaken to explore the applica-
bility of a recently developed model for primary HIV-1
infection, to the analysis of acute SIV infection in rhesus
macaques [2]. The level of measured diversity ranged from
0.015% to 0.052% during primary SIV infection, before
set point, which is comparable to the range of measured
diversity, 0.005% to 0.127%, from 68 single strain
infected patients at the primary stage of HIV-1 infection
[2]. Analysis of the SIV nef sequences showed that the MC
simulation model was able to successfully classify 7
sequence samples, from two animals during the first 3
weeks following experimental infection of two rhesus
macaques with SIVmac239, as homogeneous infection.
We also confirmed that the consensus virus sequence in
these animals was identical to the transmitted nef
sequence of the infecting STVmac239.

We observed an unexpected decline in the divergence and
the diversity from animal r00065 at an early point follow-
ing infection. We first hypothesized that the serial decline
in the divergence might be due to fluctuations arising
from the limited sample size, 31-50 sequences per time
point. To address this concern, we performed a second
simulation, starting with the actually sampled 41 nef
genes obtained at day 7 from animal r00065 (which
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Viral load kinetics and the dynamics of divergence, diversity, variance, maximum HD, and sequence identity
from homogeneous SIV infection. A. Viral load kinetics of animal r00065 (r65, black) and animal r98018 (r98, red). Animal
r00065, which was infected by intravenous injection, displays a greater level of viral replication in comparison with animal
r98018 which was infected by intrarectal inoculation. Dynamics of divergence (B), diversity (C), variance (D), maximum HD
(E), and sequence identity (F) of nef sequences from animals r00065 (black) and r98018 (red). Each average value of simulated
quantity from 103 simulations is represented with a brown line [2]. We sampled 31 sequences at a given time point in each run.
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Predicted divergence, diversity, variance, and sequence identity from a simulation performed by starting with
41 sampled nef sequences obtained at day 7 from animal r00065. 50 sequences at day | | and 31 sequences at day 18
were sampled by starting a simulation with the 41 sampled nef genes that were obtained at day 7 from animal r00065. The sam-
pling time points were chosen to reflect those used in our initial simulation (i.e., day | | corresponds to day 4 following the "ini-
tial" infection in this simulation, and day 18 corresponds to day || following the "initial" infection. The measured divergence at
day 18, 0.0081%, from animal r00065 is located outside of the 95% confidence intervals of the predicted divergence at day 18,

[0.00815%, 0.057%].

showed the divergence of 0.018%). The MC simulation
was performed with the assumption of neutral evolution,
and 31 sequences were sampled at day 18. The measured
95% ClIs of the divergence from such 1000 simulations
provided the basis for the rejection of the null hypothesis
(neutral evolution without selection), implying a prefer-
ential selection process for the founder strain. We con-
clude that the decrease in the divergence observed in
animal r00065 is reflective of a purifying selection rather
than a stochastic effect due to small sample size. We spec-
ulate that the purifying selection can be explained as a
result of either: (i) lower fitness of the emerging mutant
viruses relative to the founder virus, or (ii) selective loss of
mutant sequences due to linked, unfavorable changes

elsewhere in the genome (i.e., the phenomenon of hitch-
hiking [29,30]). The roles of Nef in viral fitness, such as
promoting viral replication and infectivity and interfering
T cell activation, have been well documented [31-33].

The time points in our study were chosen to precede the
emergence of cytotoxic T cell lymphocyte (CTL) escape
variants. As we expected, Figure 1 shows that all the
mutants from the inoculated SIVmac239 nef gene are dif-
ferent each other, at the predicted amino acid level. This is
not consistent with the expected outcome of CTL pressure,
which classically results in changes confined within one
or at most a handful of immunodominant epitopes. The
main expected impact of CTL-induced changes on the
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Classification diagram for homogeneous infection.
The diversity and the variance of the sampled sequences
from animals with homogeneous infection (i.e. infections with
a single founder strain without any selection pressure or
recombination) are expected to be located within the conical
region. Here, the red (blue) conical region represents the
95% Cls from 5 x 103 runs where 20 (60) sequences were
sampled at each time point. The black diagonal line denotes
the average relationship between diversity and variance. The
grey vertical line denotes the upper limit of the 95% Cls of
simulated diversity at each time point. All of the sequence
sets sampled from the two primates within 3 weeks since
infection were successfully classified as homogeneous infec-
tions; measured diversity and variance are located within the
red and blue conical regions and the diversity is less than the
upper limit of the 95% Cls of diversity at week | from the
homogeneous infection simulations.

model can be linked with a deviation from a star-like phy-
logeny [34], the absence of outgrowth in a particular
mutant lineage. We have presented an examination of the
property of star phylogeny in Figure 7 where all the 7 sam-
ples from two macaques satisfy the expected relationship
for star-like phylogeny, diversity = 2 x divergence. The
relationship arises from the property that the interse-
quence hamming distance frequency distribution coin-
cides with the self-convolution of the frequency
distribution of the hamming distances from the founder
virus. The property of star-like phylogeny was preserved in
all the samples from animal r00065 which displayed a
sequential decrease in the divergence and the diversity
(i-e., a purifying selection). Under the purifying selection
preferential for the founder strain, a star-like phylogeny
can be retained since there is no outgrowth in a particular
mutant lineage except the center of the star, the founder
virus.

We observed that rapid viral replication kinetics were not
necessarily associated with a greater rate of sequence evo-
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lution. Animal r00065 displayed a greater level of viral
replication in comparison to animal 198018 while less
diversification of nef genes was observed in animal
r00065. We interrogated the relationship between HIV-1
sequence diversity and viral load from 28 subjects with
homogeneous HIV-1 infection in Fiebig stage II, where
viral RNA and p24 antigens are positive without detecta-
ble HIV-1 serum antibodies [2]. We observed little corre-
lation between plasma viral load and diversity (o2 = 0.18)
in HIV-1 acute infection.

Disconnect between the replication rate and the rate of
evolution during early SIV and HIV infections may be
partly explained by the unusual small effective population
size, which has been estimated ranging from 103 to 104
[35-38]. The effective population size is defined from the
process of transforming an actual, census population into
a neutral, constant size population with non-overlapping
generations. The difference between the effective popula-
tion size and the real size can arise from many factors such
as varying population size, purifying or diversifying selec-
tion and the existence of subpopulation. These factors
should be associated with low level of correlation
between viral load and the level of diversity in acute HIV-
1 and SIV infections.

Another aspect we may consider is that low level of corre-
lation might be explained within our model scheme
where the reproductive ratio and the generation time are
set as independent parameters. Viral sequence diversity is
influenced more strongly by generation time and to much
lesser extent by the reproductive ratio. Hence for a given
viral generation time, if the reproductive ratio changes sig-
nificantly, the ramp-up slope of infected cell varies
accordingly while the rate of sequence diversification
remains relatively stable, implying little correlation
between the rate of evolution and the rate of replication.
For instance, our calculation from the asynchronous
infection model study shows that when we change the
basic reproductive ratio from 6 to 12, the ramp-up slope
of infected cells increases 45% but the slope of diversity
increases only 6%. With the assumption that the basic
reproductive ratio varies considerably among acute HIV-1
subjects, for example by the level of activated CD4 T cell
at the transmission, we may observe a great level of varia-
tion in the viral load but less in the sequence diversity.
Under this circumstance, a minor correlation can be
detected at the population level with another factor for
dampening the correlation, fluctuations arising from the
limited sample size of genes.

An important caveat to the work reported here is that a
limited number of clones were examined at specific time
points in only 2 SIV infected animals. SGA sequencing is
resource-intensive, precluding the use of more animals
and time points in this study. In the future, next-genera-
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Estimation of days since infection based on Hamming distance distribution. The Hamming distance (HD,) distribu-
tion (multiplied by the number of sampled sequences) from the founder nef strain, SIVmac239, is shown for each sequence
sample from each animal (black boxes) with the best fitting Poisson distribution (red lines). The goodness-of-fit p value of each
fitis listed in Table I. The bottom right corner panel shows a comparison between actual days post infection and the estimated
days since infection based on HD distribution for animals r00065 (black) and r00098 (blue). The correlation coefficient
between the actual and estimated dates post-infection for r00065 is -0.91 and for r98018 is 0.47.

tion pyrosequencing technologies [39] may facilitate the
examination of far greater numbers of SIV sequences with
economy that is impossible to achieve with Sanger-based
sequencing. We expect that the acute infection model will
be refined and improved as additional sequences become
available.

Conclusion

This study verifies the robust nature of our MC simulation
model for primary HIV-1 infection, and shows that it can
be successfully applied to the analysis of acute SIV infec-
tion in thesus macaques. The model predicted the level of
SIV sequence diversification during the acute phase of
SIVmac239 infection in two rhesus macaques, and it cor-
rectly identified "homogenous" virus transmission in this
model system. SIV acute sequence samples confirmed that
the consensus sequence of each sample was indeed the
transmitted strain. Finally, a sequential decrease in viral
diversity was observed during the first 3 weeks of infection
in one macaque, and was found to be due to a purifying
selection for the transmitted sequence.

Methods

Animals and SIVmac239 challenge

Two rhesus macaques were experimentally infected with
the clonal SIV isolate STVmac239, derived from a molecu-
lar clone [40]. The SIVmac239 inoculum was sequenced
by non limiting dilution PCR. The sequence of the infect-
ing strain was identical to the clone from which it was
derived with potential small errors during in vitro ampli-

fication. We have indicated the limitation in the revised
manuscript. However, we note that our method is the best
way for obtaining the clonal nature of the infecting inoc-
ulum as far as we can. Animal r00065 (r65) was infected
with 100 TCIDs, SIVmac239 by intravenous injection.
Animal 100098 (r98) was infected by intrarectal inocula-
tion with 10 MID5, SIVmac239. Viral RNA was isolated
from frozen plasma samples from animal r00065 col-
lected at days 4, 7, 11, and 18 following virus infection.
From animal 100098, viral RNA was isolated from frozen
plasma samples collected at days 4, 7, 21 during infection.
Virally-infected animals were cared for according to the
regulations of the University of Wisconsin Institutional
Animal Care and Use Committee, and the NIH.

Viral RNA isolation and cDNA synthesis

Viral RNA was isolated from each animal at defined time
points following infection. Cell-free plasma was prepared
from EDTA anticoagulated whole blood by ficoll density
gradient centrifugation. Viral RNA isolation was per-
formed using the QIAamp MinElute Virus Spin Kit (QIA-
GEN, Valencia, CA) according to the manufacturer's
instructions. Single strand ¢cDNA was generated using
oligo dT primers and the Superscript III reverse transcrip-
tion kit (Invitrogen, Carlsbad, California, USA) according
to the manufacturer's instructions.

Limiting Dilution and nested PCR
cDNA template was diluted to ~1 viral genome per micro-
liter. The dilution factor necessary to achieve single viral
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Examination of star-like phylogeny. The star-phylogeny
can be examined by testing whether the level of diversity is
two times of the level of divergence, which occurs when
there is neutral selection in the absence of selective pressure
for specific mutant strains. All of the 7 samples from animals
r00065 and r98018 satisfy the relationship, diversity = 2 x
divergence (blue line).

genomes was defined as the template dilution for which
only 30% of reactions produced a product. According to a
Poisson distribution, the cDNA dilution that yields PCR
products in no more than 30% of wells contains one
amplifiable cDNA template per positive PCR more than
80% of the time. This was empirically determined using a
dilution series and varied between samples and cDNA
preps. The dilution series and PCR reactions were set up
using a QIAGEN BR3000 liquid handling robot (QIA-
GEN, Valencia, CA). All PCR reactions used Phusion
High-Fidelity polymerase (Finnzymes, Espoo, Finland). A
nested PCR approach was used for all amplifications. The
following primers designed to amplify a region of the viral
Nef gene were used for the first round of PCR: 5'-CAAA-
GAAGGAGACGGTGGAG-3' and 5'-CATCAAGAAAGT-
GGGCGTTC-3'. Second round PCR was conducted using
2 ul of the first round PCR product and the following
internal primers were used for nested PCR: 5'-TCAG-
CAACTGCAGAACCTTG-3' and 5'-CGTAACATCCCCTIT-
GTGGAA-3'. For all PCR reactions, the following
conditions were used: 98C for 30 s, 30 cycles of: 98C for 5
s, 63C for 1 sand 72C for 10 s, followed by 72C for 5 min.
PCR products were run on a 1.5% agaroe gel. PCR prod-
ucts were purified using the Chargeswitch kit (Invitrogen,
Carlsbad, Calfornia, USA) according to the manufac-
turer's instructions. Samples were bi-directionally
sequenced susing ET-terminator chemistry on an Applied
Biosystems 3730 Sequencer (Applied Biosystems, Foster
City, California, USA) and the internal primers described
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above. DNA sequence alignments were performed using
CodonCode Aligner version 2.0 (CodonCode Corpora-
tion, Dedham, Massachusetts, USA).

Modeling Sequence Evolution in Primary HIV-1/SIV
Infection

The details of our model for characterizing sequence evo-
lution in acute HIV-1 infection will be described by Lee et
al. (HY Lee, EE Giorgi, BF Keele, B Gaschen, GS Athreya,
JF Salazar-Gonzalez, KT Pham, PA Geopfert, JM Kilby, MS
Saag, EL Delwart, MP Busch, BH Hahn, GM Shaw, BT Kor-
ber, T Bhattacharya, and AS Perelson, Modeling Sequence
Evolution in Acute HIV-1 Infection, submitted for publi-
cation). We provide here an overview of the salient fea-
tures of the model and its underlying assumptions. After
transmission we assume that a systematic infection starts
with a single infected cell in a new host. The number of
secondary infections caused by one infected cell placed in
a population of cells fully susceptible to infection is called
the basic reproductive number, R,. The available data in
humans infected with HIV-1 and in monkeys infected
with SIV and SHIV show that virus grows exponentially
until a viral load peak is attained a few weeks after infec-
tion [41-43]. Following the peak, viral levels decline and
establish a set-point. At the set-point each infected cell, on
average, successfully infects one other cell during its life-
time.

We assumed a homogeneous infection in which the virus
grows exponentially with no selection pressure, no recom-
bination, and a constant mutation rate across positions
and across lineages. Cell infections occur randomly by the
viruses released from an infected cell. Viral production
starts on average about 24 hours after a cell is initially
infected [44,45], and most likely continues until cell
death. While each of the R, infections could occur at dif-
ferent times, we took a first step in assessing the role of
asynchrony by assuming the infections occur at two differ-
ent times. The average time to new infection defines the
viral generation time, z. Each new infection entails a single
round of reverse transcription introducing errors in the
proviral DNAs with the number of mutations given by the
Binomial distribution, Binom(n; Ny, &), where n is the
number of new base substitutions. Binomial distribution
implies that base substitutions occur independently with
the probability of & at each site of SIV genome with the
length Nj in each reverse transcription cycle. The Monte-
Carlo model explicitly emulates all the new infection pro-
cedures with mutations, tracking the population of provi-
ral nef genes of the infected cells by introducing base
substitutions as infection propagates in a new host.

In Ref. [2], we determined that the MC simulation and the
mathematical model showed a good agreement with the
level of sequence diversity sampled from acute HIV-1 sub-
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jects presumably infected with a single variant. Based on
the prediction made by the model, the group of identical
sequences, usually the consensus sequence of sampled
strains, was presumed to be the initial founder strain
established by the systematic infection in each host. The
parameters used in the acute HIV-1 model were: i) the
average generation time of productively infected cells,
defined as the average time interval between the infection
of a target cell and the subsequent infection of new cells
by progeny virions, estimated as 2 days [44], ii) HIV-1 sin-
gle cycle forward mutation rate, estimated as €=2.16 x 10
5 per site per cycle [46], and iii) the basic reproductive
ratio, defined as the number of newly infected cells that
arise from any one infected cell when almost all cells are
uninfected, estimated as R, = 6[41]. In the asynchronous
infection model, the first time at which a newly infected
cell infects other cells, 7, is chosen as 1.5 days. The length
of nef gene, Ny, we simulated is 792. We used these
parameter values to analyze our data set. For example, cal-
culated R, values during primary SIV infection from viral
ramp-up slope ranged from 2.2 to 68 [43], which justifies
the choice of R, = 6. Improvement of the model requires
more accurate estimations for these basic parameters dur-
ing SIV early infection.

The mutation rate, ¢ and the generation time, 7, control
the rate of increase in divergence and hence diversity. The
larger the mutation rate, the faster the genomes mutate,
hence the steeper the growth in diversity. The greater the
generation time, the slower the genomes diversify, hence
the smaller the growth in diversity. The slope of diversifi-
cation is approximately proportional to & z. On the other
hand, R, mainly controls the growth in the infected cell
population size. As the viral population grows, the
number of cells one infected cell infects decreases due to
the fact that fewer cells are available for infection. The
basic reproductive ratio, R, affects the rate of evolution in
a relatively minor way. Low values (e.g. 2 < R, < 4), slow
down the growth in the infected cell population, thus
affecting the speed of evolution. For example, from R,= 6
to Ry =2 there is a 15.9% increase in the slope of diversity.
On the other hand, for R, > 6, the dependence of the rate
of diversification on R,is reduced. The slope of diversity
increases by 5.5% as we increase R, from 6 to 10. The
dynamics of diversity do not depend on the number of
initial infected cells.

Once we sample a finite number of sequences from the
MC simulation at a given time, we first measure the Ham-
ming distance (HD,) between each sampled sequence and
the founder sequence and the Hamming distance (HD)
between sequences sampled at the same time. Here Ham-
ming distance is the number of base substitutions
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between two sequences. Based on the calculated HD, and
HD, we define the basic measurements for quantifying the
evolution of HIV-1 sequence populations. Divergence is
defined as the average HD, per base from the initial
founder strain; diversity is defined as the average interse-
quence Hamming distance per base among sequence
pairs at a given time; variance is defined as the variance of
the intersequence per base HD distribution; maximum
HD is defined as the measured maximum HD between all
sequence pairs sampled, and sequence identity is defined
as the proportion of sequences identical to the founder
strain. Both the MC simulation and mathematical calcula-
tion showed that divergence, diversity, and variance
increase linearly as a function of time and sequence iden-
tity decays exponentially as a function of time [Fig. 2].
These behaviours are characteristics of neutral evolution,
characterized as Poisson distribution and star-phylogeny
topology. It has been shown that the distribution of pair-
wise genetic distances is an approximate Poisson in the
evolution of mitochondrial DNA [28]. To address the
issue of the finite size of samples, we repeated MC simu-
lations sampling a finite number of nef genes at a given
time and computed 95% Cls for each quantity. Then we
examined whether the measurement of SIV nef gene sam-
ples was compatible with the model prediction or not. To
infer the number of days elapsed since infection based on
sampled strains, first we fit the Poisson distribution to the
observed distribution of Hamming distances between
sampled nef genes and the transmitted nef gene; we then
determined the mean of the Poisson distribution and cal-
culated days post infection using Eq. (2).

A key property of the Poisson distribution arising from
neutral evolution without selection and recombination is
that the level of diversity is comparable to that of variance.
We used this property to examine whether sampled
strains had evolved from a single founder strain or not. In
each MC run, we obtained the values of diversity and var-
iance from the sampled sequences with a given sample
size at each time and located those values in the plane of
diversity and variance. By repeating MC simulations, we
collected all the values of diversity and variance and com-
puted 95% ClIs in the plane of diversity and variance. The
computed 95% Cls form a conical region within which
diversity and variance of the sampled sequences from the
animal with homogeneous infection (i.e. infections with
a single founder strain without any selection pressure or
recombination) are expected to be located [Figure 5]. As
we sample more, the conical region becomes smaller [Fig-
ure 5]. Another requirement for homogeneous infection is
that the sequence diversity should be less than the upper
limit of the 95% Cls of the diversity at a given time follow-
ing infection with a single virus strain.
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