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Abstract
Background: DNA double strand break (DSB) repair enzymes are thought to be necessary for
retroviral infection, especially for the post-integration repair and circularization of viral cDNA.
However, the detailed roles of DSB repair enzymes in retroviral infection remain to be elucidated.

Results: A GFP reporter assay showed that the infectivity of an HIV-based vector decreased in
ATM- and DNA-PKcs-deficient cells when compared with their complemented cells, while that of
an MLV-based vector was diminished in Mre11- and DNA-PKcs-deficient cells. By using a method
based on inverse- and Alu-PCR, we analyzed sequences around 3' HIV-1 integration sites in ATM-
, Mre11- and NBS1- deficient cells. Increased abnormal junctions between the HIV-1 provirus and
the host DNA were found in these mutant cell lines compared to the complemented cell lines and
control MRC5SV cells. The abnormal junctions contained two types of insertions: 1) GT
dinucleotides, which are normally removed by integrase during integration, and 2) inserted
nucleotides of unknown origin. Artemis-deficient cells also showed such abnormalities. In Mre11-
deficient cells, part of a primer binding site sequence was also detected. The 5' host-virus junctions
in the mutant cells also contained these types of abnormal nucleotides. Moreover, the host-virus
junctions of the MLV provirus showed similar abnormalities. These findings suggest that DSB repair
enzymes play roles in the 3'-processing reaction and protection of the ends of viral DNA after
reverse transcription. We also identified both 5' and 3' junctional sequences of the same provirus
by inverse PCR and found that only the 3' junctions were abnormal with aberrant short repeats,
indicating that the integration step was partially impaired in these cells. Furthermore, the conserved
base preferences around HIV-1 integration sites were partially altered in ATM-deficient cells.

Conclusions: These results suggest that DSB repair enzymes are involved in multiple steps
including integration and pre-integration steps during retroviral replication.
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Background
Integration of viral DNA into the host genome is essential
for retroviral replication. In this step, the integrase
removes the two terminal nucleotides at each 3' end of the
viral DNA (3'-processing) and catalyzes the joining of the
processed end to the host DNA (strand transfer) [1]. Since
the two ends attack the target DNA in a 5'-staggered fash-
ion, single strand gaps between viral DNA and the target
DNA are generated. Host DNA repair enzymes are thought
to repair these gaps (post-integration repair). Addition-
ally, unintegrated viral DNA is circularized to form two
kinds of circular viral DNAs, 2-LTR circles and 1-LTR cir-
cles. Formation of these circular DNAs is also catalyzed by
host DNA repair enzymes. Recent studies reported DNA
double-strand break (DSB) repair enzymes as candidate
catalysts for the post-integration repair and the circulari-
zation of viral DNA [2,3].

DSBs are the most serious damage that chromosomal
DNA suffers, and must be repaired immediately and
appropriately. When DSBs are generated in cellular DNA,
ataxia-telangiectasia-mutated (ATM), a major molecular
sensor of DSBs, directly binds to the damaged DNA and
activates DSB repair pathways by phosphorylating target
proteins [4,5]. One of the major targets is the MRN com-
plex, which consists of Mre11, Rad50 and NBS1 [6]. This
complex has recently been reported to further enhance
ATM activation by recruiting ATM into the damaged site
[7-9]. After detecting the damage, ATM activates two DSB
repair pathways; homologous recombination (HR), and
non-homologous end joining (NHEJ) [10]. In the NHEJ
pathway, DNA-dependent protein kinase (DNA-PK),
which consists of DNA-PK catalytic subunit (DNA-PKcs)
and Ku, binds and holds the two ends of the break
together. Then ligase IV/XRCC4/XLF carries out the liga-
tion reaction [11,12]. When the ends are not suitable for
direct ligation, Artemis nuclease often processes the ends
[13].

Retroviral transduction into mutant cells lacking DNA-PK
or ligase IV was reported to induce apoptosis [14-16], sug-
gesting that NHEJ is involved in retroviral replication.
Moreover, Lau et al. showed that an ATM-specific inhibi-
tor suppressed integration of HIV-1 [17]. These reports
support the involvement of DSB repair enzymes in post-
integration repair. However, in vitro experiments showed
only the involvement of the components of the single-
strand break repair pathway [18,19]. In addition, some
reports showed that DSB repair enzymes were only
involved in the circularization of viral DNA [20,21]. How-
ever, the observation that Ku binds to retroviral preinte-
gration complex (PIC) raises the possibility that DSB
repair enzymes may play other roles in integration or pre-

integration steps [20]. Thus, the detailed roles of these
enzymes remain to be elucidated.

We report here that defects in DSB repair enzymes
enhanced the formation of abnormal junctions between
retroviral DNA and the host DNA. Moreover, we observed
that the base preferences around HIV-1 integration sites
partially changed in ATM-deficient cells. These results
indicate that DSB repair enzymes are involved in multiple
steps of retroviral replication.

Results
Effects of DSB repair enzymes on retroviral transduction 
efficiency
Previous reports demonstrated that retroviral infectivity
decreased in cells lacking DSB repair enzymes such as
ATM and DNA-PKcs [14,16,17]. To confirm whether the
enzymes affect HIV-1 infectivity, mutant cell lines and
complemented cell lines were transduced with an HIV-
based vector encoding a GFP reporter gene. As shown in
Figure 1A, the transduction efficiency was impaired in the
mutant cells lacking ATM compared to the complemented
cells, indicating that ATM is involved in HIV-1 transduc-

Transduction efficiency of the HIV-based vector into cells deficient in DSB repair enzymesFigure 1
Transduction efficiency of the HIV-based vector into 
cells deficient in DSB repair enzymes. (A) ATM-defi-
cient cells and ATM-complemented cells were transduced 
with three different dilutions of the HIV-based vector encod-
ing a GFP reporter. Two days postinfection, the percentage 
of GFP-positive cells was determined by flow cytometry. (B-
D) The influence of DNA-PKcs (B), NBS1 (C) and Mre11 (D) 
on transduction efficiency of the HIV-based vector was inves-
tigated by the same method as (A). Error bars represent +/- 
SD.
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tion. We also found that DNA-PKcs-deficient M059J cells
showed a significantly lower level of transduction effi-
ciency compared to DNA-PKcs-positive M059K cells (Fig-
ure 1B), indicating that DNA-PKcs is also required for
stable transduction of HIV-1.

The influences of NBS1 and Mre11 on retroviral infectivity
were controversial in previous reports [21,22]. In our cell
lines, NBS1 and Mre11 deficiencies did not influence
transduction efficiency (Figure 1C and 1D), suggesting
that the MRN complex might not affect HIV-1 transduc-
tion.

We also investigated whether defects in these DSB repair
enzymes affected MLV infectivity by using an MLV-based
vector encoding a GFP reporter gene. As for the HIV-based
vector, the infectivity of the MLV-based vector signifi-
cantly decreased in DNA-PKcs-deficient cells, indicating
the conserved role of DNA-PKcs in retroviral infection
(Additional file S1B). Mre11-deficient cells also showed
impaired MLV infectivity compared to the complemented
cells (Additional file S1D). However, infectivity of MLV
vector remained intact in the mutant cells lacking NBS1,
which is the other component of the MRN complex
(Additional file S1C). This might be due to the different
extents of deficiencies of Mre11 and NBS1. In contrast to
the HIV-based vector, ATM-deficient cells showed similar
transduction efficiency of the MLV-based vector compared
to the complemented cells (Additional file S1A). These
results suggest that DSB repair enzymes are differentially
required for the stable transduction of HIV-1 and MLV.

Abnormal junctions between HIV-1 provirus and the host 
DNA in ATM-, Mre11-, NBS1- and Artemis-deficient cells
Since one of the potential targets of DNA repair enzymes
is the junction between provirus and the host DNA
[18,19,23], we postulated that abnormal junctions would
be generated in cells deficient in DNA repair enzymes. We
therefore analyzed the sequences of the host-virus junc-
tions. After amplification of integration sites by Alu PCR,
we used inverse PCR to amplify the sequences around the
integration sites with primers specific to LTRs and Alu

repeat elements [24]. With this method, we could identify
integration sites efficiently, with few non-specific amplifi-
cation products.

We analyzed 216 3' junctions between HIV-1 provirus and
the host DNA in a control cell line, MRC5SV, and found
one abnormal junction with a single nucleotide insertion,
and seven junctions with deletions in viral DNA ends (Fig-
ure 2). In mutant cells lacking DSB repair enzymes, there
were more abnormal junctions with inserted nucleotides
between provirus and the host DNA. There were two dif-
ferent groups of abnormal nucleotides. One was a GT
dinucleotides (or a G mononucleotide) adjacent to the
provirus that is normally removed by integrase in 3'-
processing. They did not originate from the host DNA.
The other type of abnormal junction contained inserted
nucleotides of unknown origin. The number of abnormal
junctions with insertions was 1 of 216 (0.5%) events in
the control cells, but 8 of 161 (5.0%) events in ATM-defi-
cient cells (Figure 2 and Table 1). In ATM-complemented
cells, 1 of 151 (0.7%) junctions had abnormal insertions,
which was a significantly lower frequency than that of
ATM-deficient cells. Although GFP reporter assays showed
that defect of the MRN complex did not affect HIV-1 infec-
tivity, the junctions in the MRN complex deficient cells
also had abnormal insertions: 11 of 147 (7.5%) junctions
in Mre11-deficient cells and 6 of 145 (4.1%) junctions in
NBS1-deficient cells. It is of note that some of the abnor-
mal junctions in Mre11-deficient cells also included 2, 4,
11, or 15 nucleotides of the primer binding site (PBS)
sequences (Figure 2). In contrast, abnormal junctions
with insertions were less frequent in Mre11-comple-
mented cells (2 of 144: 1.4%) and NBS1- complemented
cells (1 of 168: 0.6%). These results indicate that both
Mre11 and NBS1 are indeed associated with HIV-1 repli-
cation. In contrast, in DNA-PKcs-deficient cells, only 3 of
153 (2.0%) junctions had abnormal insertions (Addi-
tional file S2), which is not a statistically significant differ-
ence compared to control MRC5SV cells.

Abnormal junctions with insertions were also found in 10
of 136 (7.4%) junctions in cells deficient in Artemis (Fig-

Table 1: The number of 3' abnormal junctions of the HIV-1 provirus

ATM(-) ATM(+) Mre11(-) Mre11(+) NBS1(-) NBS1(+) Artemis(-) MRC5SV

Insertions 8 1 11 2 5 1 9 1
Insertions + Deletions 0 0 0 0 1 0 1 0
Deletions 2 3 2 3 2 5 1 7
Total junctions 161 151 147 144 145 168 136 216

P value 0.012 0.023 0.035
(0.0046) (0.80) (0.00005) (0.34) (0.013) (0.86) (0.0003)

The P values under the columns of the deficient cell lines are for comparison of the number of junctions with only insertions or both insertions and 
deletions to that of the corresponding complemented cell lines. The numbers in parentheses under the table represent the P values compared to 
the control MRC5SV cells.
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Abnormal 3' junctions of the HIV-1 provirus in DSB repair enzyme deficient cellsFigure 2
Abnormal 3' junctions of the HIV-1 provirus in DSB repair enzyme deficient cells. Junctions between the 3' end of 
the provirus and the host DNA were analyzed in control cells, mutant cell lines, and complemented cell lines transduced with 
the HIV-based vector. Inserted abnormal sequences are lowercased. Abnormal nucleotides corresponding to the GT dinucle-
otides processed by integrase are presented in bold. Partial primer binding site (PBS) sequences are underlined. Squares indi-
cate the location of micro-homologies to the GT dinucleotides and/or PBS.
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ure 2 and Table 1), which is a target of phosphorylation
by ATM and DNA-PKcs [25,26]. Since Artemis-comple-
mented cells could not be established, we could not con-
clude that these abnormalities observed in Artemis
deficient cells were due to the deficiency of Artemis. How-
ever, the frequency was much higher than that of control
MRC5SV cells (P = 0.0003), indicating the potential
effects of Artemis on HIV-1 replication.

Some of the abnormal junctions also exhibited micro-
homologies in the host sequences, in which 1-4 nucle-
otides were identical to a part of the GT dinucleotides
and/or the PBS sequence following the inserted part (Fig-
ure 2). This observation suggests that at least some provi-
ruses with such abnormal junctions might be integrated
by a recombination mechanism using these micro-
homologies.

5' junctional sequences in DSB repair enzymes-deficient 
cells
To investigate whether the abnormalities were common
to both ends of provirus, we also analyzed the sequences
of 5' junctions. The junctions between the HIV-1 5' LTR
and the host DNA also exhibited similar abnormalities
(Figure 3A). Abnormal nucleotides were observed in 10 of
164 (6.1%) junctions in ATM-deficient cells and 13 of 134
(9.7%) junctions in Mre11-deficient cells, compared to 2
of 178 (1.1%) junctions in MRC5SV cells (Figure 3B). In
5' junctions, the remaining nucleotides were AC dinucle-
otides, which are complementary to the GT dinucleotides
detected in 3' junctions. In Mre11 deficient cells, 3' poly-
purine tract (PPT) sequences were also identified. Thus,
defects in DSB repair enzymes enhanced the abnormal
joining of both ends of the HIV-1 DNA.

Abnormal junctions of MLV provirus in DSB repair enzyme 
deficient cells
To determine whether these abnormalities are specific to
HIV-1, we also analyzed sequences of the 3' junctions of
the MLV provirus. Junctions with abnormal nucleotides
increased from 5 of 228 (2.2%) events in Mre11-comple-
mented cells to 20 of 256 (7.8%) events in Mre11-defi-
cient cells (Figure 4). The abnormal junctions also
included TT dinucleotides, which are usually removed by
MLV integrase in 3'-processing. Taken together, these
results show that defects in DSB repair enzymes increase
abnormal host-virus junctions in both HIV-1 and MLV.

Junctional sequences at the both ends of provirus
To study whether both 5'- and 3'-junctions of the same
provirus were abnormal, we analyzed both 5' and 3' junc-
tional sequences of the same provirus. Since the method
used in Figure 2, 3 and 4 could detect only one end of pro-
virus, we next adopted a traditional inverse PCR method.
We identified three HIV-1 proviruses with abnormal junc-

Abnormal 5' junctions of the HIV-1 provirus in DSB repair enzyme deficient cellsFigure 3
Abnormal 5' junctions of the HIV-1 provirus in DSB 
repair enzyme deficient cells. (A) Junctions between the 
5' end of the provirus and the host DNA were analyzed in 
control and mutant cell lines transduced with the HIV-based 
vector. Inserted abnormal sequences are in lower case. 
Abnormal nucleotides corresponding to the sequence (AC) 
complementary to the GT dinucleotides processed by inte-
grase are presented in bold. Partial polypurine tract (PPT) 
sequences are underlined. Squares indicate the location of 
micro-homologies to the AC dinucleotides and/or PPT. (B) 
The number of junctions with insertions or deletions. The P 
values under the table are for comparison of the number of 
junctions with insertions in each cell line to that of the con-
trol MRC5SV cells.
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tions in Mre11-deficient cells (Figure 5). All three provi-
ruses had the abnormal nucleotides at the 3' junctions. A
single G was inserted in case 1, while both GT dinucle-
totides and part of a PBS were inserted in cases 2 and 3.
These 3' junctions also showed micro-homologies in the
host sequences, confirming the abnormalities shown in
Figure 2. However, the 5' junctions were intact in these
proviruses, indicating that these 5' junctions were proc-
essed by integrase as per normal. We also found that the
host sequence adjacent to the provirus contained short
repeats in case 1 and 2. Although all of the other provi-
ruses had 5-bp short repeats as reported previously (data
not shown), case 1 and 2 contained 3-bp and 2-bp short
repeats, respectively. Case 3 lacked short repeats. These
results suggest that the integration of these proviruses was
catalyzed by integrase, but in abnormal ways.

Altered base preference surrounding HIV-1 integration 
sites in cells lacking ATM
Retrovirus-specific base preferences in the immediate
vicinity of integration sites have been reported [27-29].
Our findings of abnormal host-virus junctions prompted
us to investigate whether deficiencies in DSB repair
enzymes also influence these preference patterns. We ana-
lyzed the nucleotide frequencies for the 8 nucleotides
downstream and the 4 nucleotides upstream of the 3'
ends of HIV-1 proviruses without insertions and/or dele-
tions (Figure 6B). As shown in Figures 6 and 7, we calcu-
lated P values at each position by χ2 analysis comparing
the base compositions in each cell line and the average
base compositions in the human genome (A:29%, T:29%,
G:21%, C:21%). At the positions with P < 0.01, the bases
with high frequencies or low frequencies were focused
and colored in Figure 6 and 7. Compared to the control
MRC5SV cells and ATM-complemented cells, which
showed a preference pattern similar to that in the previous
report [28], ATM-deficient cells showed a partially altered
pattern. In the position -2, the different patterns were
found in ATM-deficient cells compared to control
MRC5SV cells (P < 0.0001) or ATM-complemented cells
(P < 10-14). Especially, ATM-deficient cells showed higher
frequency of G compared to the control MRC5SV cells and
the complemented cells at the position -2. Similarly, inte-
gration sites for the 5' end of the provirus in ATM-defi-
cient cells showed a changed preference pattern in
position 7 compared to the control MRC5SV cells (P <
0.001), in which ATM-deficient cells showed a higher fre-
quency of G (Figure 7B). Since the 5 bp sequence (posi-
tions 1 to 5) is duplicated next to the 3' and 5' ends of the
provirus as short repeats, position 7 for the 5' end of the
provirus corresponds to position -2 for the 3' end of the
provirus. This indicates that the analyses at both ends of
the provirus showed the same change, suggesting the
influence of deficiency in ATM in the position. In contrast,
NBS1- and Mre11-deficient cells showed no clear change

Abnormal 3' junctions of the MLV provirus in Mre11-defi-cient cellsFigure 4
Abnormal 3' junctions of the MLV provirus in Mre11-
deficient cells. (A) Junctions were analyzed in Mre11-defi-
cient cells and Mre11-complemented cells transduced with 
the MLV-based vector. Abnormal nucleotides corresponding 
to dinucleotides (TT) processed by integrase are in bold. 
Underlined sequences indicate partial PBSs. Squares indicate 
the location of micro-homologies to TT dinucleotides and/or 
the PBS. (B) The number of junctions with insertions or dele-
tions. The P values under the table are for comparison of the 
number of junctions with insertions in Mre11-deficient cells 
to that of Mre11-complemented cells.
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in base preference (data not shown). Thus, deficiency in
ATM partially influences the local base preference pattern
surrounding HIV-1 integration sites.

Effects of the MRN complex on circularization of HIV-1 
cDNA
Previous reports suggested that some DSB repair enzymes
were involved in the formation of 2-LTR circles and 1-LTR
circles [20,21]. To investigate whether the formation of
abnormal host-virus junctions links to circularization of
viral cDNA, we quantified total viral cDNA, 2-LTR circles
and 1-LTR circles in Mre11-deficient cells and the comple-
mented cells. Quantitative analyses of these viral cDNAs
showed that the amount of all three types of viral cDNA
was similar in the deficient cells and the complemented
cells (Figure 8). This suggested that deficiency in the MRN
complex did not influence the formation of viral circular
DNAs at least in these cell lines.

Discussion
This study revealed that deficiencies in some DSB repair
enzymes caused abnormalities surrounding retroviral
integration sites. Although the GFP reporter assay indi-
cated involvement of ATM and DNA-PKcs in HIV-1 infec-

tion consistent with previous reports [14,16,17], the
sequence analyses of the host-virus junctions revealed that
Mre11 and NBS1 were also involved in HIV-1 infection. In
addition, both the GFP reporter assay and the sequence
analysis showed the involvement of Mre11 in MLV infec-
tion. These results suggest that DSB repair enzymes are
more important in retroviral infection than previously
thought.

We found two kinds of abnormal junctions in ATM-,
Mre11-, NBS1- and Artemis-deficient cells. One contained
remnant dinucleotides, which are normally removed
from the ends of viral DNA. These were identical to nucle-
otides processed in 3'-processing [30], which suggest that
integrase could not completely process the terminal dinu-
cleotides, or that the processed 3'-ends were repaired dur-
ing integration. This abnormality suggests that ATM, the
MRN complex and Artemis play roles in the 3'-processing
activity of integrase and possibly the protection of the
ends of viral DNA before strand transfer. In addition,
abnormal junctions containing sequences derived from
the PBS were found only in Mre11-deficient cells. As the
tRNA primer is thought to be removed by the RNase H
domain of reverse transcriptase (RT) [31,32], Mre11 may

The 5' and 3' junctional sequences of the same HIV provirus in Mre11-deficient cellsFigure 5
The 5' and 3' junctional sequences of the same HIV provirus in Mre11-deficient cells. Junctions between both ends 
of HIV provirus and the host DNA were analyzed together in Mre11-deficient cells transduced with the HIV-based vector. 
Three cases including abnormal junctions are shown. In each case, the integrated HIV provirus (top) and the host genome (bot-
tom) are compared. Proviral sequences are in lower case. Inserted abnormal nucleotides are shown in bold. The GT dinucle-
otides and primer binding site (PBS) sequences are underlined. Squares indicate short repeats flanking the provirus.

5’LTR

ProvirusGenome Genome

TTTGCATTTCtggaag ----------------- ctagcaGTTCTAATAAT
••••••••••                                   •••••••
TTTGCATTTC                                   TAATAAT

CAGGAGTAGGtggaag ----------------- ctagcaGTGGGTCAGC
••••••••••                                    •••••
CAGGAGTAGG                                    TCAGC
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••••••••••                                        ••••••••••
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regulate RT to cleave the tRNA correctly. It is noteworthy
that a part of 3' PPT sequence of HIV-1, which is a primer
sequence for the synthesis of the plus strand, was found at
5' junctions in Mre11 deficient cells. Inserted aberrant
nucleotides of unknown origin were another junctional
abnormality. Considering that one strand of viral DNA
has already bound to the host DNA in the integration
intermediate, it is likely that the inserted nucleotides were
added at the viral DNA ends before strand transfer. It has
been demonstrated that ATM and the MRN complex pro-
tect human telomeres, by capping them [33,34]. In addi-
tion, a report regarding telomere instability in Artemis-
deficient cells suggests that Artemis also protects telom-
eres [35]. Given that telomeres and unintegrated retroviral
DNA ends are similar, DSB repair enzymes including
ATM, the MRN complex and Artemis may protect the ends
of unintegrated viral DNA from aberrant nucleotide addi-
tion.

One reason for the inconsistency between the GFP
reporter assay and the sequence analyses, particularly in
Mre11 and NBS1, may be that the frequencies of the
abnormalities at the host-virus junctions were low. There-
fore, it was not detected by the GFP reporter assay. In addi-
tion, the GFP reporter assay could detect integrated
provirus with abnormal junctions. Therefore, the GFP
assay could not discriminate provirus with abnormal
junctions from normally integrated provirus. It is possible
that the integration efficiency of viral DNA with abnormal
ends might be low compared with normal viral DNA,
which might underestimate the frequencies of provirus
with aberrant ends. Since the deficiencies of Mre11 and
NBS1 in the mutant cell lines were reported to be only
hypomorphic, the effects of their deficiencies are likely
limited in this study [36]. However, the finding that the
insertional abnormalities were more frequent in the defi-
cient cell lines compared to the control cell lines indicates
the existence of an association between retroviral infec-
tion and DSB repair enzymes including Mre11 and NBS1.
This was also supported by one of the recent reports that
identified host factors by genome-wide screening using an
RNAi library [37]. In this report, the knockdown of Mre11
decreased retroviral infectivity.

The identification of the abnormal junctions prompted us
to investigate how proviruses with such junctions were
integrated. The micro-homologies in the host sequences
suggest that integrase-independent recombination is
involved in this step (Figure 2, 3 and 4). However, when
both 5' and 3' junctional sequences of the same provirus
were analyzed, only the 3' junctions of the provirus were
abnormal while the 5' junctions were intact (Figure 5),
suggesting the involvement of integrase in the establish-
ment of these proviruses. In addition, although normal

The local base preferences surrounding 3' ends of HIV-1 pro-viruses integrated in ATM-deficient cellsFigure 6
The local base preferences surrounding 3' ends of 
HIV-1 proviruses integrated in ATM-deficient cells. 
(A) A schematic figure of the strand transfer reaction of HIV-
1. The 3' end of viral DNA attacks the phosphodiester bond 
between positions -1 and 1 of the host DNA, and covalently 
joins to the position 1 nucleotide. (B) Base compositions 
around the integration sites in the control MRC5SV cells, 
ATM-complemented cells and ATM-deficient cells. The 
sequences represent the target DNA sequence before the 
viral DNA is inserted between the position 1 and -1. The 5 
bp sequences (positions 1 to 5), which are duplicated next to 
both ends of the provirus, are boxed by blue lines. Each tabu-
lated number represents the observed base frequency 
divided by the expected base frequency at each position. The 
expected base frequencies are average frequencies observed 
in human genome (A:29%, T:29%, G:21%, C:21%). The P val-
ues are obtained by χ2 analysis comparing observed and 
expected base compositions at each position. At the posi-
tions with P < 0.01, frequencies < 60% and frequencies > 
140% of expected frequencies are colored yellow and green, 
respectively.
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HIV-1 integration generates 5-bp short repeats flanking
the provirus, the abnormal proviruses lacked short repeat
or had aberrant (2- or 3-bp) short repeats. These findings
suggest that these proviruses were established by impaired
activity of integrase.

There are inconsistencies in previous reports regarding the
roles of DNA repair enzymes in retroviral replication [38-
42]. This is partly because almost all of these studies were
based on measuring the retroviral infectivity or apoptosis
by retroviral transduction as was done in Figure 1 and S1.
Such assays largely depend on the extent of deficiencies or
the expression levels of the complemented proteins. The
situation is further complicated by the fact that complete
deletion of some DSB repair enzymes such as Mre11 and
NBS1 is lethal, and there are only hypomorphic mutant
cell lines [36]. In some reports, suppressed expression of
LEDGF/p75, which is a critical host factor of HIV-1 repli-
cation, had no or only modest effect on HIV-1 infectivity
[43,44]. However, biochemical assays and sequence anal-
yses in the same cell lines in other studies revealed a
strong association of LEDGF/p75 with HIV-1 replication,
suggesting that the quantitative assays could not detect all
abnormalities [45-47]. Indeed, our sequence analyses
revealed abnormalities undetected by the GFP reporter
assay in Mre11- and NBS1- deficient cells. These results

The local base preferences surrounding 5' ends of HIV-1 pro-viruses integrated in ATM-deficient cellsFigure 7
The local base preferences surrounding 5' ends of 
HIV-1 proviruses integrated in ATM-deficient cells. 
(A) A schematic figure of the strand transfer reaction of HIV-
1. The 5' end of viral DNA attacks the phosphodiester bond 
between positions -1 and 1 of the host DNA, and covalently 
joins to the position 1 nucleotide. (B) Base compositions 
around the integration sites in the control MRC5SV cells and 
ATM-deficient cells. The sequences represent the target 
DNA sequence before the viral DNA is inserted between 
the position 1 and -1. The 5 bp sequences (positions 1 to 5), 
which are duplicated next to both ends of the provirus, are 
boxed by blue lines. Each tabulated number represents the 
observed base frequency divided by the expected base fre-
quency at each position. The expected base frequencies are 
average frequencies observed in the human genome (A:29%, 
G:21%, C:21%). The P values are obtained by χ2 analysis com-
paring observed and expected base compositions at each 
position. At the positions with P < 0.01, frequencies < 60% 
and frequencies > 140% of expected frequencies are colored 
yellow and green, respectively.
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plemented cells were transduced with the HIV-based vector, 
and the total DNA was extracted. By fluorescent-monitored 
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show the importance of qualitative assays to evaluate the
involvement of host factors including DSB repair enzymes
in retroviral replication.

Our sequence analyses also showed that deficiencies of
DSB repair enzymes influenced HIV-1 integration site
selection (Figure 6 and 7). In a recent and substantial
effort to understand the mechanism of retroviral integra-
tion site selection, Holman et al. demonstrated virus-spe-
cific base preferences around retroviral integration sites by
analyzing massive numbers of integration sites [28]. Our
data showing partially altered patterns in ATM-deficient
cells reveal that the preference pattern of HIV-1 is margin-
ally influenced by ATM. Interestingly, a lack of ATM
caused the appearance of a new base preference. As the
new preference may limit the selection of a target DNA
sequence, the appearance of the new preference is consist-
ent with decreased HIV-1 infectivity in ATM-deficient
cells.

Besides post-integration repair and circularization of viral
cDNA, we propose additional possible roles for DSB
repair enzymes. Given that Ku was reported to bind to ret-
roviral PICs [20,22], DSB repair enzymes investigated in
this study may also bind to PICs and directly regulate their
activities. Although further studies are necessary to vali-
date our models regarding the roles of DSB repair
enzymes, this study suggests that DSB repair enzymes are
involved in retroviral replication in more ways than previ-
ously thought. This study sheds light on novel links
between DSB repair enzymes and retrovirus, and raises
new questions about the detailed mechanism by which
DSB repair enzymes control retroviral replication.

Conclusions
This study showed aberrant sequences surrounding retro-
viral integration sites in DSB repair enzyme deficient cells;
increased abnormal nucleotides at the host-virus junc-
tions and partially altered base preferences surrounding
integration sites. These results suggest that DSB repair
enzymes are involved in both retroviral integration and
pre-integration steps.

Methods
Cell lines
293T cells and MRC5SV cells, an SV40-transformed
human fibroblast line, were cultured in Dulbecco's modi-
fied Eagle's medium (DMEM) and were supplemented
with 10% fetal bovine serum, 2 mM L-glutamine, 100 U/
ml penicillin, and 50 μg/ml streptomycin. Adenovirus-
transformed Artemis-deficient cells originated from RS-
SCID patients and were cultured in DMEM [48]. ATM-
deficient and ATM-complemented cells were established
by transfecting empty vector and ATM expression vector,

respectively, into an A-T cell line, AT5BIVA, as described
previously [49], and cultured in DMEM containing 200
μg/ml hygromycin B (Calbiochem, San Diego, CA).
NBS1-deficient and NBS1-complemented cells were
established by transfecting empty vector and NBS1 expres-
sion vector, respectively, into an NBS cell line,
GM7166VA7, as described previously [50], and cultured
in DMEM containing 500 μg/ml G418 (Nacalai tesque,
Kyoto, Japan). Mre11-deficient cells were established by
transforming an ATLD2 cell line, D6809 (a generous gift
from Dr. P. Concannon), by SV40, and the cells were cul-
tured in DMEM. To obtain Mre11-complemented cells,
Mre11-deficient cells were transfected with the Mre11
expression vector pCMV-Tag-Mre11, which was created by
cloning Mre11 cDNA between the EcoRI and ApaI sites of
pCMV-Tag 2B (Clontech, Mountain View, CA), and the
cells were cultured in DMEM containing 500 μg/ml G418.
For all experiments, we used antibiotic-free medium
before 24 h of experiments.

Production of viral vectors
An HIV-based vector encoding a green fluorescent protein
(GFP) reporter was produced as follows. 293T cells were
transfected by TransFectin (Bio-Rad, Hercules, CA) with
the pCSII-EF-MCS-IRES-hrGFP transfer vector [51], the
pCMV-Δ8/9 packaging vector, and pcDNA-VSVG enve-
lope coding vector (generous gift from Dr H Miyoshi,
RIKEN, Tsukuba, Japan). Two days after transfection, the
supernatant was harvested, passed through a 0.45-μm-
pore-size filter, and then subjected to centrifugation at
4°C and 75,000 × g for 2 h to concentrate the virus. The
virus-containing pellet was dissolved in DMEM.

To produce an MLV-based vector encoding a GFP reporter,
the transfer vector pDON-AI-2-IRES-hrGFP was created by
excising IRES-hrGFP from pCSII-EF- MCS-IRES-hrGFP via
BamHI/HpaI digestion and inserting the DNA into the
corresponding site of pDON-AI-2 (Takara Bio, Ohtsu,
Japan). GP293 cells, containing a plasmid expressing MLV
gag and pol genes, were transfected with pDON-AI-2-IRES-
hrGFP and pcDNA-VSVG. 2 days after transfection, super-
natant was harvested, and virus was concentrated.

The titer of these vectors was determined using 293T cells,
and scoring of transduction was performed by flow
cytometry.

An HIV-based vector encoding a neomycin resistance gene
was produced by transfecting the pCMV-Δ8/9 packaging
vector, pcDNA-VSVG envelope coding vector, and CSII-
CMV-IRES Neor, which was constructed by inserting IRES
and a neomycin resistance gene into CSII-CMV-MCS (a
generous gift from Dr H Miyoshi, RIKEN, Tsukuba,
Japan).
Page 10 of 13
(page number not for citation purposes)



Retrovirology 2009, 6:114 http://www.retrovirology.com/content/6/1/114
Single round transduction assay
The mutant cell lines and the complemented cell lines
were transduced with various dilutions of the HIV GFP
vector or the MLV GFP vector in the presence of 8 μg/ml
of polybrene (Sigma, St Louis, MO) for 12 h before chang-
ing the medium. The infected cells were harvested two
days post-infection and analyzed by flow cytometry to
determine the percentage of GFP-expressing cells in each
sample.

Cloning of retroviral integration sites
For cloning of retroviral integration sites by the Alu-PCR-
based method, cells transduced with the HIV-based vector
for 2 days were collected and the genomic DNA was
obtained by standard phenol-chloroform methods with
proteinase K treatment. 3' junctional sequences of HIV
were amplified by 1st long PCR using a primer (HIV3-1)
specific to the U5 region in the HIV LTR and a primer
(Alu-1) specific to the Alu repeat sequence. The amplifica-
tion products were blunted using T4 DNA Polymerase
(TOYOBO, Osaka, Japan), phosphorylated using T4 Poly-
nucleotide Kinase (TOYOBO), and circularized and/or
concatemerized using T4 DNA Ligase (TOYOBO). The
ligation products were amplified by 2nd long PCR using a
primer (HIV3-2) specific to the U5 region in the HIV LTR
and a primer (HIV3-3) spanning the junctions generated
by ligation. Similarly, 5' junctional sequences of HIV were
amplified by 1st PCR using a primer (HIV5-1) specific to
the U3 region in the HIV LTR and a primer (Alu-2) specific
to the Alu repeat sequence, and 2nd PCR using a primer
(HIV5-2) specific to the U3 region in the HIV LTR and a
primer (HIV5-3) spanning the junctions generated by
ligation. 3' junctional sequences of MLV were amplified
by 1st PCR using a primer (MLV3-1) specific to the U5
region in the MLV LTR and a primer (Alu-1) specific to Alu
repeat sequence, and 2nd PCR using a primer (MLV3-2)
specific to the U5 region in the MLV LTR and a primer
(MLV3-3) spanning the junctions generated by ligation.
The 2nd PCR products were cloned into the pGEM-T Easy
Vector (Invitrogen, Carlsbad, CA), which allows for isola-
tion of individual clones.

For cloning of integration sites including 5' and 3' ends of
the same provirus, Mre11-deficient cells were transduced
by the HIV-based vector encoding a neomycin resistance
gene and cultured in DMEM containing 500 μg/ml G418
for a month. After DNA extraction, the genomic DNA was
digested with EcoRI, circularized using T4 DNA Ligase,
and digested with NotI. Then, both of the junctional
sequences of HIV provirus were amplified by 1st long PCR
using a primer (HIV-U5) specific to the U5 region in the
HIV LTR and a primer (HIV5-1) that was previously
described and 2nd long PCR using another primer (HIV3-
1) that was previously described and a primer (HIV-U3)

specific to the U3 region in the HIV LTR. The 2nd PCR
products were cloned into the pGEM-T Easy Vector.

The sequences of the primers used in these assays are
described in Additional file 3.

Sequence analysis of retroviral integration sites
Sequencing was performed using the Big Dye Terminator
(version 3.1) cycle sequencing kit and an ABI3130 autose-
quencer (both from Applied Biosystems, Foster City, CA).
The BLAT program http://genome.ucsc.edu, hosted at the
University of California, Santa Cruz, was used to search
each integration clone against the March 2006 freeze of
the human genome. Low-quality sequences and
sequences with < 20 base pairs (bp) were discarded.

Quantification of HIV-1 cDNA
HIV-1 cDNA was quantified by fluorescent-monitored
quantitative PCR (Taqman) with an ABI Prism 7700
sequence detection system (Applied Biosystems) essen-
tially as described [24]. Cells were infected with the HIV-
based vector and the total DNA was extracted with DNA-
zol (Invitrogen) after 12 h or 24 h for analysis of total
cDNA or 2-LTR and 1-LTR circles, respectively. Sequences
of primers and probes are as follows; total cDNA forward,
late RT F: 5'-TGTGTGCCCGTCTGTTGTGT-3'; total cDNA
reverse, late RT R: 5'-GAGTCCTGCGTCGAGAGAGC-3';
total cDNA probe, LRT-P: 5'-(FAM)-CAGT-
GGCGCCCGAACAGGGA-(TAMRA)-3'; 2-LTR circle for-
ward, 2-LTR F: 5'-AACTAGGGAACCCACTGCTTAAG-3';
2-LTR reverse, 2-LTR-R: 5'-TCCACAGATCAAGGA-
TATCTTGTC-3'; 2-LTR probe, MH603: 5'-(FAM)-ACAC-
TACTTGAAGCACTCAAGGCAAGCTTT-(TAMRA)-3'; 1-
LTR circle forward, 1-LTR F: 5'-CACACCTCAGGTACCTT-
TAAGA-3'; 1-LTR reverse, 1-LTR-R: 5'-GCGCTTCAG-
CAAGCCGAGTCCT-3'; 1-LTR probe, MH603: 5'-(FAM)-
ACACTACTTGAAGCACTCAAGGCAAGCTTT-(TAMRA)-
3'. Under our PCR conditions with 1-LTR-F and 1-LTR-R
primers, 1-LTR circle products (~660 bp) were preferen-
tially amplified compared with 2-LTR circle products
(~1170 bp), as described previously [52]. This was veri-
fied by checking the specific amplicon generated by stand-
ard PCR with the same conditions. For standard curves,
we constructed control plasmids by PCR amplification
from the total DNA extracts using the same primers as flu-
orescent-monitored quantitative PCR and cloning the
products into the pGEM-T Easy Vector.
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Additional file 1
Figure S1. Transduction efficiency of an MLV-based vector into cells defi-
cient in DSB repair enzymes. Description: The transduction efficiency of 
the MLV-based vector was drastically decreased in DNA-PKcs-deficient 
cells and decreased in Mre11-deficient cells, but not altered in ATM- and 
NBS1-deficient cells. (A) ATM-deficient cells and ATM-complemented 
cells were transduced with the MLV-based vector encoding a GFP reporter. 
2 days postinfection, the percentage of GFP-positive cells was determined 
by flow cytometry. (B-D) The influence of DNA-PKcs (B), NBS1 (C) and 
Mre11 (D) on transduction efficiency of the MLV-based vector was inves-
tigated by the same method as in (A). Error bars represent +/- SD.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1742-
4690-6-114-S1.PDF]

Additional file 2
Figure S2. Abnormal 3' junctions of the HIV-1 provirus in DNA-PKcs-
deficient cells. Description: (A) Junctions between the 3' end of the provi-
rus and the host DNA were analyzed in DNA-PKcs-deficient cells trans-
duced with an HIV-based vector. Inserted abnormal sequences are in 
lower case. Abnormal nucleotides corresponding to the GT dinucleotides 
processed by integrase are presented in bold. (B) The number of junctions 
with insertions and/or deletions. The P values under the table are for com-
parison of the number of junctions with only insertions or both insertions 
and deletions to that of MRC5SV cells in Table 1.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1742-
4690-6-114-S2.PDF]

Additional file 3
Table S1. Primers for the sequence analyses around retroviral integration 
sites.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1742-
4690-6-114-S3.PPT]
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