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Background

Active nuclear import begins in the cytoplasm with recog-
nition of the transported cargo molecules by nuclear
transport receptors designated as importins [1]. Proteins
targeted to the nucleus contain a specific amino acid

Abstract

Background: The integrase (IN) of human immunodeficiency virus type | (HIV-1) has been
implicated in different steps during viral replication, including nuclear import of the viral pre-
integration complex. The exact mechanisms underlying the nuclear import of IN and especially the
question of whether it bears a functional nuclear localization signal (NLS) remain controversial.

Results: Here, we studied the nuclear import pathway of IN by using multiple in vivo and in vitro
systems. Nuclear import was not observed in an importin o temperature-sensitive yeast mutant,
indicating an importin o-mediated process. Direct interaction between the full-length IN and
importin oo was demonstrated in vivo using bimolecular fluorescence complementation assay (BiFC).
Nuclear import studies in yeast cells, with permeabilized mammalian cells, or microinjected
cultured mammalian cells strongly suggest that the IN bears a NLS domain located between
residues 161 and 173. A peptide bearing this sequence -NLS-IN peptide- inhibited nuclear
accumulation of IN in transfected cell-cycle arrested cells. Integration of viral cDNA as well as HIV-
| replication in viral cell-cycle arrested infected cells were blocked by the NLS-IN peptide.

Conclusion: Our present findings support the view that nuclear import of IN occurs via the
importin o pathway and is promoted by a specific NLS domain. This import could be blocked by
NLS-IN peptide, resulting in inhibition of viral infection, confirming the view that nuclear import of
the viral pre-integration complex is mediated by viral IN.
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sequence, termed nuclear localization signal (NLS),
which is recognized by either a member of the importin o
family, or directly by importin . The resultant complex
then interacts with the nuclear pore complexes (NPCs),
through which it is subsequently transported into the
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nucleus [2]. This nuclear translocation machinery is
highly conserved among lower and higher eukaryotes [3].

Human immunodeficiency virus type 1 (HIV-1) belongs
to the lentivirus family, which in contrast to other retrovi-
ruses can infect terminally differentiated cells [4,5]. The
capability of HIV-1 to infect cell-cycle arrested cells has
been ascribed to the ability of its pre-integration complex
(PIC) [6,7] to translocate across the nuclear envelope via
the NPC [1]. The karyophilic properties of the viral PIC
have been attributed mainly to three viral proteins: matrix
(MA), Vpr, and integrase (IN) [8-10]. The cellular Lens
Epithelium-Derived Growth Factor p75 (LEDGF/p75)
protein as well as the DNA flap structure of the viral cDNA
have also been implicated in promoting the translocation
of the PIC into nuclei of virally infected cells [11-13].
Yamashipa et al. have proposed that the HIV capsid pro-
tein plays a crucial role in controlling the nuclear import
of the HIV genome [14]. However, despite these extensive
studies and numerous reports, the nuclear import mecha-
nism of the PIC and the involvement of viral or cellular
factors driving such a process remain unclear and contro-
versial [15].

The HIV-1 IN protein consists of 288 amino acids and
three functional domains: the N-terminal domain (resi-
dues 1-50), which bears a zinc-binding motif [16,17]; the
central core domain (residues 51-212), which includes
the catalytic DDE motif [18-20]; and the C-terminal
domain (residues 213-288), which has been shown to
non-specifically bind the DNA [19-21]. To achieve inte-
gration of the viral DNA into the host chromosome, the
IN must be translocated into the nuclei of infected cells
[15].

Various studies have showed that IN is a karyophilic pro-
tein. Transfection of cultured mammalian cells with
expression vectors bearing IN results in nuclear accumula-
tion of the encoded protein [22]. Import of fluorescently
labeled IN into the nuclei of digitonin-permeabilized
mammalian cells was shown to be ATP- and temperature-
dependent; and this import could be blocked by the addi-
tion of unlabeled IN, clearly indicating an active, receptor-
mediated process [23,24]. Based on the ability of recom-
binant IN protein to bind in vitro to importin o and the
ability of a peptide bearing the prototypic simian virus 40
T-antigen NLS (SV40-NLS) to block such binding, as well
as nuclear import, nuclear transport of IN has been sug-
gested to occur via the importin a pathway [8,23]. More-
over, interaction of IN with the importin o family has
recently been reported [25].

The possibility of the IN protein being carried into the
cell's nuclei by other cellular components has also been
suggested [13,26,27]. The LEDGF/p75 was initially impli-
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cated in mediating the nuclear import of IN [13]. How-
ever, studies on the specific contributions of LEDGF/p75
demonstrated that it facilitates the interaction between IN
and nuclear chromatin, but is not directly involved in the
import process [28]. An interaction with importin 7, via a
sequence located at the C terminus of IN [26], has been
proposed. However conflicting results have been obtained
regarding the necessity of this receptor [29,30]. Further-
more anti-importin 7 antibodies did not block nuclear
import of IN [25]. More recently, the involvement of the
transportin-SR2 (TNPO3) in the nuclear import of IN has
been suggested [27]. This conclusion is based mainly on
experiments showing that the knockdown of transportin-
SR2 (TNPO3) resulted in the reduction of nuclear cONA
[27].

In the present work, we further confirm and emphasize
the role that importin o plays in promoting nuclear
import of the viral IN and thus in virus infection. Multiple
approaches and various experimental systems such as
transfected mammalian and yeast cells as well as virally
infected cells have been used to answer the question of
whether nuclear import of IN may be mediated by its own
NLS via interaction with importin a. Our results clearly
demonstrate that IN accumulates within wild-type yeast
cell nuclei, but fails to do so in importin a-defective yeast
mutants (srp1-31) [31]. A full-length IN, as well as a pep-
tide bearing the IN amino acid sequence 161-173 (NLS-
IN), interacted in vivo with mammalian importin o, as
demonstrated by a bimolecular fluorescence complemen-
tation (BiFC) assay [32] in yeast. The involvement of
amino acids 161-173 in mediating nuclear import of IN
was also demonstrated by microinjection and transfection
experiments in cultured mammalian cells. Furthermore,
the putative NLS-IN peptide inhibited nuclear accumula-
tion of IN as well as of cDNA in IN-transfected and virally
infected cells. This appears to be due to the ability of the
NLS-IN peptide to compete for the interaction between
the viral IN and the cellular importin a. This peptide has
also been found to significantly inhibit HIV-1 replication
in TZM-bl cells and inhibit the integration of viral cDNA
in infected cells. Thus, the present results support our [23]
and others' previous results [33] claiming that the IN pro-
tein contains a specific functional NLS sequence, which is
located between amino acids 161 and 173 and which con-
fers to this protein the karyophilic property required to
ensure productive viral infection.

Results

The NLS-IN peptide is functional in transfected and
microinjected mammalian cells as well as in yeast cells
The results in Fig. 1 clearly show that in stably transfected
aphidicolin treated cell-cycle arrested Hela/P4 cells, HIV-
1 IN accumulates within the nuclei, confirming previously
published results [22]. We next evaluated the ability of the
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Immunostaining experiments for intracellular locali-
zation of IN in transfected cells. HeLaP4/IN-expressing
cells were generated by stable transfection into HelLaP4 cells
using pcDNA3. | plasmid bearing the full wt IN gene. Cells
were fixed and immunostained using 1:100 rabbit a-IN and
second antibody, Cy3-conjugated anti-rabbit antibody as
described in Methods. Staining of IN (red) and DAPI (blue)
was observed under confocal microscope. Bar 10 um.

NLS-IN peptide [23] to block the nuclear import of IN.
However, the NLS-IN peptide was found to be cell-imper-
meable (not shown). Addition of the cell-permeable pen-
etrating peptide (Pen-peptide) [34] sequence to the NLS-
IN converted the latter to a cell-permeable peptide (not
shown) which was designated NLS-IN-Pen. No toxic effect
was exerted by this peptide during the time of the experi-
ment, as estimated by MTT assay (data not shown), thus
allowing for studies on its effect in cultured cells. As can
be seen (Fig. 1), following the incubation of the trans-
fected cells with the NLS-IN-Pen peptide, very little - if any
- IN was intranuclear; most of it was located within the
cytoplasm, clearly demonstrating the inhibition of
nuclear import. Incubation with the Pen-peptide alone
did not have any effect on nuclear import of IN (Fig. 1),
strongly indicating a specific effect of the NLS-IN. The
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same results were obtained when the transfected cells
were incubated with a cell-permeable SV40-NLS-Pen pep-
tide (Fig. 1), indicating an importin a-dependent nuclear
import pathway [35].

Due to the high ambiguity surrounding the nuclear
import pathway of IN and its NLS domain, we studied its
translocation into nuclei in a non-mammalian cell envi-
ronment as well, namely in yeast cells. W303 cells were
transformed with expression vectors encoding the full-
length and truncated IN fused to the green fluorescence
protein (GFP) (expressed proteins are schematized in Fig.
2A). As can be seen (Fig. 2B) in cells expressing GFP-IN,
the fluorescence is packed into small intranuclear dots, as
confirmed by DAPI staining of the cell's DNA, while both
the cytosol and cell vacuoles appear relatively dark. The
same was observed with the truncated GFP-180-IN, which
includes the NLS-IN (Fig. 2B). Next, the ability of the NLS-
IN sequence to promote nuclear import was studied. To
create a molecule of high molecular weight, thereby
avoiding passive nuclear import [2], the NLS-IN coding
sequence was fused to the coding region of a double-GFP
(GFP), (Fig. 2B). Similar to GFP-IN and GFP-180-IN, the
expressed GFP,-NLS-IN fusion protein also accumulated
within the yeast cell nuclei (Fig. 2B). In contrast, no
nuclear import was observed in yeast cells transformed
with an expression vector encoding the truncated GFP-
152-IN, which lacks the putative NLS-IN (Fig. 2B). IN-
mediated nuclear import can be inferred from the results
showing that in yeast cells transformed with vectors
expressing GFP molecules alone, the fluorescence distrib-
uted within the intracellular space (Fig. 2B). Yeast nuclei
in all described experiments were identified by DAPI
staining: GFP fluorescence appeared mostly in the nuclei
(Fig. 2B).

Following the results in yeast cells, the karyophilic prop-
erties of the recombinant full-length IN and those of the
truncated IN proteins were compared in microinjected
cultured COS-7 cells. Microinjection of FITC-BSA-IN into
COS-7 cells resulted in its translocation into the mamma-
lian cells' nuclei (Fig. 3A). The same results were obtained
following microinjection of FITC-BSA-180-IN or FITC-
BSA-NLS-IN (Fig. 3B and 3C, respectively). On the other
hand, very little, if any, nuclear import was observed when
FITC-BSA-152-IN conjugates (truncated IN lacking the
putative NLS-IN sequence) were microinjected into the
COS-7 cells (see empty nuclei, arrows in Fig. 3D). Moreo-
ver, no nuclear import was observed when only FITC-BSA
molecules were microinjected (Fig. 3E). It should be men-
tioned that the various recombinant IN proteins were
attached to BSA molecules in order to increase their solu-
bility as well as their molecular size, thus avoiding passive
diffusion via the NPC.
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Figure 2

Sub-cellular localization of the full-length and trun-
cated IN fused to GFP in transformed yeast cells. (A)
Schematic presentation of the various expressed GFP-IN
fusion proteins used in this experiment. (B) W303 yeast cells
were transformed, using lithium acetate method, with
expression vectors coding for the following: GFP-IN, GFP-
180-IN, GFP,-NLS-IN, GFP-152-IN and GFP. Left panel, GFP
fluorescence (green); middle panel, DAPI staining (blue);
merged fluorescence is shown in the right panel. Bottom, a
line profile through the overlay image showing that maximum
GFP fluorescence and DAPI staining are co-localized (in the
nucleus). Yeast cells were grown to exponential phase in
selective minimal medium. After induction with galactose,
cells were harvested and GFP fluorescence was observed
under confocal microscope; all other conditions were as
described in Methods. Bar 7 um.

Essentially similar results were obtained when the degree
of nuclear import was quantitatively estimated using an
ELISA-based system and biotinylated BSA (Bb) conjugates
(Fig. 3F). A relatively high degree of nuclear import was
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Figure 3

Nuclear import mediated by recombinant HIV-1 IN
protein: studies with microinjected and permeabi-
lized mammalian cells. Solutions containing the following
conjugates: (A) FITC-BSA-IN, (B) FITC-BSA-180-IN, (C)
FITC-BSA-NLS-IN, (D) FITC-BSA-152-IN and (E) FITC-
BSA*, were microinjected into the cytoplasm of cultured
COS-7 cells. All other experimental conditions were as
described in Methods. (F) Nuclear import was quantitatively
estimated by an ELISA-based assay system. Digitonin-perme-
abilized Colo-205 cells were incubated for | h with Bb-IN,
Bb-NLS-IN or Bb-152-IN (4 png) in a final volume of 40 pL of
transport buffer containing ATP regeneration system. The
nuclear import experiments were repeated at least three
times; data given in the figure represent results obtained
from a single experiment. Error bars represent standard
deviation which is about +/-5%. Bar 10 pum.

observed with both Bb-NLS-IN and Bb-IN, whereas
almost no import was observed with Bb-152-IN (Fig. 3E),
again emphasizing the role of NLS-IN in mediating
nuclear import of IN.
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NLS-IN mediates binding to importin in yeast cells and in
vitro

Our results showing inhibition of IN nuclear import by
the SV40-NLS peptide indicated the involvement of
importin a in the translocation process. To verify this, we
used the yeast srp1-31 temperature-sensitive mutant [31]
in which importin a is inactivated following growth at the
non-permissive temperature of 37 °C. GFP-IN appeared as
small fluorescent dots when expressed in the wild-type
W303 or in the srp1-31 mutant yeast cells grown at 25°C
(Fig. 4). These results clearly demonstrate accumulation
within the cells nuclei, a localization which was verified
by DAPI staining. Neither the cytosol nor the cell vacuoles
were strongly fluorescent. The same fluorescently stained
dots were observed after 4 h growth of the W303 cells at
37°C (Fig. 4), again indicating accumulation of GFP-IN

GFP DAPI

Merge

waos
25°C

37°C

25°C

Srp1-31

37°C

Figure 4

Nuclear import of HIV-1 IN is importin a-dependent.
W303 and in srp[-31 yeast cells were transformed with plas-
mid bearing the full length of the IN fused to GFP
(pYES,yEGFP-IN for the construction of the plasmid see
Methods). Following transformation using the lithium acetate
method, the fusion protein GFP-IN was expressed in the
yeast cells, as described in Methods. GFP fluorescence
(green) and DAPI (blue) were observed under confocal
microscope following growth of W303 yeast cells at 25°C or
at 37°C, or of srp/-31 yeast cells at 25°C or at the non-per-
missive temperature, 37°C. Bar 5 um.

http://www.retrovirology.com/content/6/1/112

within the nuclei under these conditions. On the other
hand, the srp1-31 mutant yeast cells lost their nuclear
import ability at the non-permissive temperature (37°C):
most of the GFP-IN was distributed within the yeast cell's
cytoplasm (Fig. 4). However, nuclear localization was
restored in these mutant cells following re-incubation at
the permissive temperature of 25°C (not shown). To con-
firm that at the non-permissive temperature only impor-
tin a-dependent nuclear import is blocked, we repeated
previous experiments in which Pik1 protein [36] had been
shown to be imported into nuclei of srp1-31 cells at 37°C
(not shown and see [36]), and in which it was established
that nuclear import of this protein is importin a-inde-
pendent [36]. Thus, the blockage is specific to the impor-
tin a pathway in srpl-31 cells at the non-permissive
temperature.

A specific IN-importin o interaction in vivo can be inferred
also from the results obtained using the BiFC assay system
in yeast cells ([32] and Fig. 5). As a control system, to con-
firm that restoration of fluorescence following the use of
labeled IN is due to specific protein-protein interactions,
the BiFC assay system was first employed to study the
dimerization of the IN molecules themselves [37].
Indeed, intracellular fluorescence was seen in yeast cells
which expressed both the GN-IN and GC-IN constructs
(Fig. 5). No such fluorescence appeared in yeast cells
expressing the combination of GN-IN and GC-linker (Fig.
5), or the combination of GN-linker and GC-IN (not
shown), strengthening the view that the appearance of flu-
orescent dots resulted from specific IN-IN interaction.
Next, we examined the interaction between the transcrip-
tional co-activator LEDGF/p75 and IN (Fig. 5). LEDGF/
p75 is the dominant cellular binding partner of HIV-1 IN
in human cells [38]. Yeast cells were thus transformed
with the combination of mammalian importin o (impa)
and vectors expressing the various IN polypeptides. Fluo-
rescence, indicating a direct interaction between GN-IN
and GC-Impa, appeared in the yeast cell nuclei (Fig. 5).
Nuclear fluorescence was also detected following transfor-
mation with either GN-180-IN or GN-NLS-IN and GC-
Impa (Fig. 5). On the other hand, no fluorescence was
detected in yeast cells transformed with the combination
of GN-152-IN and GC-Impa (Fig. 5). Moreover, almost
no complementation occurred in yeast cells transformed
with the combination of GN-IN and GC-Impp (importin
B) (Fig. 5), again indicating that the appearance of fluores-
cence resulted from specific interaction of the IN with
importin a. The same could be inferred from the negative
results obtained following transformation of yeast cells
with GN-Rev and GC-Impa.: these yeast cells remained
completely dark, with no fluorescent signal (Fig. 5). It has
been well established that nuclear import of HIV-1 Rev is
mediated by importin § and not a [39].

Page 5 of 16

(page number not for citation purposes)



Retrovirology 2009, 6:112

http://www.retrovirology.com/content/6/1/112

GN-IN and GC-IN GN-IN and GC-LEDGF GN-IN and GC-linker

GN{INsand GC-Impa

GN-152-IN and GC-Impa
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Figure 5

GN-NLS-IN and GC-Impa

IN interaction as observed by the BiFC assay system. EGY48 yeast cells were transformed using the lithium acetate
method with plasmids encoding the following combinations: GN-IN and GC-IN, GN-IN and GC-LEDGF, GN-IN and GC-
linker (control), GN-IN and GC-Impa (importin o), GN-180-IN and GC-Impa, GN-NLS-IN and GC-Impa, GN-152-IN and
GC-Impa, GN-IN and GC-Impf (importin ), GN-Rev (HIV-1) and GC-Impa. Restoration of GFP fluorescence was observed
by confocal microscopy. All other experimental conditions were as described in Methods. Bar 10 um.

Similar results were obtained when interactions were
tested by the ELISA-based system with various IN conju-
gates and the receptor importin a. Our quantitative esti-
mation revealed lower binding abilities by importin o
with the Bb-152-IN conjugates as compared to the bind-

ing ability of Bb-IN, of Bb-NLS-IN and Bb-SV40-NLS con-
jugates (Fig. 6). These results again indicate that amino
acids 161-173 are required for interaction with the impor-
tin o receptor.
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NLS-IN inhibits IN and cDNA nuclear import as well as
HIV-1 replication in cultured cells

In the light of the results showing the requirement of NLS-
IN for nuclear import of IN in mammalian as well as in
yeast cells, it became of relevance to study its effect in
virally infected cells.

Co-immunoprecipitation (co-IP) experiments using a
lysate obtained from HIV-1-infected cells revealed an
interaction between the virus IN protein and the cellular
importin o (Fig. 7A). Interestingly, when the virus-
infected cells were treated with either the NLS-IN-Pen or
the SV40-NLS-Pen peptides, no such interaction between
the two proteins could be detected (Fig. 7A). Specificity of
the peptide effect can be inferred from the results showing
that neither the SV40-mut-NLS-Pen (or a scrambled NLS-
IN [23], not shown) nor the Pen peptide itself promoted
dissociation of the IN-importin o complex (Fig. 7A).

Inhibition of nuclear import of the viral IN in HIV-1
infected cells as well is evident from the immunofluores-
cence microscopic study shown in Fig. 7B. From the
immunostaining results, it appears that in infected cells,
the IN is localized both within the cytosol and within the
nuclei (Fig. 7B (no peptide)). However, no intranuclear
fluorescence was observed in cells treated with the NLS-
IN-Pen or the SV40-NLS-Pen peptides, indicating the inhi-
bition of nuclear import (Fig. 7B). In contrast, some intra-
nuclear fluorescently labeled IN could be observed when
the infected cells were incubated in the presence of the
SV40-mut-NLS-Pen or the Pen peptide itself (Fig. 7B).
This is also evident from the fact that more cytosolic IN

—*-Bb-SV40
—Bb-IN
~#-Bb-NLS-IN
~*=Bb-152 -IN

0.D 490 nm

0 5 10 15 20
Conjugate amount [ug]

Figure 6

Binding of IN to importin o as estimated by an
ELISA-based system. Importin o-coated ELISA plates
were incubated with increasing amounts of the following
biotinylated conjugates: SV40 (black circles), IN (white dia-
mond), NLS-IN (black squares) and 152-IN (black triangles).
The degree of binding was estimated as described in Meth-
ods. Error bars represent standard deviation which is about
+/-5%.
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was present in such peptide-treated cells than in those
incubated in the absence of any peptide or with the non-
active peptides (Fig. 7B).

Similar to their effect on IN nuclear import, both NLS-IN-
Pen and SV40-NLS-Pen blocked nuclear import of the
viral cDNA (Fig. 8A), as is particularly evident from the
absence of 2LTR circles (Fig. 8B) in cells infected with
wild-type HIV-1.

Inhibition of IN nuclear import is expected to result in the
inhibition of virus replication, especially in cell-cycle
arrested cells. Using TZM-bl cells [40] treated with aphidi-
colin to obtain cell-cycle arrested cells as an experimental
system, a reduction in HIV-1 infection--as is reflected by
the inhibition of reporter gene expression--was observed
in the presence of NLS-IN-Pen or SV40-NLS-Pen (Fig. 9A).
As expected, the inhibition was less pronounced when
dividing cells were treated with the NLS-bearing peptides
(Fig. 9B). The specific effect of NLS-IN and the require-
ment for cell permeability can be inferred from the results
showing that no inhibition of HIV-1 infection was pro-
moted by the Pen peptide alone or by the impermeable
NLS-IN peptides. The results in Fig. 9C and 9D clearly
demonstrate that the NLS-IN-Pen peptide due to its inhib-
itory effect on IN nuclear import inhibited the process of
viral cDNA integration, reaching a higher degree of inhi-
bition in non-dividing (cell-cycle arrested) than in divid-
ing cells. Detailed kinetics studies (Fig. 9E) further
support the view that the step which is blocked by the two
NLS-Pen peptides (IN-NLS and SV40-NLS) is the nuclear
import process. Evidently, nuclear import of the IN-DNA
complex is required for the integration process to proceed.
In addition, the time-dependent inhibitory pattern of the
NLS-IN-Pen (Fig. 9E) is almost exactly half the way
between that observed following the addition of AZT and
that of the LEDGF 402-411 peptide, which has been dem-
onstrated to directly block HIV-1 IN and thus the integra-
tion process [41]. Inhibition was not observed following
the addition of the non-permeable NLS-IN peptide, a pep-
tide bearing a SV40-mut-NLS-Pen or the Pen peptide,
again indicating the specific effect of the NLS sequence

(Fig. 9).

Discussion

The question of how retroviruses and particularly HIV-1
cross the nuclear envelope in cell-cycle arrested cells is of
specific scientific interest. After long and extensive
research, it appears that no clear mechanism has yet
emerged and the possibility that several pathways simul-
taneously mediate nuclear import of the viral PIC cannot
be excluded. In the present work-following our previous
experiments using in vitro systems [23]-we focused on the
nuclear import of IN protein using yeast and mammalian
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Figure 7

NLS-IN-Pen inhibits IN nuclear import by the dissociation of IN-importin a interaction in HIV-infected cells.
(A) H9 lymphocytes were infected by wild-type HIV-1, and after infection half of the cells' lysate volume was subjected to SDS-
PAGE, then immunoblotted with either by anti-IN, anti-importin a (anti-Impa) antibody or an anti-actin antibody. The comple-
mentary HRP-conjugated antibodies were used as the second antibody. The remaining lysate or isolated fractions were co-IP
with either the anti-lImpa or anti-IN antibodies and were immunoblotted with these antibodies, and the complementary HRP-
conjugated antibodies as second antibodies. When peptides were used, cells were incubated with 150 uM of the indicated pep-
tide. All others experimental details were as described in Methods. (B) HelLaP4 cells were infected and immunostained as
described in Methods. IN (red); DAPI (blue); the area marked in the merge picture was magnified for a better view of IN local-

ization within the infected cell. Bar 10 pm.
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Figure 8

NLS-IN-Pen inhibits nuclear import of viral DNA. H9
lymphocytes were infected by wild-type HIV-1 at a MOl of [;
and (A) following infection, the nuclei fraction was isolated
from half of the cells, and the amount of viral DNA was esti-
mated using real time PCR method. (B) The amount of 2LTR
circles was estimated using real time PCR method. All other
experimental details are as described in Methods. Error bars
represent standard deviation which is about +/-5%

cells, as well as on the contribution of its putative NLS-IN
[23] on the HIV-1 replication process.

An interaction between HIV-1 IN and importin o was first
demonstrated by Gallay et al. [8]. Similarly an interaction
between the IN and members of the importin family and
that its nuclear transport appears to be dependent on the
importin o/f heterodimer have also demonstrated by
Hearps and Jans [25]. A functional NLS sequence was
identified between amino acids 161 and 173 of the IN
protein whose mutation disrupted IN translocation into
nuclei [12,42]. However, later studies indicated that this
sequence may be required for promoting viral DNA inte-
gration and not necessarily nuclear import [43]. However,
our previous work clearly demonstrated that a peptide
bearing IN 161-173 residues can mediate import of a con-
jugated protein into the nuclei of permeabilized cells,
confirming the view that it can function as a NLS [23].

In the present work, we have further studied the involve-
ment of IN amino acids 161-173 in promoting its nuclear
import. Nuclear accumulation was observed in yeast
transformed with an expression vector bearing only the
NLS-IN sequence, which in order to avoid diffusion into
the nuclei, was fused to two molecules of GFP, resulting in
a molecule of about 58 kDa. It is assumed that molecules
of up to about 30 to 40 kDa can passively diffuse via the
NPCs into cell nuclei [2]. Therefore, the nuclear import
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observed here with the various GFP-IN conjugates, the
molecular weights of which varied between 48 and 60
kDa, should be ascribed to a receptor-mediated, active
process. Nuclear import was practically not observed
when yeast cells were transformed with the 152-IN trun-
cated protein, which lacks the putative NLS sequence.
Results obtained in permeabilized or microinjected cells,
as well as in IN-transfected intact mammalian cells, fur-
ther supported these results. The failure of 152-IN to pen-
etrate the cell nuclei suggests that if an additional NLS
sequence, besides the one located between 161 and 173,
were present, it must be located closer to the C terminus
of the IN protein, a possibility that has been suggested
previously [25,44]. However, the fact that the truncated
180-IN protein was translocated into the cell nuclei indi-
cates that the identified NLS-IN is sufficient to provide the
IN with karyophilic properties. Our results demonstrating
inhibition of IN nuclear import in transfected cells by a
peptide carrying the NLS-IN sequence further emphasize
the view that this sequence gives IN its karyophilic prop-
erties.

SRP1 is the only known importin a protein in budding
yeast, and previous studies have demonstrated that it is
essential for proper maintenance of nucleocytoplasmic
trafficking [45]. Indeed, a temperature-sensitive mutant in
SRP1 has been isolated (srp1-31) and shown to be defec-
tive in nuclear import at the non-permissive temperature
[31]. Thus, yeast, including SRP1-mutated strains, has
been instrumental in studying various aspects of the
nuclear import machinery [36,46] and in characterizing
karyophilic properties. The availability of the tempera-
ture-sensitive srp1-31 mutant offers an advantage for stud-
ying nuclear transport of the IN protein in yeast cells. The
involvement of importin o in the IN nuclear import path-
way can be inferred from our experiments showing
nuclear import at the permissive, but not at the non-per-
missive temperature where importin a is inactivated [31].

A direct and specific interaction between IN or the NLS-IN
sequence and the mammalian importin a in vivo, within
the intracellular environment, was demonstrated using
the BiFC assay. The view that restoration of GFP fluores-
cence using the BiFC assay in yeast cells results from a spe-
cific protein-protein interaction has already been
established [47,48]. Indeed, our results clearly demon-
strated the well-known IN-IN and IN-LEDGF/p75 interac-
tions in yeast cells. Next we showed restoration of
fluorescence in yeast cells expressing the combination of
importin o and the full-length IN or the truncated 180-IN.
The combination of importin a and the truncated 152-IN
protein did not result in the appearance of fluorescence,
strongly indicate that the NLS-IN sequence is located
between amino acids 152 and 180, and is necessary to
mediate the interaction with the nuclear receptor. How-
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mental conditions were as in (A), but with dividing TZM-b| cells. The number of integration events per cell was determined in
cell-cycle arrested (non-dividing) cells (C) or dividing cells (D) following incubation with the designated peptides at different
concentrations. Cells were infected with HIV-1 at a MOI of | as described in Methods. (E) Inhibition of HIV-I replication by
NLS-IN-Pen as well as SV40-NLS-Pen is dependent on its time of addition. Sup-T| cells were infected with HIV-1 at a MOI of
2, and the indicated elements were added at different time points after infection (0, 2, 4,..., 24 h). Viral p24 production was
determined 48 h PI. Error bars represent standard deviation which is about +/-5%. All other experimental conditions are as

described in Methods.
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ever, our results do not exclude the possibility that addi-
tional NLS sequences are located between amino acid 180
and the C terminus, as suggested previously [25,44].
Attempts to study the interaction of fragments bearing
these regions failed due to non-specific restoration of flu-
orescence (not shown). A similar pattern also character-
ized the in vitro interaction of the various INs. Our co-IP
experiments confirmed the interaction between IN and
importin o in virally infected cells. Furthermore, the view
that such an interaction is mediated by the putative NLS-
IN was supported by the results showing disruption of this
interaction by the cell permeable NLS-IN or SV40-NLS
peptides.

The NLS-IN-Pen peptide almost totally blocked viral
infection of TZM-bl cells, caused high inhibition of the
cDNA integration process, and affected p24 production
when added up to 18 h post-infection (PI). Inhibitory
effects were much higher in cell-cycle arrested than in
dividing cells, clearly supporting the notion that the NLS-
IN-Pen bears a sequence which is involved in mediating
nuclear import of the IN. Inhibition of IN as well as of
viral cDNA nuclear import by the NLS-IN-Pen peptide was
demonstrated directly in the present work using immun-
ofluorescence staining of IN and quantitative estimation
of nuclear viral DNA.

The amino acid residues of NLS-IN described in the
present work have been implicated in additional viral-
related functions, such as specific binding of IN to the
LEDGF/p75 protein and to the viral LTR region
[38,49,50]. Due to its multifunctional activity, this region
may be useful as a target for the development of inhibi-
tors. As mentioned above our present as well as previous
results describing the involvement of importin o in medi-
ating nuclear import of IN do not exclude the possibility
of an additional nuclear import pathway for IN in which
TNPO3 is involved.

Methods

Mammalian, bacterial and yeast cells

Monolayer adherent HeLaP4 and Hela TZM-bl cells
(obtained through the NIH AIDS Research and Reference
Reagent Program) expressing the B-galactosidase gene
under regulation of the transactivation response element
[51] were grown in Dulbecco's modified Eagle's medium.
COS-7 and Colo-205 mammalian cells and the T-lym-
phocyte cell lines H9 and Sup-T1 were grown in RPMI
1640. All media were supplemented with 10% (v/v) fetal
calf serum, 0.3 g/l L-glutamine, 100 units/ml penicillin,
and 100 units/ml streptomycin (Biological Industries,
Beit Haemek, Israel). Cells were incubated at 37°C in a
5% CO, atmosphere and re-cultured every 4 days.
HeLaP4/IN-expressing cells were generated by stable
transfection into HeLaP4 cells [52] of pcDNA3.1 plasmid
bearing the full wt IN gene. Selection was carried out for
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four weeks with 400 pg/ml Hygromycin B. Escherichia coli
strain DH5a served as the host for general plasmid con-
struction and maintenance, and E. coli strain BL21 (DE3)
was used for protein overexpression. The yeast strains
were congenic to Saccharomyces cerevisiae W303. The
W303 (MAT a, leu2-3, 112 trpl-1 ura3-1 ade2-1 his3-
11,15) and srp1-31 (MAT a, leu2-3, 112 trp1-1 ura3-1 ade2-
1 his3-11,15, srp1-31) strains were kind gifts from G. Fink
(Whitehead Institute, Massachusetts Institute of Technol-
ogy, USA). The EGY48 strain (MAT a, his3-11,15, trpl-1,
ura3-52, leu2::LexAGop-LEU2) was a kind gift from Y.
Gafni (The Volcani Center, Israel). Yeast strains were
grown in yeast peptone dextrose-rich medium (2% pep-
tone, 2% glucose, 1% yeast extract, w/v). Transformation
was performed by the lithium acetate method [53,54] and
then the yeast cells were grown in standard yeast nitrogen
(YNB) minimal media, prepared by adding the appropri-
ate amino acids to 0.67% (w/v) YNB without amino acids
(Difco) and supplemented with 2% glucose or 2% galac-
tose (w/v) as carbon sources.

Viruses

Wild-type HIV-1 was generated by transfection of
HEK293T cells with pSVC21 plasmid containing the full-
length HIV-1 HXB2 viral DNA. Wild-type viruses were
harvested from HEK293T cells 48 and 72 h post-transfec-
tion. The viruses were stored at -75°C.

Virus stock titration

Quantitative titration of HIV-1 was carried out using the
MAGI assay, as described by Kimpton and Emerman [40].
Briefly, TZM-b1 cells were grown in 96-well plates at 1 x
104 cells per well. the cells were infected with 50 pl of seri-
ally diluted virus as described [40]. Two days post-infec-
tion (PI), cultured cells were fixed and p-galactosidase was
estimated exactly as described previously [40]. Blue cells
were counted under a light microscope at 200x magnifica-
tion.

Synthesis of peptides

Peptides were synthesized on Rink amide resin using a
model 433A Applied Biosystems peptide synthesizer with
FastMoc chemistry, exactly as described previously [55].
The Pen peptide had the following sequence: RQIKIW-
FQNRRMKWKK (Ant 43-58) [34].

Plasmid construction

All of the plasmids used in this study were constructed
using PCR cloning techniques with the high-fidelity
enzyme Platinum Pfx DNA polymerase (Invitrogen).
Clones were subjected to automated DNA sequencing.

1. Site-directed mutagenesis to create a stop codon at position 152
or 180

The plasmid pT7-7-IN [56] was used as the template for
IN mutagenesis. A QuikChange site-directed mutagenesis
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kit (Stratagene) was adapted to create an in-frame stop
codon at the desired position within the IN sequence,
according to the manufacturer's protocol. The mutagenic
primers were designed to contain a stop codon after resi-
dues 152/180 of the IN giving pT7-7-152-IN/180-IN,
respectively, as well as a new Dral site, to facilitate screen-
ing. The primers used were:

152-IN: 5'-CCCGCAGTCTCAGGGTGITGTITAAACTAT-
GAACAAAGAGCTC-3'

180-IN: 5'-CCGCGGITCAGATGGCTGTTTAAACCACAA
CAAGAAACG-3'

2. Construction of plasmids for GFP in yeast cells

The yeast expression cloning plasmid pYES,yEGFP with
the GFP codon optimized (a kind gift from T. Gilon, Alex-
ander Silberman Institute, Israel) was linearized with the
BsrGI restriction enzyme at the stop codon site of the
yEGFP sequence [57], and then dephosphorylated and
purified. The DNA products of IN, 152-IN, and 180-IN
were obtained by PCR amplification from the pT7-7-152-
IN/180-IN, respectively. The primers used were:

BsrGI, Sall-IN: 5'-CCGGCGTGTACAAAAGTCGACTAAT-
GCACCACCATCACCAT-3'
BsrGI:

IN-BamHI, 5'-GCCGGATGTACAGGATCCCCG-

GGCGCG-3'

These DNA products were then cloned into the BsrGI sites
of the linearized pYES,yEGEFP, resulting in the formation
of pYES,yEGFP-IN (GFP-IN), pYES,yEGFP-152-IN (GFP-
152-IN) and pYES,yEGFP-180-IN (GFP-180-IN). A GFP,-
NLS-IN (amino acids 161 to 173 of IN) expression vector
was prepared by PCR amplification from pT7-7-180-IN.
The primers used were: 5'BsrGl: 5'-CCGCCATGTACAAA-
GAGCTCAAAAAAATCATCGGTCAG-3' 3 BsrGIL: 5'-GCG-
GTATGTACACCAGCAGAGTAACCACCGATAC-3' The
resultant DNA products were cloned into pBS-yEGFP,
resulting in pBS-yEGFP-NLS-IN, which was digested by
Sall and BamHI, and the resultant product was subcloned
into pYES,yEGFP to give pYES,yEGFP ,)-NLS-IN (GEP,-
NLS-IN).

3. Construction of expression vectors for the BiFC assay

The yeast multicopy shuttle vectors pRS423 (with HIS3 as
the selective marker) and pRS426 (with URA3 as the selec-
tive marker), both with the ADH1 promoter, were used as
the cloning plasmids (a kind gift from D. Engelberg, Alex-
ander Silberman Institute, Israel). The DNA coding region
of the two GFP fragments [58], namely the N terminus
(GN) and C terminus (GC), were cloned into pRS423 and
PRS426 [59] to give pRS423-GN and pRS426-GC, respec-
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tively. A linker consisting of (GGS); was used to separate
the inserted genes and the GFP fragments. The coding
sequences of IN and HIV-1 Rev [60] were amplified by
PCR, digested by Xmal and Notl and inserted in-frame
into the corresponding sites of pRS423-GN at the C-termi-
nal fragments of the GN, resulting in pRS423-GN-IN (GN-
IN) and pRS423-GN-Rev (GN-Rev), respectively. The PCR
products of 152-IN and 180-IN were ligated into the Sall
and Sacll sites of pRS423-GN to give pRS423-GN-152/
180 (GN-152-IN/GN-180-IN). The plasmid pRS423-GN-
NLS-IN (GN-NLS-IN) was obtained by PCR amplification
of the NLS-IN sequence, digested by Sacl and EcoRI and
ligated at the corresponding sites of pRS423-GN. The PCR
products of IN, importin o (hSRP1-a), importin $ and
LEDGF were cloned into the corresponding Xmal and
Notl sites of pRS426-GC, to construct the following plas-
mids, respectively: pRS426-GC-IN (GC-IN), pRS426-GC-
mammalian importin o (GC-Impa), pRS426-GC-impor-
tin B (GC-ImpB) and pRS426-GC-LEDGF (GC-LEDGF,
PCR amplification from pET28-LEDGF a kind gift from
C.A. Casiano, Loma Linda University, USA). The
sequences of all primers used in this work can be obtained
directly from the authors.

Nuclear import of IN molecules in transformed yeast cells
Expression vectors bearing the GFP, GFP-IN, GFP-180-IN,
GFP-152-IN, GFP,-NLS-IN and GFP-Pikl coding regions
under the galactose promoter (a generous gift from Dr.
Thorner, UC Berkeley [36]) were introduced into the yeast
strain W303. Expression was induced with 2% galactose
for 4 h at 25°C. Following removal of the medium, the
appearance of intracellular fluorescence was examined by
confocal microscopy using an MRC 1024 confocal imag-
ing system (Bio-Rad). Similarly, W303 and the srp1-31
yeast mutant were transformed by pYES2yEGFP-IN (GFP-
IN). The strain srp1-31 contains a temperature-sensitive
mutation in the SRP1 protein (importin a) [31,61]. The
transformed yeast cells were grown for 24 h at 25°C to
reach the logarithmic phase, then divided into two cul-
tures: one remained at 25°C (permissive temperature)
and the other was transferred to 37°C (non-permissive
temperature at which more than 95% of the SRP1 is inac-
tivated [61]). After 4 h of growth, yeast cells were washed;
GFP-IN expression was induced by the addition of galac-
tose and the yeast cells were incubated for an additional 4
h at either 25 or 37°C. At the end of the growth period,
yeast cells were harvested and then observed by confocal
microscope. Yeast nuclei were identified by DNA staining
in fixed yeast cells (4% v/v paraformaldehyde and 3.4%

w/v sucrose) http://www.ciwemb.edu/labs/koshland/
Protocols/MICROSCOPY/gfpfix.html with 4',6-diamid-

ino-2-phenylindole (DAPI). To confirm expression of all
proteins, western blot with anti-GFP antibody was per-
formed. Each experiment was repeated at least three times.
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Analysis of protein-protein interaction by the BiFC assay
In this approach, a molecule of GFP is separated into two
portions: the N-terminal part (GN) ending at amino acid
residue 154 and the C-terminal part (GC) beginning with
the methionine residue preceding residue 155 of GFP
[62]. Neither of these two halves of GFP fluoresce when
expressed alone; however, the fluorescence is restored
when GN and GC are brought together as fusions with
interacting proteins [32]. The two halves of the GFP were
cloned separately with each of the indicated proteins as
described above and the different plasmids were trans-
formed into the yeast strain EGY48. After 48 h at 30°C,
the plates were transferred to 23°C for 3 days and then
yeast cells were visualized by confocal microscopy. Nuclei
were stained with DAPI as described above. Each experi-
ment was repeated at least three times.

Recombinant proteins

Expression and purification of the recombinant mamma-
lian importin o (hSRP1-a) and HIV-1 IN proteins were
performed essentially as described previously [23]. The
vectors, as well as the methods used to obtain purified
recombinant truncated IN bearing amino acids 1-180
(180-IN) or amino acids 1-152 (152-IN) were the same as
described for the full-length IN [23].

Nuclear import transport substrates

Proteins and peptides used in this work as transport sub-
strates were covalently attached to either fluorescein iso-
thiocyanate-labeled bovine serum albumin (FITC-BSA) or
biotinylated BSA (Bb) molecules (Sigma). Sulfosuccinim-
idyl-4-(N-maleimidomethyl) cyclohexane-1-carboxylate
(sulfo-SMCC) was used as the cross-linker to give FITC-
BSA-protein/peptide and Bb-protein/peptide conjugates,
as described previously [23].

Binding of transport substrates to importin

Binding to importin o was estimated using an ELISA-
based system essentially as described in [23,63]. Briefly,
Maxisorp plates (Nunc) were coated overnight at 4°C
with a solution containing recombinant importin o (5 pg)
in carbonate buffer (NaHCO;/Na,CO; buffer at pH 9.6).
All subsequent steps were as described previously [23].

Microinjection of fluorescently labeled transport
substrates

FITC-BSA-IN, FITC-BSA-180-IN, FITC-BSA-152-IN, FITC-
BSA-NLS-IN, as well as unlabeled FITC-BSA, were micro-
injected into the cytoplasm of cultured COS-7 cells as
described previously [64]. The Complnject AIS2 auto-
mated microinjection system (Cell Biology Trading, Ham-
burg, Germany) was used following the method
developed by Graessmann and Graessman [65]. Cultured
mammalian cells were incubated at 37°C for 2 h after
injection and observed by fluorescence microscopy.
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Nuclear import in permeabilized mammalian cells:
quantitative estimation

Import of Bb-IN proteins or of Bb-NLS-IN conjugates into
nuclei of digitonin-permeabilized Colo-205 cells was
determined quantitatively by an ELISA-based system,
exactly as described previously [23].

Localization studies of transfected IN in cultured cells by
immunostaining

HeLaP4/IN-expressing cells were grown on chamber
slides (Nunc). After reaching 70-80% confluence, cells
were arrested in the cell cycle by treatment with 5 pug/ml
of aphidicolin, and then incubated with 150 uM of the
indicated peptide for 6 h. Cells were fixed and immunos-
tained essentially as described previously [66] with several
modifications. Briefly, after fixation cells were blocked
with 5% (w/v) BSA (IgG free) (Jackson) in PBS for 60 min.
For detection of HIV-1 IN, cells were incubated with 1:100
rabbit a-IN (NIH AIDS Research & Reference Reagent Pro-
gram, cat. no. 758) at room temperature for 60 min each.
Cells were washed five times with PBS + 0.05% (v/v)
Tween 20. Then the cells were incubated with a second
antibody, Cy3-conjugated anti-rabbit antibody (Jackson)
(1:200) at room temperature for 60 min followed by five
washes with PBS + 0.05% Tween 20. For detection of
DNA, cells were stained with DAPI according to the man-
ufacturer's protocol. The slides were prepared with
mounting media (Bio-Rad) and immunofluorescent cells
were detected with a confocal microscope.

Localization studies of IN in HIV-I-infected cultured cells
by immunostaining

HeLaP4 cells were grown on chamber slides. Cells were
arrested in the cell cycle by treatment with 5 pug/ml aphidi-
colin, and then incubated with 150 uM of the indicated
peptide for 2 h. After incubation with the peptides, cells
were infected with wild-type HIV-1 at a multiplicity of
infection (MOI) of 25. Cells were fixed and stained as
described above with the following modifications: fixa-
tion was performed at 10 h PI, the first antibody was used
at a dilution of 1:50, the second antibody at a dilution of
1:100.

Study of in vivo protein-protein interactions using co-IP
Cells were infected with a MOI of 15 of the indicated
viruses, harvested at 10 h post-infection (PI), washed
three times with PBS and lysed by the addition of PBS con-
taining 1% (v/v) Triton X-100. Half of the lysate volume
was subjected to SDS-PAGE, then immunoblotted with
either antiserum raised against IN amino acids 276-288
(anti-IN) (NIH AIDS Research & Reference Reagent Pro-
gram cat. no. 758), anti-importin a (anti-Impa) antibody
(Santa Cruz), or an anti-actin (anti-Actin) antibody (Santa
Cruz) The complementary HRP-conjugated antibodies
(Jackson) were used as the second antibody.
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The remaining lysate or isolated fractions were incubated
for 1 h at 4°C with either the anti-Impa. or anti-IN anti-
bodies. Following 3 h incubation with protein G-agarose
beads (Santa Cruz) at 4°C, the samples were washed three
times with PBS containing 1% (v/v) Nonidet P-40. SDS
buffer was added to the samples and after boiling and run-
ning on an SDS polyacrylamide gel, the membranes were
immunoblotted with either anti-Impa or anti-IN antibod-
ies, and the complementary HRP-conjugated antibodies
(Jackson) as second antibodies.

When peptides were used, cells were incubated with 150
uM of the indicated peptide for 2 h prior to infection.

HIV-1 titration by multinuclear activation of a
galactosidase indicator (MAGI) assay

Quantitative titration of HIV-1 was carried out using the
MAGI assay, as described previously [40]. Briefly, TZM-b1
cells were grown in 96-well plates at 104 cells/well and
incubated for 12 h at 37°C. Peptides were then added and
after an additional 2 h of incubation, the cells were
infected with 50 pl of serially diluted HIV-1. To obtain
cell-cycle arrested cells, 5 ug/ml of aphidicolin was added
2 h before the experiment. Cultured cells were fixed 2 days
PI and B-galactosidase was estimated [47]. Blue cells were
counted under a light microscope at 200x magnification.

Quantitative analysis of integration
Real-time PCR experiments were performed to estimate
integration as described previously [67].

Time-of-addition assay

Sup-T1 cells were infected with wild-type HIV-1 at a MOI
of 2, and the test compounds were added at different time
points after infection (0, 2, 4,..., 24 h). Viral p24 produc-
tion was determined at 48 h PI [67]. Dextran sulfate was
tested at 20 uM, AZT at 2 uM, NLS-IN-Pen, NLS-IN and
Pen at 62.5 uM, LEDGF 402-411 at 12.5 uM [41].

Isolation of cytoplasm and nuclei from infected cells

The various fractions were obtained from virus-infected
cells essentially as described previously [68,69] with sev-
eral modifications. Briefly, cells were harvested and
washed twice in buffer A (20 mM Hepes pH 7.3, 150 mM
KCl, 5 mM MgCl,, 1 mM DTT and 0.1 mM PMSF). Cells
were then suspended in 200 pl of buffer A with 0.025%
(w/v) digitonin and incubated at room temperature for 10
min. Cells were centrifuged for 3 min at 1000 g at room
temperature. The supernatant was then centrifuged at
8000 g and separated into supernatant (cytoplasm) and
pellet (nuclei) and stored at -70°C.

Quantitation of total and nuclear viral DNA
Total viral DNA was estimated using SYBR green real-time
quantitative PCR at 10 h PI from the total or nuclear-iso-
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lated fractions of the infected cells. DNA was isolated by
phenol chloroform method. Briefly, DNA samples (1 pg
of DNA) were added to 95 pl containing 1x Hot-Rescue
Real Time PCR Kit-SG (Diatheva s.r.l, Fano, Italy), and
100 nM of each PBS (primer-binding site) primer: F5 (5'
primer, 5'-TAGCAGTGGCGCCCGA-3') and R5 (3'
primer, 5-TCTCTCTCCTTCTAGCCTCCGC-3'). All ampli-
fication reactions were carried out using an ABI Prism
7700 Sequence Detection System (Applied Biosystems):
One cycle at 95 °C for 10 min, followed by 45 cycles of 15
sat 95°C and 35 s at 68°C. In each PCR run, three repli-
cates were performed. All other details are exactly as
described in Casabianca et al. [70].

Quantitation of 2LTR circles
Quantification of 2LTR circles was estimated exactly as
described in Butler et al. [71].
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