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Background

Perinatal transmission occurs at a rate of approximately

Abstract

Background: HIV-| envelope gp4| is a transmembrane protein that promotes fusion of the virus
with the plasma membrane of the host cells required for virus entry. In addition, gp4l is an
important target for the immune response and development of antiviral and vaccine strategies,
especially when targeting the highly variable envelope gp120 has not met with resounding success.
Mutations in gp4l may affect HIV-1 entry, replication, pathogenesis, and transmission. We,
therefore, characterized the molecular properties of gp4l, including genetic diversity, functional
motifs, and evolutionary dynamics from five mother-infant pairs following perinatal transmission.

Results: The gp4| open reading frame (ORF) was maintained with a frequency of 84.17% in five
mother-infant pairs' sequences following perinatal transmission. There was a low degree of viral
heterogeneity and estimates of genetic diversity in gp4| sequences. Both mother and infant gp4|
sequences were under positive selection pressure, as determined by ratios of non-synonymous to
synonymous substitutions. Phylogenetic analysis of 157 mother-infant gp4| sequences revealed
distinct clusters for each mother-infant pair, suggesting that the epidemiologically linked mother-
infant pairs were evolutionarily closer to each other as compared with epidemiologically unlinked
sequences. The functional domains of gp4l, including fusion peptide, heptad repeats, glycosylation
sites and lentiviral lytic peptides were mostly conserved in gp4| sequences analyzed in this study.
The CTL recognition epitopes and motifs recognized by fusion inhibitors were also conserved in
the five mother-infant pairs.

Conclusion: The maintenance of an intact envelope gp4| ORF with conserved functional domains
and a low degree of genetic variability as well as positive selection pressure for adaptive evolution
following perinatal transmission is consistent with an indispensable role of envelope gp41 in HIV-I
replication and pathogenesis.

30% and accounts for approximately 90% of all HIV-1
infections in children [1]. The infection can occur antepar-
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tum (before childbirth; during pregnancy); intrapartum
(during childbirth), or postpartum (through breastfeed-
ing). Data from well-performed studies suggest strongly
that regimens, including those that substitute oral for
intravenous therapy during labor and delivery, can be
expected to reduce the risk of vertical transmission of up
to 50% [2,3]. However, transmission of antiretroviral
therapy (ART) resistant mutants from mother-to-infant
has been reported [4]. Genetic analysis of HIV-1
sequences, including gag p17 [5], env V3 [6], reverse tran-
scriptase [7], gag NC [8], tat [9], rev [10], vif[11], vpr [12],
vpu [13] and nef[14] from infected mother-infant pairs
following perinatal transmission suggest a high conserva-
tion of functional domains of these genes and a close rela-
tionship between epidemiologically linked mother-infant
pairs. In addition, analysis of HIV-1 env [15], vif and vpr
[16] and gag p17 [17] regions from infected mothers who
failed to transmit the virus to their infants in the absence
of antiretroviral therapy (non-transmitters) showed a lim-
ited heterogeneity of the sequences and low conservation
of functional domains. However, other regions of HIV-1
may also play a critical role in transmission and pathogen-
esis.

One such gene product, gp41, is present on the surface of
HIV-1 non-covalently bound to gp120, is responsible for
fusion of viral envelope to the plasma membrane of the
host cell and is essential for HIV-1 entry and replication.
The Env gp41 is comprised of an extraviral domain (ecto-
domain), a membrane spanning region and an unusually
long endodomain within the virus. The ectodomain of
gp41 consists of an amino-terminal fusion domain and
N- and C-terminal heptad repeats (HR-1 and HR-2,
respectively). The gp41 amino terminus is a highly hydro-
phobic region bearing the FLG motif called fusion peptide
(FP), which makes the initial contact with the target mem-
brane and can fuse biological membranes by itself. The
two heptad repeat regions self-assemble into a thermosta-
ble six-helix bundle, consisting of a trimeric coiled-coil
interior (HR-1) with three exterior helices (HR-2) packed
in the grooves of the trimer in an antiparallel manner,
which represents the fusion-active conformation of gp41
[18].

The endomain of gp41 encodes a Tyr-based motif that
interacts with the AP-2 clathrin adaptor protein [19] and
is required for optimal viral infectivity [20]. Two lentivirus
lytic peptides (LLPs) in this domain which are capable of
binding and disturbing lipid bilayers, interact with cal-
modulin and inhibits Ca2+-dependent T-cell activation
[21]. There are four sites in gp41 for N-linked glycosyla-
tion that promote efficient Env-mediated cell-to-cell
fusion [22] but are largely dispensable for viral replication
[23]. Although extensive mutational studies have been
performed to evaluate the functional domains of gp41 in
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viral replication, information on the molecular properties
of gp41 associated with perinatal transmission and patho-
genesis is lacking. Therefore, we have analyzed the gp41
sequences from five HIV-1 infected mother-infant pairs in
an effort to understand the molecular properties of gp41
that may be associated with perinatal transmission.

Here we show that the open reading frame of envelope
gp41 was highly conserved in the mother-infant pairs'
sequences. In addition, there was a low degree of hetero-
geneity and high conservation of functional domains
essential for gp41 activity. These findings may be helpful
in the understanding of molecular mechanisms of HIV-1
perinatal transmission and identifying new targets for
developing intervention strategies.

Results

Phylogenetic analysis of env gp4 1 sequences from mother-
infant pairs

We performed multiple independent polymerase chain
reaction (PCR) amplification from peripheral blood
mononuclear cells (PBMC) DNA of 5 mother-infant pairs
by limit end dilution method. Ten to twenty clones from
each patient were obtained and sequenced. Phylogenetic
analysis was first performed on the sequences by con-
structing a neighbor-joining tree of the 157 env gp41
sequences from the five mother-infant pairs and the refer-
ence strain NL4-3 (subtype-B) as shown in Fig. 1. The
neighbor-joining tree was based on the distances calcu-
lated between the nucleotide sequences from the five
mother-infant pairs and generated by incorporating a
best-fit model of evolution into PAUP* [24]. Each termi-
nal node represents one gp4 1 sequence. The validity of the
tree was assessed by bootstrapping the data sets for 1000
times. Phylogenetic reconstructions of the mothers' viral
sequences showed distinct clusters corresponding to their
respective mother-infant pair and from the NL4-3 control
strain, indicating absence of PCR product contamination.
The tree also established epidemiological linkage between
the transmitting mother and her infant. The mother and
infant sequences were generally separated in distinct sub-
clusters except for pair B and pair F, where the mother and
infant sequences were intermingled. The separation of
mother and infant sequences in most pairs indicate that
the recipient variant still retained identity to the one or
few transmitting variants found in the mothers. The dis-
tinct clustering of mother-infant pair sequences and con-
finement within  subtrees also indicate that
epidemiologically linked sequences were closer than epi-
demiologically unlinked sequences. The phylogenetic
analysis was strongly supported by high bootstrap values.
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Phylogenetic analysis of 157 envelope gp4| sequences from five mother-infant pairs following perinatal transmission. The neigh-
bor-joining tree is based on the distances calculated between the nucleotide sequences from the five mother-infant pairs. Each
terminal node represents one gp4| sequence. The numbers on the branch points indicate the percent occurrences of the
branches over 1000 bootstrap resamplings of the data set. The sequences from each mother formed distinct clusters and are
well discriminated and in confined subtrees, indicating that variants from the same mother are closer to each other than to
other mothers' sequences and that there was no PCR cross contamination. These data were strongly supported by the high
bootstrap values indicated on the branch points.
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Analysis of coding potential of env gp41 sequences from
mother-infant pairs

The multiple alignments of the deduced amino acid
sequences of HIV-1 env gp41 gene isolated from the
PBMC DNA from the five mother-infant pairs following
perinatal transmission is shown in Figs. 2 to 6. The align-
ment was done in reference to HIV-1 consensus B (consB)
sequence. In the alignment, the top sequence is reference
consensus B sequence and pairs B, D, E, F, and G represent
the five mother-infant pairs. M indicates mother
sequences and I indicate infant sequences. Dots represent
amino acids identical to consB sequence, dashes indicate
gaps, substitutions are shown by single letter codes for the
changed amino acid and asterisks represent stop codons.
Of the 157-gp41 clones analyzed, 133 contained intact
gp41 open reading frames, which correlate to 84.17% fre-
quency of intact open reading frames. The mothers and
infants sets showed frequencies of 82.93% and 86.67%
intact open reading frames, respectively. We found that 9
clones had one or more stop codons. The gp41 sequences
were derived from PBMC DNA that represents both repli-
cating and non-replicating forms of proviral DNA. It is
noteworthy that each mother-infant pair gp41 sequences
displayed pair-specific amino acid patterns that were not
seen in epidemiologically unlinked pairs. In addition,
there were several common signature motifs seen in all
mother-infant pairs' sequences, including Asp634—Glu,
His645—Tyr and Asn676—Asp.

Variability of env gp41 sequences of epidemiologically
linked mother-infant pairs

The degree of genetic variability of the env gp41 sequences
from five mother-infant pairs was determined on the basis
of pairwise comparison of the nucleotide and deduced
amino acid sequences. The minimum, median and maxi-
mum nucleotide and deduced amino acid distances are
shown in Table 2. The nucleotide distances ranged
between 0% and 5.2% with a median of 0.97% for moth-
ers, 0% to 4.8% with a median of 1.26% for infants. The
amino acid distances ranged from 0% to 5.96% with a
median of 1.16% for mothers and from 0% to 6.89% with
a median of 2.04% for infants. The nucleotide and amino
acid distances of gp41 sequences between epidemiologi-
cally unlinked individuals were also determined. Epide-
miologically unlinked individuals had a median
nucleotide distance of 9.01% with a maximum of 15.91%
and a median amino acid distance of 13.65% with a max-
imum distance of 40.2%, respectively. These distances are
significantly higher than epidemiologically linked
mother-infant pairs, which ranged from 0% to 6.07%
with a median of 1.85% (nucleotides) and 0% to 6.89%
with a median of 3.23% (amino acids). Some of the
hypermutated and severely defective clones were not
included in the distance calculation. These sequences are
frequently seen in pol and env regions of HIV-1 genome
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[25] and inclusion of these clones gives an incorrect pic-
ture of viral heterogeneity. We also investigated if the low
variability of gp41 sequences seen in our mother-infant
pair isolates was due to errors made by TaKaRa LA Tag
polymerase used in this study. We did not find any errors
when a known HIV-1 env gp41 sequence from NL4-3 was
used for PCR amplifications and DNA sequencing using
TaKaRa LA Taq polymerase.

Dynamics of env gp41 sequence evolution in mother-infant
pairs

We next examined the population genetic parameters
using the Watterson model and the program COALESCE
assuming a constant population size using a Kimura two-
parameter model of sequence evolution [26,27]. The
genealogical structure of a sample from a population con-
tains information about that population's history. The
mathematical theory relating a genealogy to the structure
of its underlying population is called coalescent theory.
The genetic diversity parameter, 6, estimated as nucleotide
substitutions per site per generation for each patient's
HIV-1 population is shown in Table 3. The levels of
genetic diversity among mother sets, as estimated by Wat-
terson and Coalesce methods, ranged from 0.01 to 0.02
and 0.01 to 0.03, respectively. Among infant sets, the lev-
els of genetic diversity ranged from 0.01 to 0.03 when esti-
mated by both Watterson and Coalesce methods. The
HIV-1 populations found in the mothers displayed overall
same genetic diversity (0.02) when compared to HIV-1
populations found in the infants (0.02).

Rates of accumulation of non-synonymous and
synonymous substitutions

Natural selection is assumed to operate mainly at the
amino acid sequence level because most of the important
biological functions in the organisms seem to be per-
formed mainly by proteins. The rate of synonymous sub-
stitutions (dS) may be more or less similar to mutation
rate, whereas the rate of nonsynonymous substitutions
(dN) may vary according to the type and strength of natu-
ral selection. If positive selection occurs, dN will be
expected to be faster than dS and the opposite can be
expected in case of negative selection. Although several
methods have been proposed to calculate the rate of dN
and dS, these models assume that all sites in the sequence
are under the same selection pressure. It is likely that since
different sites in a protein have varying functional and
structural roles, the selection pressure acting on them
might not be uniform. We have used a maximum likeli-
hood model modified by Nielson and Yang [28] to ana-
lyze evolutionary processes acting on env gp41l gene,
considering the codon instead of the nucleotide as unit of
evolution. The viral population in all the patient pairs
studied showed a dN/dS ratio of more than 1, which is
indicative of positive selection pressure (Table 4). Interest-
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Figure 2

Multiple sequence alignment of the deduced amino acids encoded by envelope gp4| gene of HIV-I from mother-infant pair B
following perinatal transmission. The sequences of pair B are aligned to consensus B (cons B) on top. Each line refers to a clone
identified by a clone number preceded by MB (for mother B sequences) and IB (for infant B sequences). Dots indicate amino
acid agreement with cons B, dashes represent gaps, and asterisks represent stop codons. The functional motifs of gp4| are
indicated above the alignment.
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Multiple sequence alignment of the deduced amino acids encoded by envelope gp4| gene of HIV-1 from mother-infant pair D
following perinatal transmission. Each line refers to a clone identified by a clone number preceded by MD (for mother D

sequences) and ID (for infant D sequences). The sequences of pair D are aligned to consensus B (cons B) on top. Dots indicate
amino acid agreement with cons B, dashes represent gaps, and asterisks represent stop codons. The functional motifs of gp41
are indicated above the alignment.
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Multiple sequence alignment of the deduced amino acids encoded by envelope gp4| gene of HIV-1 from mother-infant pair E
after perinatal transmission. Each line refers to a clone identified by a clone number preceded by ME (for mother E sequences)
and IE (for infant E sequences). The sequences of pair E are aligned to consensus B (cons B) on top. Dots indicate amino acid
agreement with cons B, dashes represent gaps, and asterisks represent stop codons. The functional motifs of gp4| are indi-
cated above the alignment.
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< T > =

Fusion peptide HR-2
512 522 532 542 552 562 572 582 592 602 612 628
consB RAVGIGAMFL GFLGAAGSTM GAASMTLTVQ ARQLLSGIVQ QONNLLRAIE AQQOHLLOLTV WGIKQLQARV LAVERYLKDQ OQLLGIWGCSG KLICTTAVPW NASWSNKSL DEIWNNM
MF1 ..
MF2
MF3
MF4
MF5
MF6
MF7
MF8
MF9
MF10
MF11
MF12
MF13
MF14
MF15
MF16
MF17
IF1
IF2
IF3
IF4
IF5
IF6
IF7
IF8
IF9
IF10

RTQHM. . ... e
RTQHM..... .. I

HR-2 > <— Transmembrane region —>

639 649 659 669 679 689 699 709 719 729 745
consB TWMEWDREIN NYTSLIHSLI EESQNQQEKN ASLWNWFNIT NWLWYIKLFI MIVGGLVGLR IVFAVLSIVN RVRQGYSPLS FQTRLPAPRG PDRPEGIEEE GGERDRD

MF1 E.... S...YT.. .I. .N. K. . T .H. D.
MF2 E. «eS...YT.. .N. .D.. K. T H. «.D..
MF3 E. «eS...YT.. .N. .D.. K. T SH. ..D.
MF4 E. «eS.. YT, .N. .D.. K. T .H. ..D.
MF5 E. «.S...YT.. .N. .D.. K. T H. «.D..
MF6 E. «eS...YT.. .N. .D.. K. T .H. ..D.
MF7 E. «eS.. YT, .N. .D.. ..T .H. ..D.
MF8 E.. «eS...YT.. .N. .D.. <. T H. «.D..
MF9 E..oo ..S...YT.. -N. .D.. .. T .H. ..D.
MF10 E.. «.S...YT.. .N. .D.. ..T .H. ..D.
MF11 E.. «eS.. YT, .N. .D.. K. T WH. ..D.
MF12 E. e +eS...YT.. -N. .D.. K. T .H. ..D.
MF13 E.. «.S...YT.. .N. .D.. K. T .H. ..D.
MF14 E.. «eS.. YT, . .N. .D.. K. T WH. ..D.
MF15 E. « +eS...YT.. .N. .D.. K. T .H. ..D.
MF16 E.. «.S...YT.. .N. .D.. K. T .H. «.D..
MF17 E.. «eS...YT.. .N. .D.. K. T WH. ..D.
IF1l EK. «eS.. YT, .N. .D.. K. .T .H. ..D..
IF2 E.. «eS...YT.. .N. .D.. .T H. «.D..
IF3 E.. «eS...YT.. .N. .D.. .T WH. ..D.
IF4 E.. < P.L YT .N. .D.. K. .T .H. ..D.
IF5 E.. <P YT, .N. .D.. K. T WH. ..D..
IF6 E.. «.P...YT.. .N. .D.. K. T .H. ..D.
IF7 E.. «.S...YT.. .N. .D.. K. T .H. ..D.
IF8 E.. «eS.. YT, .N. .D.. K. T WH. ..D..
IF9 E. « +«S...YT.. -N. .D.. K. T .H. ..D.
IF10 «.E.. «.S...YT.. Noooao D K.. T.. ..H ..D..
LLP-1
746 756 786 796 806 816 826 836 846 858

consB RSGRLVDGFL ALIWDDLRSL CLFSYHRLRD LLLIVTRIVE LLGRRGWEVL KYWWNLLQYW SQELKNSAVS LLNATAIAVA EGTDRVIEVL QRACRAILHI PRRIRQGLER ALL

MF1 TI....V... ..L. ees.T. LVLVL L v V.. F..
MF2 TI..V.V. .L. «.T. V.V ..V <.V F..
MF3 TI..V.V. .L. ..T. V.V ..V .V F..
MF4 TI. V. .L. <.T. V.V ..V <LV F..
MF5 TI..V.V. .L. «.Te V.V ..V <.V F..
MF6 TI..V.V. .L. <. T. V.V ..V ..V F..
MF7 TI..V.V. .L. «.T. LIV ..V F..
MF8 TI..V.V. .L. ..T. IV ..V F..
MF9 TI..V.V. .L. . T. .I.V ..V F..
MF10 TI..V.V. .L. «.T. LIV ..V . F..
MF11 TI..V.V. .L. ..T. V.V ..V V. F..
MF12 TIN.V.V. .L. <.T. V.V ..V ..V F..
MF13 TI..V.V. .L. «.Te V.V ..V <LV F..
MF14 TI..V.V. .L. ..T. VoV ..V T...V. F..
MF15 TIN.V.V. .L. <.T. V.V <LV LT LWV F..
MF16 TI..V.V. .L. ..TP FoILV ..V F..
MF17 TI..V.V. .L. .. TP F..I.V ..V F..
IF1l TI..V. .L* <.T. FoUILV ..V F..
IF2 TI..V. .L. «.Te JFolILV ..V F..
IF3 TI..V. .L. T F..I.V Y F..
IF4 TI..V. .L. «.T. FoUILV ..V F..
IF5 TI..V. .L. ..T. JFOUILV ..V F..
IF6 TI..V. .L. <. T. F..I.V ..V F..
IF7 TI..V. .L. «.TF FoUILV ..V F..
IF8 TI..V. .L. <. TF JFOUILV .V F..
IF9 .L. . T. V.V ..V F..
IF10 «.L. «.T. VLY.L v F..

Figure 5

Multiple sequence alignment of the deduced amino acids encoded by envelope gp4| gene of HIV-I from mother-infant pair F
after perinatal transmission. Each line refers to a clone identified by a clone number preceded by MF (for mother F sequences)
and IF (for infant F sequences). The sequences of pair F are aligned to consensus B (cons B) on top. Dots indicate amino acid
agreement with cons B, dashes represent gaps, and asterisks represent stop codons. The functional motifs of gp4| are indi-
cated above the alignment.
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< » >
Fusion peptide bl HR-1 | HR-2

512 522 532 542 552 562 572 582 592 602 612 628

consB  RAVGIGAMFL GFLGAAGSTM GAASMTLTVQ ARQLLSGIVQ QONNLLRAIE AQQHLLQLTV WGIKQLOARV LAVERYLKDQ OLLGIWGCSG KLICTTAVPW NASWSNKSL DEIWDNM
MGl . Vie teieninann .1 ..L. B . . . .. . ..
MG2
MG3
MG4
MGS
MG6
MG7
MG8
MG9
MG10
MG11
MG12
MG13
MG14
MG15
MG16
MG17
MG18
MG19
MG20
161
162
163
164
1G5
1G6
167
168
1G9
1610
1611
1612
1613
1614

O H H H H H H H H H H H H R H H H H H H H H H H H H H H

HR-2 —’ <_Transmembrane region —’

629 639 649 659 669 679 689 699 709 719 729 745

consB  TWMEWDREIN NYTSLIHSLI EESQONQQEKN EQELLELDKW ASLWNWENIT NWLWYIKLE IVFAVLSIVN RVRQGYSPLS FQTRLPAPRG
MG1 . WAL e .D.. K.. . ..5 .. o e IS : P (I
MG2
MG3
MG4
MGS
MG6
MG7
MG8
MG9
MG10
MG11
MG12
MG13
MG14
MG15
MG16
MG17
MG18
MG19
MG20
IG1
1G2
IG3
164
165
166
167
1G8
1G9
IG10
IG11
I1G12
1613
IG14

BhEaaAABABEaEEE

mmmmmEmmEmEmEmmmmEmED

B H H H H H H H H H H H R R H H H H H H H H H H H H H H H H

R I
AR ARAARARARAANAARAR AR A AR AR ARR AR AR

LLe-2—P 44— r
776 786 796 806 816 826 836

746 756 766 85!
LLNATAIAVA EGTDRVIEVL OQRACRATILHI PRRIRQGLER ALL

consB  RSGRLVDGFL CLFSYHRLRD LLLIVIRIVE LLGRRGWEVL
LV . ..EH....I.

R

167
168

1610
1611
1612
1613
1614 ..

R R R R R R R R R R

HKHKKONAOBONAKKNONONLNLNLNDL DL LK KK’
O H H H H H H H H H H H H H H H H H H H H H H H H H H H H H A

R R R

Figure 6

Multiple sequence alignment of the deduced amino acids encoded by envelope gp4| gene of HIV-I from mother-infant pair G
after perinatal transmission. Each line refers to a clone identified by a clone number preceded by MG (for mother G
sequences) and IG (for infant G sequences). The sequences of pair G are aligned to consensus B (cons B) on top. Dots indicate
amino acid agreement with cons B, dashes represent gaps, and asterisks represent stop codons. The functional motifs of gp41
are indicated above the alignment.
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ingly, the viral population in infants consistently showed
more selection pressure than their respective mothers
indicating that adaptive evolution in these patients was
probably influenced not only by the immune system but
also the fact that most of these infants were under antiret-
roviral therapy (Table 1).

Analysis of functional domains of env gp41 in mother-
infant isolates

The domain structure of gp41 can be divided into an ecto-
domain, a membrane spanning region and an endodo-
main. The N-terminus of the ectodomain is a highly
hydrophobic region called the fusion peptide (FP), which
makes the initial contact of the glycoprotein with the tar-
get membrane and can fuse the virus to the plasma mem-
brane. Mutations including Val513—Glu, Leu520—Arg,
Ala526—Glu, Leu538—Arg, GIn541—Leu have been
shown to completely abolish syncytium-inducing ability
and production of infectious virus [29]. Examination of
the five mother-infant pairs' gp41 sequences in our study
showed a change of Val513—GIn (some clones of pair B)
(Fig. 2), Val513—Ser (some clones of infant D) (Fig. 3),
and Val 513—Met (some clones of pair E) (fig. 4). All the
other critical residues in this important motif were highly
conserved. While non-conservative mutations in the leu-

http://www.retrovirology.com/content/3/1/42

cine/isoleucine backbone Ile574—Asp of HR1 abrogate
viral infectivity; expression, oligomerization, and localiza-
tion of the fusion protein complexes remains unaffected
[30-32]. None of the sequences analyzed harbored
Ile574—Asp mutation. Mutational studies have revealed
other changes that can affect fusion activity including
Val571—Gly, and GIn576—Glu [33]. All the clones ana-
lyzed here showed conservation of the above-described
residues, although some changes were observed in the
flanking regions (Figs. 2 to 6). The changes in HR1 motif
include Asn554—Ser and Arg558—Lys in (pair D),
GIn544—Leu (pair B, infant E, pairs F and G),
His565—Arg and Lys589—Arg (pair B), Lys589—Gln
(pair G). The changes in HR2 motif include Asn625—Asp
(all pairs except F), Asp633—Glu (all pairs),
Asn637—Gly/Ser (pair B, D and G).

It has been shown that N-linked glycosylation can serve to
modulate the exposure of HIV-1 proteins to immune sur-
veillance in patients [34,35]. There are three to four N-gly-
can attachment sites (residues 612-642) in the C-terminal
half of the ectodomain. We examined our sequences for
substitutions in these glycosylation sites and found that
there was a relatively high degree of conservation, except
for the following changes: mother D (Asn612—Ser), pair

Table I: Patient demographic, clinical, and laboratory parameters of HIV-1 infected mother-infant pairs.

Patient Age Sex CDA4+ cells/mm3 Length of Antiviral drug Clinical evaluation©
infectionb
Mothers
B 28 yr 509 Il mo None Asymptomatic
D 3lyr 480 2 yr 6 mo None Asymptomatic
E 26 yr 395 2yr ZDVd Symptomatic AIDS
F 23 yr 692 2 yr 10 mo None Asymptomatic
G 23 yr 480 10 mo None Asymptomatic
Infants
B 4.75 mo M 1942 4.75 mo None Asymptomatic, P-
D 28 mo M 46 28 mo ddCe Symptomatic
AIDS, P-2A, B, F,
failed ZDV therapy
E 34 mo M 588 34 mo ZDVd Symptomatic
AIDS, P-2A
F I wk M 2953 I wk ZDVd Asymptomatic, P-
G 24 mo F 4379 24 mo ZDVd Asymptomatic, P-

b Length of infection: The closest time of infection that we could document was the first positive HIV-1 serology date or the first visit of the patient
to the AIDS treatment center where all the HIV-1 positive patients were referred to as soon as an HIV-| test was positive. As a result, these dates

may not reflect the exact dates of infection.

Mother and infant samples for each pair were collected at the same time.

¢ Evaluation for infants is based on CDC criteria [65]
dZDV: Zidovudine
eddC: Zalcitabine
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E (Ala613—Thr), pair G (Lys618—Arg and Ser619—Thr),
pair F (Thr640—Ser and Thr640—Pro). A recent report
noted the presence of Alab13—Thr change in env genes
derived from brains of AIDS patients [36].

Next the membrane-spanning domain (MSD) of gp41
that anchors Env on the lipid bilayer was examined. Sev-
eral studies have indicated that the MSD is involved in
membrane fusion as the glycosylphosphatidylinositol-
anchored Env of HIV-1, which lacks the MSD and endo-
domain could not induce syncytia [37,38]. A recent report
[39] found that the well-conserved glycine residues that
form the GXXXG motif (where G, glycine; X, any amino
acid) found at the helix-helix interface of MSD a-helix,
tolerated mutations without affecting fusion function.
The mother-infant sequences in this study showed a high
conservation of the GXXXG motif except in all clones of
mother G where there was a Gly693—Ser change (Fig. 6).

Further, important motifs in the endodomain of gp41
were analyzed. A dileucine (amino acids 856-857) motif
critical for association with AP-1 clathrin adaptor and
transport of Env precursors through the trans-Golgi net-
work to the cell surface is found at the C-terminal end of
gp41 [40]. This dileucine motif is preceded by an acidic
amino acid (Glu 853) which is thought to expose the
motif allowing it to be recognized by adapters [41]. The
sequences from five HIV-1 infected mother-infant pairs
show a high degree of conservation in both the dileucine
motif and the preceding acidic amino acid (Glu 853) indi-
cating that Env trafficking in these clones were not
affected. Piller et al. [42] performed a comprehensive
mutational analysis of the conserved domains in the
endodomain and found that there was a pronounced
reduction of glycoprotein incorporation upon deletion of
the conserved region of P(846)RRIR(850) or replacement
of the central RR with KK. While our mother-infant pairs'
sequences did not have any of these changes, several sub-
stitutions including Arg846—Val (pair D), and
Arg846—Thr (pair E and G) were seen. The o-helical
motifs of LLP-1 and LLP-2 have been implicated in virus-
mediated cytopathicity by binding to calmodulin, a criti-
cal mediator of cytoplasmic signal transduction cascades
in T-cells [43]. Upon analyzing the five mother-infant
pairs' sequences (Figs. 2 to 6), changes were observed in
these motifs including, Ser768—Gly (pair D),
Leu775—Phe and Thr780—Ala (pair E), Val783—Leu
and Ala837—Thr (pair F), Ala836—Arg (all pairs),
Ala837—lIle in pairs B and D.

Analysis of motifs targeted by HIV-1 fusion inhibitors in
mother-infant gp41 sequences

Although none of our patients were on fusion inhibitor
(T-20), we analyzed the target motifs for T-20 as well as
naturally occurring T20 resistant mutants. T20 (enfuvir-

http://www.retrovirology.com/content/3/1/42

tide), a 36-mer synthetic peptide fusion inhibitor, corre-
sponding to the overlapping regions within HR2 [44]
exerts its antiviral activity by interacting with a target
sequence in HR1 that inhibits association with native
HR2. The T20 sensitive region lies between positions 548-
550 (amino acids Gly, Ile, Val) and selection of resistant
viruses have been found during serial in vitro passages in
the presence of T20 [45]. Examination of all our mother-
infant clones showed a sensitive motif to T20, except two
clones in infant D (ID) that have a Val550—Ala (ID 10,
11) orlle549—Thr (ID15) (Fig. 2). Poveda et al [46], stud-
ied the evolution of genotypic and phenotypic resistance
to T20 in HIV-infected patients and found that there was
a clear relationship between selection of single changes at
the GIVQQQNNLL motif and loss of susceptibility to T20.
Some clones in infant E (IE12-16) had an Asn554—Ser
and two clones in infant F (IF9 and 10) an Asn554—Gln
change due to a frame shift, indicating that these patients
might be resistant to T20 treatment. A Leu556—Met vari-
ation present in the HR-1 domain has been associated
with the development of clinical resistance but is gener-
ally found in combination with additional changes [47].
Of all the 157 clones we analyzed, only two clones in the
present study (IF9 and IF10) had a Leu556—Met change.
A recent study found that NeoR6, an aminoglycoside-
arginine conjugate, inhibits HIV-1 replication by interfer-
ing with the fusion step and that the resistant isolates had
a Ser669—Arg and a Phe671—-Tyr change in the HR2
region [48]. Most of our gp41 sequences showed no
change, except for pairs D and F sequences that had a
Ser669—Asn substitution.

Human monoclonal anti-gp41 antibodies, 2F5 and 4E10,
are known to prevent membrane fusion and neutralizes a
broad range of HIV-1 primary isolates [49,50]. The 2F5
epitope on gp41 includes the sequence ELDKWA, with the
core residues, DKW, being critical for antibody binding
while 4E10 targets the adjacent WENI sequence. A high
degree of conservation of these epitopes was found in the
five mother-infant pairs' sequences, except pair G that had
a Glu663—Ala change, suggesting susceptibility of these
clones to neutralization by 2F5 and 4E10.

Analysis of immunologically relevant mutations in the CTL
epitopes of gp41 sequences

Evasion of the host cytotoxic T-lymphocytes (CTL)
response through mutation of key epitopes is a major
challenge for both natural and vaccine-induced immune
control of HIV-1. Immunodominant responses generally
are effective but HIV-1 generates variants that expose CTL
to a large pool of mutants impairing immune responsive-
ness [51]. Escape from CTL control is indicated by a muta-
tion that occurs in the T-cell epitope and becomes fixed in
the virus population, resulting in an in vivo competitive
advantage for the virus with reduction of the T-cell
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response to the wild-type epitope. Escape mutants can
arise early or late in HIV-1 infection [51,52], and can also
be transmitted [53]. Geels et al [54] have described two
epitope clusters (residues 770-780 and 835-843) in HIV-
1 infected patients over a period of 80 months that
showed non-fixation of mutations. In the epitope encom-
passing residues 770-780, variant residues (Ile777—Val
and Val778—lle) were seen late (49 months) in infection,
whereas in the other epitope (835-843), Ala836—Thr
and Tyr838—Phe occurred early in infection. In the clones
that were analyzed from five HIV-1 infected mother-infant
pairs, 11e777 and Val778 were conserved across the board.
However, several changes were observed, including a
Cys838—Leu (pair B), a Cys838—Gly/Trp (pair D), a
Cys838—Phe (pair E), or Cys838—Gly (pair F). These
changes in the mother and infant clones suggest that these
escape variants evolved to escape immune responses and
influence transmission. In another study, infected moth-
ers were found to transmit HIV-1 to their infants despite a
strong CTL response to epitope 557-565 (RAIEAQQHL),
suggesting generation of escape variants in the mothers
[55]. Mother-infant sequences in the current investigation
showed a high conservation of this epitope with few sub-
stitutions in pair B (His564—Arg) and in pair D
(Arg557—Lys).

Discussion

We provide evidence that a high frequency of intact enve-
lope gp41 ORF and functional domains required for gp41
activity were maintained in five mother-infant pairs fol-
lowing perinatal transmission. In addition, there was a
low degree of viral heterogeneity and estimates of genetic
diversity and a positive selection pressure on gp41
sequences from mother-infant pairs. Although gp41 plays
an important role in viral replication and pathogenesis,
no systematic study has been performed that analyzed the
functional domains, evolutionary dynamics and the effect
of adaptive evolution of gp41 involved in perinatal trans-
mission. As such, our analysis of gp41 sequences on five
mother-infant pairs support the notion that gp41 plays an
important role in HIV-1 infection, replication and patho-
genesis in infected mothers and their perinatally infected
infants.

In the analysis of gp41 sequences from five mother-infant
pairs, we found the maintenance of intact gp41 open
reading frames with a high frequency in mothers, of
82.93%, and in infants, of 86.67%, following perinatal
transmission. This is comparable with other regions of
HIV-1 genome from same mother-infant pairs, including
gag pl17MA (86.2%), reverse transcriptase (87.2%), vif
(89.8%), vpr (92.1%), vpu (90.3%), nef (86.7%), tat
(90.9%) and rev (96.6%) [5,7,9-14]. The maintenance of
gp41 ORF confirms the importance of this protein in the
viral life cycle and its role in perinatal transmission of
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HIV-1. The phylogenetic analysis showed distinct clusters
corresponding to their respective mother-infant pair and
from the NL4-3 control strain, indicating absence of PCR
product contamination as shown in Figure 1. This analysis
was supported by high bootstrap values. The separation of
mother and infant sequences in most pairs indicate that
the recipient variant still retained identity to the one or
few transmitting variants found in the mothers. Similar
conclusions were reached upon analysis of env gp120 V3
region [6]. Moreover, this distinct clustering of mother-
infant pair sequences and confinement within subtrees
also indicate that epidemiologically linked sequences
were closer than epidemiologically unlinked sequences.

Analysis of genetic variability, measured as nucleotide and
amino acid distances, showed a low degree of variability
in most mother-infant pairs (Table 2) and are comparable
to sequence distances for other conserved genes such as
gag |5], reverse transcriptase [7], vif[11], and vpr [12], but
lower than env gp120 V3 [6], vpu [13] and rev [10] from
the same mother-infant pairs. Similar results were
obtained for the estimates of genetic diversity. Consistent
with the critical role of gp41 in HIV-1 pathogenesis [56],
it was found that there was a positive selection pressure
(dN/dS) on the gp41 sequences to change (Table 4) but
maintain the functional motifs (Figs. 2, 3, 4, 5, 6). These
values are comparable to other HIV-1 genes from infected
patients, including env gp120 V3, gag, reverse tran-
scriptase, tat, vif and vpr [5-7,9,11,12]. Further analysis of
the dN/dS values show that the viral population in infants
experienced more selective pressure than their respective
mothers, suggesting that adaptive evolution in these
infants was probably influenced both by the host immune
response and by antiretroviral therapy. However, a low
degree of genetic diversity and the increased selection
pressure could be indicative of the fact that the virus was
rapidly evolving to a more stable variant.

The functional domains and motifs required for gp41
activity in the deduced amino acid sequences, including
hydrophobic fusion peptide (FP), HR1, HR2, precursor
(gp160) cleavage, and cell signaling were mostly con-
served in our mother-infant pairs sequences. Mutations in
the FLG motif of FP region that completely abolished syn-
cytium-inducing ability and infectious virus production
[29] were found to be highly conserved in most of our
mother-infant pairs' sequences. In addition, none of our
gp41 sequences harbored mutations in the leucine/isoleu-
cine backbone of HR region which have been shown to
affect viral infectivity [18]. Furthermore, no other muta-
tions or substitutions were found in our mother-infant
gp41 sequences that may affect (i) hydrophobic cavities in
the HR1 region, (ii) membrane fusion activity by destabi-
lizing the trimer of hairpin structures, (iii) packing inter-
actions between the amino and carboxy terminal helices
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Table 2: Distances in the envelope gp41 sequences within mother sets, within infant sets and between mother-infant pair sets

Patient Within mothers Within infants Between mother-infants

Nucleotides

Min Median Max Min Median Max Min Median Max

B 0 1.86 52 0 0.38 2.13 0 1.76 52

D 0 1.72 3.99 0 2.05 3.65 0 1.82 3.99

E 0 1.36 2.65 0 2.55 4.8 0 2.65 6.07

F 0 1.17 2.05 0 1.31 2.35 0 1.66 2.35

G 0 0.56 1.23 0 0.97 1.46 0 1.44 2.78

Total 0 0.97 52 0 1.26 4.8 0 1.85 6.07
Ammo acids

Min Median Max Min Median Max Min Median Max

B 0 2.34 5.04 0 0.58 4.44 0 2.04 5.04

D 0 0.87 5.96 0 3.53 6.89 0 3.23 6.89

E 0 2.04 4.44 0 2.04 5.66 0 2.64 5.66

F 0 2.34 4.13 0 2.03 3.53 0 2.34 4.13

G 0 0.29 1.75 0 1.75 2.94 0 2.19 4.44

Total 0 .16 5.96 0 2.04 6.89 0 3.23 6.89

Distances are expressed as percent nucleotides (for nucleotide sequences) or percent amino acids (for amino acid sequences). Totals were

calculated for all pairs taken together.

of gp41, and (iv) the structural integrity of the trimer of
hairpins [57].

HIV-1 gp41 typically contains three or four sites for N-gly-
can (N-X-S/T) attachment located at the C-terminal of the
ectodomain, which may serve to modulate the exposure
of HIV-1 proteins to immune surveillance in patients
[34,35]. We found that there was a relatively a high degree
of conservation of the four-glycosylation sites in the
sequences analyzed with some changes in few sequences.
Interestingly, a substitution of Ala613—Thr was seen in
our gp41 sequences (pair E) that has been previously
shown to be derived from brain of patients with AIDS

[36]. This suggests that the variants in patient E have the
potential to be neurotropic and may cause CNS disorders,
which are commonly seen in infected infants [58]. In the
other three-glycosylation sites some changes were seen
that do not affect the consensus motif. The membrane
spanning domain (MSD) that is critical for functional
integrity [39] was highly conserved in our gp41
sequences, except in all sequences of mother G
(Gly690—Ser). As serine residues also have a stabilizing
effect on the helix structure, it is possible that this substi-
tution observed in mother G sequences might not com-
promise the functional activity. The endodomain encodes
two lentivirus lytic peptides (LLPs) which inhibit Ca2+-

Table 3: Estimates of genetic diversity of envelope gp41 sequences within mother sets and within infant sets

Patient Mother sets Infant sets
N 6,, . N 6,, 6,
B 14 0.02 0.03 14 0.0l 0.0l
D 14 0.02 0.03 20 0.03 0.03
E 13 0.02 0.03 13 0.0l 0.0l
F 17 0.0l 0.0l 8 0.0l 0.0l
G 20 0.0l 0.02 15 0.0l 0.02
Total 78 0.02 0.02 70 0.01 0.02

N = Number of gp41 clones sequenced

0,, = genetic diversity estimated by the method of Watterson
0. = genetic diversity estimated by Coalesce

Totals were calculated as averages of all values
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Table 4: dN/dS ratios in the envelope gp4| sequences within mother sets and within infant sets.

Mother sets Infant sets

Pair N Pl P2 P3 dN/dS Pair N Pl P2 P3 dN/dS
B 14 85.24 0.0 14.76 6.04 B 14 69.66 21.07 9.27 13.02

D 14 78.06 20.28 1.65 7.88 D 20 55.33 40.10 4.57 21.97

E 13 55.72 0 4427 6.77 E 13 15.73 70.44 13.83 5.36

F 17 0 96.2 37 1.93 F 8 65.53 0.0 34.47 3.79

G 20 95.71 3.29 1.00 3.85 G 15 0 99.58 0.41 16.21
Total 78 62.95 23.95 13.08 5.29 Total 70 41.25 53.13 12.51 12.07

N = Number of gp41| clones sequenced; Pl = proportion of conserved codons as a percent; P2 = proportion of neutral codons as a percent; P3 =
proportion of positively selected codons as a percent; dN/dS = dN/dS ratio at P3 sites. Totals were calculated as the average of all values.

dependent T-cell activation [21] and a leucine zipper
motif between LLP-1 and LLP-2 that plays an important
role in HIV-1 replication and pathogenesis [59]. The gp41
sequences analyzed in our study showed a high degree of
conservation of essential residues in this leucine zipper
motif.

With respect to T20 target motifs, most of the clones ana-
lyzed in this study showed a high degree of conservation,
which was expected because these patients were never
treated with T20 inhibitors. In pair D sequences, four
sequences in infant E (Asn554—Ser), and two sequences
in infant F (Asn554—GIn) substitutions were found, sug-
gesting that mutants naturally occurred in these patients
and might be resistant to T20. A wide range of susceptibil-
ity to T-20 has been described in fusion peptide naive
virus isolates from patients [60]. Recent studies [61,62]
have concluded that the susceptibility to T20 was influ-
enced by coreceptor usage but not by polymorphisms in
the gp41 N helix. These studies demonstrated that viruses
containing a CCR5-utilizing V3 loop were four- to eight-
fold less susceptible to T20 than the CXCR4-utilizing par-
ent strains. We and others have shown that CCR5 utilizing
macrophage-tropic (R5) viruses are transmitted from
mother to infant [63,64], suggesting that T20 might help
reduce viral load and may prevent perinatal transmission.

Evasion of the CTL and neutralizing antibody responses
through mutation of key epitopes is a major challenge for
both natural and vaccine-induced immune control of
HIV-1 [55]. CTL escape mutants can arise early or late in
HIV-1 infection [51,52], and can also be transmitted [53].
Although CTL are HLA restricted, we analyzed several CTL
epitopes recognized by different HLA types in our gp41
sequences. Several substitutions were seen in our gp41
sequences and some of these mutations in the terminal
residues could affect peptide processing. Several substitu-
tions were seen in the flanking regions of both functional
domains and CTL epitopes. While the relevance of these
changes is not clear at this time, biological studies using

the gp41 clones obtained in this study could give a better
picture of their effects. It would also be interesting to char-
acterize the gp41 region in HIV-1 infected mothers who
failed to transmit the virus to their infants in the absence
of therapy and perform a comparative study.

Although perinatal transmission of HIV-1 is a multifacto-
rial processes, the results presented in this study not only
underscores the importance of gp41 in HIV-1 perinatal
transmission but also provides an understanding of the
functional and immunological motifs that can be used to
develop therapeutic interventions in blocking virus entry.

Conclusion

We have demonstrated that an intact and functional enve-
lope gp41 gene was maintained in infected mother-infant
pairs following perinatal transmission. In addition, there
was a low degree of viral heterogeneity and estimates of
genetic diversity in epidemiologically linked mother-
infant pairs as compared to epidemiologically unlinked
individuals. Several amino acid motifs were found as a
signature sequences in each mother-infant pair. We also
found that the functional motifs of envelope gp41 respon-
sible for fusion, gp160 processing and cytopathogenicity
were highly conserved in mother-infant sequences. These
findings support the notion that envelope gp41 is essen-
tial for HIV-1 infection and pathogenesis in mothers and
their perinatally infected infants.

Methods

Patient population and sample collection

Blood samples were collected from five HIV-1 infected
mothers and their respective vertically infected infants
between 1990 and 1995. The children of these mothers
were evaluated and found to be infected by repeated test-
ing following guidelines published by the Centers for Dis-
ease Control and Prevention [65]. The demographic,
clinical and laboratory findings of the HIV-1 infected
study subjects are summarized in Table 1. The Human
Subjects Committee of the University of Arizona and the
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Institutional Review Board of the Children's Hospital
medical Center, Cincinnati, Ohio, USA, approved this
study, and written consent was obtained from the partici-
pants of the study (mothers for their infants).

PCR amplification, cloning, and nucleotide sequencing

DNA was isolated from uncultured PBMC of HIV-1
infected individuals according to a modified procedure
described before [6]. The HIV-1 env gp41 gene from
infected patients' PBMC DNA was amplified using the fol-
lowing primers: Gp41-6 (+) (AGTAAAAATTGAACCATT
AGGAGTAGCA, 7678 to 7705, sense), Gp41-7 (-) (CIT-
TCCCTTACAGCAGGCCATCCAATCAC, 8815 to 8836,
anti-sense) as outer primers, and Gp41-8 (+) (CAAG-
GCAAAGAGAAGAGTGGTT-GCA, 7711 to 7734, sense),
Gp41-9 (-) (TACTTITTGACCACTTGCCACCCAT, 8786 to
8811, anti-sense) as inner primers based on NL4-3
sequence [66]. An equal amount of HIV-1 PBMC DNA
(25 to 50 copies, minimum) was used from each patient
as determined by end-point dilution and multiple (6 to 8)
independent PCRs were performed to obtain clones that
were then sequenced and analyzed. PCRs were performed
according to the modified procedure described by Ahmad
et al. [6] using 2.5 U of TaKaRa LA Taq polymerase
(Chemicon International) in accordance to manufac-
turer's protocol. The first reaction was carried out at 94°C
for 30 s, 50°C for 45 s and 72°C for 1 min for 35 cycles,
with 8 minutes of additional polymerization time in the
last cycle. After the first round of PCR, 4 to 8 ul of the
above- described amplified product was used for nested
PCR, using the inner primers and the same concentrations
of other ingredients at 94°C for 30 s, 55°C for 45 s and
72°C for 1 min for 35 cycles, with 8 min of additional
polymerization time in the last cycle. PCR was also per-
formed on HIV-1 NL4-3, of which the sequence is known
(GenBank accession number M19921) [66], to assess any
errors made by the TaKaRa LA Taq polymerase. The PCR
products were directly cloned in the pCR2.1 TOPO TA
cloning vector, version K2 (Invitrogen). Bacterial colonies
were screened for the presence of inserts by restriction
enzyme digestion of recombinant plasmid DNA. The pos-
itive clones were selected and propagated for DNA isola-
tion followed by nucleotide sequencing of 10 to 20 clones
from each patient. Sequencing was performed using the
Thermosequenase Cycle sequencing protocol (USB) using
Gp41-8 (+) primer. DNA from clones which were positive
for gp41 when compared with NL4-3 reference sequence
were sent to the core facility (University of Arizona) for
sequencing on an ABI PRISM ® 370 DNA automated
sequencing system (Applied Biosystems). As the reliability
of the sequencing was only up to 600 bases, we designed
a primer Gp41-5 (+) (5' CAGACCCACCTCCCAATC-
CCGAGGGGA 3', 8366 to 8392, sense) overlapping the
region around 550 bases to walk the entire gp41
sequence. The two sets of sequences were manually joined

http://www.retrovirology.com/content/3/1/42

to generate the complete full-length sequences of HIV-1
gp41 clones. These full-length clones were then used to
perform sequence analysis. The sequences were handled
with the Wisconsin package, version 10.1 (Genetics Com-
puter Group).

Sequence analysis

The nucleotide sequences of the gp41 clones were aligned
using Clustal X [67] adjusted by hand and then translated
into corresponding amino acid sequences. A model of
evolution was optimized for the entire nucleotide
sequence data set using the Huelsenbeck and Crandall
approach [68]. Likelihood scores for different models of
evolution were calculated using PAUP*, and a chi square
(x2) test was performed by Modeltest 3.06 [69]. The
model of choice was incorporated into PAUP* to estimate
a neighbor-joining tree. Bootstrap values were based on
1000 neighbor-joining searches. The tree was generated
for the nucleotide sequences from the six mother-infant
pairs, and the reference HIV-1 sequence, NL4-3, was used
as an out-group for the tree display (Fig. 1). Using Model-
test and the Akaike Information Criterion [70], all the null
hypotheses were rejected except likelihood settings from
best-fit model, transversion model with invariable sites
and gamma distribution (TVM+I+G) selected by AIC in
Modeltest Version 3.06. The base frequencies were as fol-
lows: freq A = 0.3073, freq C = 0.1940, freq G = 0.2653,
freq T = 0.2334. The six rate categories were as follows: R
(A-C) = 1.4514, R (A-G) = 4.5534, R (A-T) = 0.8671, R (C-
G) =1.3081, R (C-T) =4.5534, R (G-T) = 1.0. The propor-
tion of invariable sites (I) was 0.1561. The rate heteroge-
neity was taken into account using a gamma distribution
with a shape parameter (a) of the distribution estimated
from the data via maximum likelihood. The gamma dis-
tribution shape parameter had a value of a = 0.7961 for
gp41. Similarly, a model of evolution was optimized for
the data set from each pair. These models were used to
estimate corrected pairwise nucleotide distances for the
data sets from each pair using PAUP* [24]. Mean charac-
ter amino acid distances were also determined using the
Jukes-Cantor model in the Wisconsin Package version
10.1 of GCG. The minimum, maximum and median
nucleotide and amino acid distances were calculated for
each patient as well as for linked and unlinked patient
pairs. The dynamics of HIV-1 evolution was assessed
using techniques of population genetics. The genealogical
structure of a sample from a population contains informa-
tion about that population's history. The mathematical
theory relating a genealogy to the structure of its underly-
ing population is called coalescent theory [27]. The distri-
bution of coalescence times, that is the times at which two
of the sampled individuals have a common ancestor,
depends on the effective population size. In population
genetics, genetic diversity is defined as 6 = 2N, where N,
is the effective population size and [ is the per nucleotide
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mutation rate per generation. The differences in genetic
diversity was examined using the Watterson estimate
based on segregating sites and Kuhner estimate assuming
variable population size, using the program Coalesce
which is part of the Lamarc software package [26,71]. To
analyze the evolutionary processes acting upon the gp41
gene, we estimated the ratio of nonsynonymous (dN) to
synonymous (dS) substitutions by a maximum likelihood
model using codeML, which is part of the PAML package
[72]. The Nielsen and Yang model [28] considers the
codon instead of the nucleotide as the unit of evolution
and thus incorporates three distinct categories of sites. The
first category represents the sites that are invariable or con-
served (p1l, dN/dS = 0); the second category represents
sites that are neutral (p2, dN/dS = 1), at which dN and dS
are fixed at the same rate; and the third category represents
sites that are under positive selection, where dn has a
higher fixation rate than ds (p3, dN/dS > 1). The dN/dS
was estimated for each patient using both neutral and pos-
itive selection models in codeML.
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