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Abstract

The anti-viral function of RNA silencing was first discovered in plants as a natural manifestation of
the artificial 'co-suppression’', which refers to the extinction of endogenous gene induced by
homologous transgene. Because silencing components are conserved among most, if not all,
eukaryotes, the question rapidly arose as to determine whether this process fulfils anti-viral
functions in animals, such as insects and mammals. It appears that, whereas the anti-viral process
seems to be similarly conserved from plants to insects, even in worms, RNA silencing does
influence the replication of mammalian viruses but in a particular mode: micro(mi)RNAs,
endogenous small RNAs naturally implicated in translational control, rather than virus-derived
small interfering (si)RNAs like in other organisms, are involved. In fact, these recent studies even
suggest that RNA silencing may be beneficial for viral replication. Accordingly, several large DNA
mammalian viruses have been shown to encode their own miRNAs. Here, we summarize the
seminal studies that have implicated RNA silencing in viral infection and compare the different

eukaryotic responses.

Introduction

RNA silencing is often considered as a potent nucleic acid-
based immune system. In fact, invading nucleic acids can
be recognised by some cells as undesirable, by a mecha-
nism that is not yet totally unravelled, and are silenced by
a process based on 21-25 nt long small RNAs. A now clas-
sical example of this phenomenon was provided more
than ten years ago by experiences performed on transgenic
petunias [1,2]. Initially, these plants had been engineered
to produce more flower pigments and the strategy was to
introduce extra copies of the gene encoding the chalcone
synthase (CHS). However, a non-negligible proportion of
the transformants did not show flowers with the expected
purple colour but, rather, the flowers were completely
white, with no pigment. Because both the transgene and
the endogenous CHS mRNAs were affected in a nucle-
otide-sequence homology manner, this phenomenon was

coined 'co-supression'. Later on, similar gene silencing
phenomena were reported in other eukaryotes, including
fungi [3] and worms [4], and the molecular basis of RNA
silencing began to be clarified (for a recent review [5]).
The initiation of silencing necessitates the synthesis of
double-stranded RNAs (dsRNAs, produced by various
mechanisms e.g. viral replication) that is further cleaved
by an RNAse type III enzyme, called Dicer, into 21-25 nt
long small RNAs. These small RNAs are the trans-acting
determinants of RNA silencing and a core feature detected
each time silencing is triggered. They direct a multi-com-
ponent complex, the RNA-induced silencing complex
(RISC), on a targeted mRNA harbouring sequence-homol-
ogy. RISC invariably contains some Argonaute (Ago) fam-
ily member proteins, such as Ago2 in human [6], that
provide endonucleolytic activity to the complex. The first
discovered natural function of RNA silencing was anti-

Page 1 of 11

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16409629
http://www.retrovirology.com/content/3/1/3
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

Retrovirology 2006, 3:3

viral response, again in plants [7], wherein replication of
RNA and DNA viruses is associated with the accumulation
of virus-derived small RNAs. These small RNAs are
thought to trigger the cleavage of viral messengers and,
hence, to limit viral infection. Because the essential silenc-
ing components, notably Dicer and Ago proteins, are
found in most organisms, the idea that RNA silencing
functions, particularly in anti-viral defence, are also con-
served, rapidly emerged. Here, we review the decisive
studies that implicated RNA silencing in the replication of
viruses, from plant to human, and compare the underly-
ing mechanisms.

Anti-viral silencing in plants

Virus-derived siRNAs

Several observations from plant virologists converged to
the idea that RNA silencing was an efficient anti-viral sys-
tem. The first evidence probably came with the finding
that plant viruses trigger the silencing of endogenous
mRNAs sharing sequence-homology. For instance, the
phytoene desaturase (PDS) mRNA was easily silenced
upon replication of the Tobacco mosaic virus (TMV) har-
bouring a stretch of PDS [8]. This led to the development
of an outstanding reverse genetic tool, now widely used in
plant biology, known as Virus-induced gene silencing
(VIGS). The phenomenon of "recovery" further demon-
strated that plant viruses are targeted by RNA silencing:
when transgenic plants, expressing the coat protein (CP)
of Tobacco etch virus (TEV), were infected with TEV,
symptoms clearly appeared in the inoculated leaves but
progressively disappeared in the new growth, which
became in turn resistant to super-infection with TEV [9].
This resistance was associated with a complete degrada-
tion of the mRNAs of both TEV and CP transgene. The
recovery was thereafter shown to be naturally elicited by
some plant viruses infecting non transgenic wild type
plants [10,11]. RNA silencing also helped explaining the
phenomenon of "cross-protection" whereby attenuated
strains of a given virus are used to immunise plants
against aggressive strains of the same virus [12]. This is
exemplified with plants infected with a recombinant Pota-
toe Virus X (PVX) carrying a GFP insert that become resist-
ant to Tobacco mosaic virus (TMV) infection carrying the
same insert [13]. But the definitive proof that plant viruses
triggered RNA silencing was provided by the demonstra-
tion that virus-derived siRNAs accumulate to high levels
in plants during the course of infection [14]. In fact,
dsRNA replication intermediates of RNA viruses, the vast
majority of plant viruses, and/or high secondary struc-
tures of single stranded RNAs (ssRNAs, notably for the few
DNA plant viruses) are thought to constitute the substrate
of at least one of the plant Dicer homologues (4 in the
plant model Arabidopsis thaliana) [15]. The Dicer like 2
(DCL-2) was shown to produce the siRNAs derived from
the turnip crinkle virus (TCV), but not those from the
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cucumber mosaic virus strain Y (CMV-Y) or the turnip
mosaic virus (TMV). Additionally, Xie et al., have shown
that the replications of CMV-Y and TMV were not affected
in plants impaired in DCL-1 and DCL-3 functions, likely
suggesting that DCL-4 functions as a component of the
anti-TMV and anti-CMV silencing [15]. At that point, we
can already catch a glimpse at the complexity of the RNA
silencing pathway in plants, wherein each DCL is thought
to be specialised in a particular pathway (although some
redundancy are possible [16]) a situation that may not be
encountered in worm or human, which harbour only one
Dicer gene [17]. In fact, plant cells naturally produce
numerous sub-classes of small RNAs, involved for
instance in epigenetic modification and biogenesis of
other small RNAs, that are not yet found in human cells
[18,19].

Viral suppression of RNA silencing

An indirect proof that RNA silencing constitutes an effi-
cient anti-viral system was also provided by the discovery
of virus-encoded suppressors of silencing. The observa-
tion of an accentuation of symptoms induced by one virus
by co-infection with a second and unrelated virus, a phe-
nomenon called synergism, provided the first hint for
virus-mediated silencing suppression [20]. The Potyvirus
Y (PVY) dramatically enhances the replication of PVX
when co-inoculated, suggesting that PVY encodes a sup-
pressor of host defence [20]. Among the PVY proteins, the
helper component proteinase (HcPro) was sufficient to
recapitulate the molecular and symptomatic effects of PVY
on PVX [21,22]. The demonstration that HcPro is a genu-
ine suppressor of silencing came with the observation that
HcPro specifically affected gene silencing directed against
a GFP reporter gene [23]. Following these observations, it
was shown that silencing suppression is a common prop-
erty of most, if not all, plant viruses [24]. Interestingly,
these proteins are extremely diverse in sequence and struc-
ture and are encoded by both DNA and RNA viruses [24].
This strongly suggests a vast diversity in their mode of
action and, therefore, viral suppressors are thought to
affect all steps of RNA silencing, in this manner being very
useful to dissect molecular basis of RNA silencing [25,26].
Probably the most studied viral suppressor is the P19 pro-
tein of tombusvirus. Gel mobility shift assays showed that
the P19 protein of Cymbidium Ringspot Virus (CymRSV)
exclusively binds to 21 nt-long dsRNA with 2 nt-long 3'
overhanging ends, a characteristic of authentic siRNAs,
but not to long ssRNA, dsRNA or ss siRNAs [27]. Moreo-
ver, P19 of Tomato Bushy Stunt Virus (TBSV), closely
related to CymRSV, co-immunoprecipitates with siRNAs
in planta [26]. The crystal structures of p19 from TBSV and
the Carnation Italian Ringspot Virus (CIRV), bound to a
21 nt siRNA, demonstrated that tombusviral P19 protein
acts as a molecular caliper to specifically select siRNAs
based on the length of the duplex region of the RNA, in a
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sequence-independent manner [28,29]. Therefore, P19
likely sequesters siRNAs and, thereby, prevents their
incorporation into the RISC complex. Because siRNAs are
ubiquitous effectors of silencing, we anticipated that P19
should exert its effect in a broad range of organisms and,
accordingly, we demonstrated that P19 inhibits RNA
silencing triggered by synthetic siRNAs in human Hela cell
line [26].

Non-cell autonomous RNA silencing

The capacity of plant RNA silencing to be amplified and to
propagate in the whole organism likely represent two
additional layers that ensure its efficacy against viruses
[30]. The plant genome encode several RNA-dependent
RNA polymerase (RdRp), among those the RDRG,
thought to recognize and to use as template undesirable
transcripts such as transgene or viral mRNAs [31]. RDR6
synthesised a complementary strand from a ssRNA, result-
ing in the production of dsRNA, which is, in turn, proc-
essed by Dicer to generate more siRNAs. RDR6 activity
also forms the basis of a silencing-related phenomenon,
coined transitivity, which is responsible of an amplifica-
tion in the siRNA production [32,33]. When silencing is
elicited against a precise sequence stretch of a targeted
RNA, it first generates 'primary' siRNAs perfectly comple-
mentary to this particular stretch. But 'secondary' siRNAs
are also detectable, upstream or downstream the initial
stretch, likely reflecting a combined action of one DCL
and RDR6 [34,35]. The final result of transitivity is the
production of more siRNAs that do not necessarily share
sequence-homology with the initial target [33]. Transitiv-
ity is also implicated in the propagation of silencing and
in its non-cell autonomous effects [35]. As described
above, the activation of silencing first results in the pro-
duction of siRNAs, at the single cell level. Rapidly after
induction, silencing manifestations are also detectable
around the zone of initiation, corresponding to a nearly
constant number of 10-15 cells. This RDR6-independent
short-range movement is thought to initiate an RDR6-
dependent long distance propagation of silencing: the pri-
mary siRNAs diffuse outside this 10-15 cells border and
mediate the production of secondary siRNAs through the
action of RDR6 that use a sequence-homologous tran-
script as a template. These secondary siRNAs are then able
to move in surrounding cells and to reiterate the produc-
tion of siRNAs leading to a systemic propagation of silenc-
ing, in a relay-amplification manner [35,36]. The
requirement of transitivity and silencing movement for
viral defence is illustrated by the observations that plants
compromised in RDR6 are hyper-susceptible to some
viruses [37]. It is conceivable that the propagation of RNA
silencing ensures the immunization of naive cells before
the ingress of the virus. The existence of silencing suppres-
sors, able to specifically inhibit silencing movement, is
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again consistent with the relevance of that phenomenon
in anti-viral response [38].

From those studies, we may consider that the demonstra-
tion that a non-plant virus is restricted by RNA silencing
requires three experimental observations: (i) presence of
virus-derived siRNAs, illustrating the onset of RNA silenc-
ing, (ii) production of a virus-encoded silencing suppres-
sor, as a mechanism to escape these virus-derived siRNAs
and (iii) silencing movement in the infected host, which
may be an indirect hint for the efficiency of anti-viral
silencing.

Anti-viral RNA silencing in invertebrates

Insect

Many arthropod species have been found to support arti-
ficially induced RNA silencing, among which fruit flies
[39] and mosquitoes [40] but the first evidence for a con-
tribution of silencing in anti-viral defence came in 2002,
from decisive experiments performed in Drosophila S2
cells infected with the Flock House Virus (FHV), member
of the Nodaviridae family [41]. Li et al., reported the accu-
mulation of virus-derived siRNAs in FHV-infected S2 cells.
The viral accumulation was further found to be enhanced
in cells depleted for the AGO2 protein, a crucial compo-
nent of the RISC complex, as mentioned above [41].
Determinedly, FHV encodes a silencing suppressor,
namely B2, that is functional in both insects and plants,
indicating that the steps and/or components of silencing
that are targeted by B2 are shared by those two organisms
[41]. Recent studies indeed showed that B2 binds dsRNA
without regard to length and inhibits cleavage of dsRNA
by Dicer in vitro [42,43]. Second, similar to plant, VIGS
has also been documented in the silkmoth Bombyx mori
wherein the transcription factor Broad-Complex (BR-C)
was silenced by infection with a recombinant Sindbis
alphavirus expressing a BR-C antisense RNA [44].
Although these experiments clearly demonstrate that
insect cells are able to mount an anti-viral response based
on the activation of the silencing pathway, it remains to
be determined if this response is also efficient in the
whole organism. An important issue is to determine
whether non-cell autonomous silencing operates in
insects, similarly to what is observed in plants. Although
Lipardi et al.,, reported an RdRp activity in Drosophila
embryonic extracts [45], no member of the RARp gene
family can be identified in the Drosophila genome. More
important, using transgenes expressing dsRNA in adult
fly, Roignant et al., have conclusively demonstrated that
transitive RNA silencing does not occur in Drosophila and
that it remains strictly confined within the cells where it as
been elicited [46]. Thus, the question remains open as to
know whether RNA silencing is an efficient component of
the insect anti-viral response. Nonetheless, an indirect
clue for natural RNA silencing directed against exogenous
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viruses in insect may be provided by the mechanism that
has been elaborated by the Drosophila genome to domes-
ticate endogenous and mobile genetic elements. Jensen et
al., reported that transpositional activity of the I element,
a transposon similar to mammalian LINE elements, can
be repressed by prior introduction of transgenes express-
ing a small internal region of the I element [47]. This reg-
ulation presented features characteristic of the co-
suppression initially observed in plants since, notably, it
did not required any translatable sequence. Furthermore,
Sarot et al., reported that the endogenous retrovirus gypsy
is silenced in fly ovaries by the action of one argonaute
protein and that ovary cells naturally accumulate gypsy-
derived small RNAs [48]. RNA silencing directed against
endogenous and invasive sequences appears therefore
very similar to those directed against exogenous patho-
gens. However, the production of a silencing suppressor
by an endogenous (retro)element has never been reported
so far. Interestingly, this transposon taming is also found
in plants in which silencing is clearly efficient against
exogenous viruses [49]. Hence, the presence of a silenc-
ing-mediating transposon taming may represent another
hint for the existence of anti-viral RNA silencing.

Nematodes

Transposable elements are also tamed in Caenorhabditis
elegans by a mechanism related to RNA silencing. Sijen et
al., detected dsRNAs and siRNAs derived from diverse
regions of the Tcl transposon and showed that a germ-
line-expressed reporter gene, fused to a stretch of the Tcl
sequence, is silenced in a manner dependent on essential
silencing components [50]. Cloning of endogenous small
RNAs also yielded several siRNAs corresponding to Tcl
[51]. As mentioned above, these findings may be inform-
ative about the potential implication of RNA silencing in
the worm anti-viral defence. One indirect evidence may
come from the observation that, in contrast to Drosophila,
RNA silencing moves in worm. In a shaping study wherein
they demonstrated that dsRNA is the key elicitor of RNA
silencing, Fire et al. also reported that injection of dsRNA
into the body cavity or gonad of young adults produced
gene-specific interference in somatic tissues of the injected
animal [4]. The C. elegans genome contains 2 RdRp genes,
termed ego-1 and rrf-1, mandatory for RNA silencing in
germline and somatic tissues, respectively [33,52]. How-
ever, the obligate necessity of RdRp activity for RNA
silencing in nematodes makes it hard to determine
whether it is required for propagation, like in plant. None-
theless, Alder et al., reported that mRNA targeted by RNA
silencing functions as a template for 5' to 3' synthesis of
new dsRNA [53]. This effect was non-cell autonomous
since dsRNA targeted to a gene expressed in one cell type
can lead to transitive RNAi-mediated silencing of a second
gene expressed in a distinct cell type. To better understand
the molecular basis of silencing movement in worm, two
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groups designed genetic screens and isolated defective
mutants, called sid (systemic RNAi defective) [54] and rsd
(RNAi-spreading defective) [55]. Both groups identified a
particular gene, called sid-1/rsd-8, encoding a multispan
transmembrane protein essential for systemic but not cell-
autonomous RNAI [54,55]. Feinberg et al., further demon-
strated that SID-1 facilitates the passive cellular uptake of
preferentially long dsRNAs using Drosophila S2 cells [56].
Interestingly, SID-1 is found in human cells where it local-
izes to the cell membrane and enhances the passive trans-
port of siRNAs, resulting in an increased efficacy of siRNA-
mediated gene silencing [57].

In nematodes, the mechanism of transposon taming and
the movement of RNA silencing together suggest that
silencing is implicated in anti-viral defence. However, ask-
ing whether silencing is involved in worm anti-viral
defence is complicated by the absence of worm-specific
viral pathogens (although some plant viruses use nema-
todes as transmission vectors [58]). Nonetheless, the Ding
and the Machaca groups recently reported that two non-
natural viruses efficiently trigger anti-viral RNA silencing
in C. elegans [42,59]. Wilkins et al., showed that the nem-
atode N2 cells do support the replication of the mamma-
lian Vesicular Stomatitis Virus (VSV) [59]. VSV replication
is enhanced in silencing defective worm mutants,
impaired in the RDE-4-RDE-1 complex, thought to recog-
nize dsRNA and to target it for cleavage into siRNAs by
Dicer. Conversely, VSV replication is inhibited in mutant
nematodes impaired in the functions of RFF-3 and ERI-1,
two negative regulators of RNA silencing. RRF-3, a mem-
ber of the RARP gene family in C. elegans, seems to inhibit
RdARP-directed siRNA amplification, and worms with
mutations in rrf-3 are more sensitive to RNA silencing
induced by dsRNAs [60]. ERI-1, a member of the DEDDh
nuclease family, preferentially cleaves siRNAs, which are
in turn more stable and accumulate in eri-1 mutants,
resulting in enhanced gene suppression [61]. Decisively,
Wilkins et al., observed virus-specific 20-30 nt long small
RNAs [59]. Likewise, Lu et al., showed complete replica-
tion of FHV in worm strains carrying integrated transgenes
coding for full-length cDNA copies of FHV genomic RNAs
[42]. The anti-FHV response required the RDE-1 activity
and could be suppressed by the FHV-encoded B2 silencing
suppressor [42]. The fact that C. elegans is able to respond
to viral infection by generating virus-derived siRNAs may
indicate that the complexity of the silencing pathways
(e.g. 4 dicers in Arabidopsis thaliana, 2 in Drosophila and
only one in nematode) is not a prerequisite for the exist-
ence of anti-viral RNA silencing. This is particularly
important when investigating the potential anti-viral role
of silencing in mammals, which, like worms, encode only
one Dicer. However, we cannot yet exclude that the com-
plexity of the silencing pathway is ensured by the diversity
of the Argonaute proteins found in worm [62].
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miRNA biogenesis and action. Long primary transcripts (pri-miRNAs) containing one or several miRNAs are transcribed
by RNA polymerase Il and cleaved by the Microprocessor Complex, containing at least Drosha (RNAase Ill endonuclease) and
DGCRB8/Pasha in human (a double-stranded RNA binding protein). This complex recognizes the double stranded RNA struc-
ture of the pri-miRNA and specifically cleaves at the base of the stem loop, hence releasing a 60- to 70-nucleotide precur-
sor(pre)-miRNA. This pre-miRNA is then exported through the Exportin-5 pathway into the cytoplasm where it is further
processed into a mature miR/miR* duplex by Dicer, a second RNase Il endonuclease. The miR/miR* duplex is then loaded into
a multi-component complex, the RNA-induced silencing complex (RISC), constituted of at least TRBP (TAR Binding Protein),
Dicer, and one Argonaute (Ago2 in human). The miR serves as a guide for target recognition while the miR* passenger strand
is cleaved by Ago2. In contrast to siRNAs (small interfering RNA) and plant miRNAs, which induced the cleavage of the tar-
geted mRNA, most of animal miRNAs harbour an imperfect homology with their targets and, therefore, inhibit translation by a
RISC-dependent mechanism that probably interferes with the mRNA cap recognition. This step occurs in cytoplasmic foci
called P-bodies (for processing bodies), which contain untranslated mRNAs and can serve as specific sites for mRNA degrada-
tion.
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What about mammals?

We can now assume that anti-viral RNA silencing exists in
plant, insect and nematode, even if the question as to
know whether it is a natural and efficient anti-viral
response in invertebrates remains opened. For that rea-
son, several laboratories were prompted to investigate the
potential contribution of RNA silencing in the replication
of mammalian viruses.

Virus-encoded miRNAs but no virus-derived siRNAs

The Tusch1 lab first attempted to clone virus-derived siR-
NAs from cells infected with various viruses [63]. They
neither found virus-derived siRNAs nor endogenous small
RNAs derived from transposable or repetitive elements,
suggesting that, unlike in plant, insect and worm, mam-
malian transposable elements are not naturally tamed by
a silencing-related mechanism. They rather found discrete
species of small RNAs encoded by the Epstein-Barr Virus,
very akin to endogenous host-encoding small RNAs
found in eukaryotic cells and involved in the control of
genome expression: the micro(mi)RNAs [63] (Figure 1).
More than 300 miRNAs are now described in humans but
their exact function still remains largely obscure (for
review [64,65]). One reason may lie in the mode of action
of animal miRNAs: in contrast to siRNAs, most animal
miRNAs harbour an imperfect homology with their target
and, therefore, miRNAs are thought to not affect RNA sta-
bility but rather inhibit translation by a RISC-dependent
mechanism. This absence of perfect homology considera-
bly limits the identification of miRNA cellular targets. It
has recently been shown that miRNAs probably interfere
with the mRNA cap recognition [66,67]. However, in
addition to the previously described exception of miR-196
and its target HoxB8 [68], recent report also suggest that
miRNAs may broadly affect RNA stability, despite imper-
fect sequence homology [69,70]. Basically, the miRNA
genes are transcribed by RNA polymerase II into pri-
mary(pri)-miRNA, which are cleaved by a nuclear RNAse
111, coined Drosha, into precursor(pre)-miRNA (Figure 1)
[71-74]. This pre-miRNA is exported from the nucleus
through the Exportin-5 pathway into the cytoplasm where
it is further processed into a miR/miR* duplex by Dicer
[75]. The duplex is then loaded into the RISC complex
and the miR serves as a guide for target recognition
whereas the passenger miR* is cleaved by Ago2 [76,77].
Although miRNAs encoded by other viruses, in particular
HIV, have been predicted [78-80], virus-encoded miRNAs
seem to be defining for large DNA viruses, which replicate
in the nucleus, such as Herpesviruses (Kaposi sarcoma
herpesvirus KSHV, mouse gammaherpesvirus MGHYV,
human cytomegalovirus HCMV, for instance), Polyoma-
viruses (Simian Virus 40 SV40, Simian Agent 12 SA12)
and Adenovirus (for review [81]). Like their cellular coun-
terparts, those viral miRNAs are transcribed by RNA
polymerase II and are thought to follow the same biogen-
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esis (with the notable exception of MGHV miRNAs which
are predicted to be pol Ill-transcribed [82]). The exact
function(s) of the viral miRNAs are not yet known except
in the case of the SV40 miRNA which mediates the degra-
dation of the perfectly complementary transcript encod-
ing large T antigen [83]. This may help the virus to escape
the immune response, notably the cytotoxic T cells, by
limiting the production of viral antigens. Some herpesvi-
rus-encoded miRNAs are also perfectly complementary to
cognate viral transcripts suggesting that they could medi-
ate RNA cleavage and regulate the translation of viral pro-
teins [63]. Moreover, virus-encoded miRNAs may regulate
the translation of cellular messengers to create favourable
conditions for viral replication but this remains to be
firmly established.

Contribution of cellular miRNAs but still no virus-derived siRNAs

By our side, we also started working on the contribution
of RNA silencing in mammalian anti-viral response, using
the prototypic foamy retrovirus, the Primate Foamy Virus
type 1 (PFV-1), as a model [84]. This complex retrovirus,
akin to HIV or HTLV-I, was chosen because (i) siRNAs
derived from LTRs of endogenous retroviruses have been
described in various eukaryotes [85,86], (ii) PFV-1 was
shown to retrotranspose in the genome of the infected
cell, a feature that is so far unique among retroviruses [87]
and (iii) the latency induced by PFV-1 is closely similar to
the 'recovery' observed with some plant viruses [88-90].
First, we used the TBSV P19 protein to inhibit RNA silenc-
ing in mammalian cells and showed that, upon P19
expression, PFV-1 replication was dramatically increased,
suggesting that a silencing-related pathway limits viral
infection [84]. We then tried and failed to isolate virus-
derived siRNAs during acute or latent infections and in
various cell lines. However, during the course of this
study, we observed that a cellular miRNA, namely the
miR-32, efficiently inhibits the replication of PFV-1 by
hybridizing with the 3'UTR of viral mRNAs.

The anti-viral effect of miR-32 was not linked to a poten-
tial implication of its unknown cellular target because a
mutant carrying point mutations, that disrupt the hybrid-
ization of the cellular miRNA with the viral mRNA, accu-
mulated to higher level than the wild type virus [84]. This
observation suggested that cellular miRNAs, by recogniz-
ing foreign and, in particular viral, mRNAs, have the
potential to limit viral replication. Because exogenous
viruses are not transmitted through the germen of infected
hosts, it is unlikely that the mammalian genomes have
evolved to specifically encode miRNAs whose sole func-
tion would be to regulate translation of exogenous and
viral transcripts. We rather propose that the functional
interactions between cellular miRNAs and viral mRNAs
are governed by fortuitous micro-homology. The fact that
the core activity of a miRNA resides in its 7-8 first nucle-
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otides, known as the "miRNA seed" [91,92], extends the
chances of fortuitous recognition of exogenous transcripts
and implies that this miRNA-based anti-viral silencing
may fell beyond the case of PFV-1. In fact, targets for cel-
lular miRNAs have been predicted in several and unre-
lated viral genomes using miRNA target prediction
algorithms [84,93].

Cellular miRNAs are implicated in fundamental biologi-
cal processes, such as cellular differentiation for instance,
therefore, each cell type is thought to harbour a particular
miRNA repertoire [64]. In that case, miRNAs may partici-
pate in cellular permissivity because a virus would repli-
cate in cell types, where the 'anti-viral' miRNAs are less or
not produced. The findings by Stones et al., that gene ther-
apy viral vectors containing a miRNA target exhibit a tis-
sue-specific expression according to miRNA expression
levels support this proposal [94]. Besides, we demon-
strated that the anti-viral functions of cellular miRNAs are
not necessarily linked to their cellular functions [84], rais-
ing the possibility that miRNAs may be expressed differ-
ently in a specific tissue (where they do not play a crucial
role) in different individuals. Hence, cellular miRNAs
may also participate in the individual susceptibility to
viral infection.

Viral genomes have alas the capacity to rapidly and non-
randomly evolved, notably to counteract therapeutic strat-
egies and to settle in new cellular contexts. Nonetheless, it
appears that PFV-1 have conserved the viral target of miR-
32, suggesting that PFV-1 may hijack the miR-32, for
instance, to decrease viral protein expression during the
latent stage of infection [88-90]. In line with this, Switzer
et al., have shown that simian foamy viruses might have
co-speciated with their Old World primate hosts for at
least 30 million years [95]. A recent study by the Sarnow
group provided an explicit proof for a positive role of a
cellular miRNA in viral replication [96]. They demon-
strated that Hepatitis C Virus (HCV) replication requires
the expression of the miR-122, an abundant liver-specific
miRNA. In fact, a genetic interaction between miR-122
and the 5' noncoding region of the HCV genome was
highlighted by mutational analyses of the predicted
microRNA binding site and ectopic expression of miR-122
molecules containing compensatory mutations. Curi-
ously, miR-122 did not detectably affect mRNA transla-
tion nor RNA stability [96]. The authors rather proposed
that miR-122 is involved in the folding of viral RNAs and/
or redirects viral RNAs to particular sites of replication
[96]. Another hint for the positive requirement of cellular
miRNAs in viral replication may indeed be illustrated by
miRNAs encoded by large DNA viruses. In fact, these
viruses are known to efficiently usurp cellular pathways
and to integrate cellular genes inside their genomes, even
to modify them for their own advantage (e.g. cytokines,
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receptors of cytokines) [97]. Thus, cellular miRNAs may
constitute the source and the origin of viral miRNAs.

Silencing suppression by mammalian viruses : more miRNAs?

To escape this miRNA-based 'innate' form of immunity,
we additionally showed that PFV-1 encodes a suppressor
of silencing, Tas, that have the capacity to inhibit miR-32
action [84]. Tas exerts its effect not only in mammalian
cells but also in plants, where it inhibits RNA silencing
triggered by an inverted repeat against an endogenous
gene. Tas is the foamy viral transactivator that activates the
5'LTR and an internal promoter located at the 3' end of the
env gene [98,99]. In contrast to HIV Tat or HTLV-I Tax, Tas
directly binds DNA, although no precise consensus
sequence can be characterized [98-101]. Interestingly,
those two functions, i.e. transactivation and silencing sup-
pression, are shared with the AC2 protein of the plant
geminivirus [24], likely reflecting a convergent evolution
in viral replication strategy. Several suppressors of silenc-
ing encoded by mammalian viruses are now identified,
either as protein or RNA form. For instance, Adenovirus
encodes the small VA1 RNA, analogous to a miRNA pre-
cursor, that titers the miRNA biogenesis pathway [102].
The Influenzae NS1 binds siRNAs and impedes silencing,
at least in plant, but its action in mammalian cells
remains to be verified [103-105]. More recently, HIV-1 Tat
has been shown to inhibit Dicer activity, independently of
its transcriptional function [106]. Several of those sup-
pressors (Tas, NS1, VA1) have been shown to non-specif-
ically affect the action of cellular miRNAs [84,102,107].
Because miRNAs are thought to be essential for the cellu-
lar biology, the perturbation of their action by these viru-
lent factors may participate in the development of the
cytopathic effects associated with the infection.

An alternative strategy to escape cellular miRNAs could be
to introduce synonymous mutations in the viral genome
that would disrupt the cellular miRNA/viral target hybrid.
This hypothesis may be suitably applied to high mutation
rate viruses. In fact, this particular type of RNA silencing
evasion has already been described for HIV and HCV
when artificially targeted by synthetic siRNAs [108-110].
As a consequence, the synthetic siRNAs can influence the
emergence of the viral quasi-species, as reported in plants,
wherein virus-derived siRNAs influence the emergence of
defective interfering RNA viruses [111]. This scenario may
also be envisaged for cellular miRNAs.

Conclusion

Recent evidences support a role for RNA silencing in the
replication of mammalian viruses but its consequences
remain to be clarified as to know whether it is positively
required for replication or if, conversely, it constitutes a
crucial host defence system. To date, only miRNA mole-
cules, either encoded by the host or by the virus itself,
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have been implicated, with the notable exception of one
discret HIV-derived siRNA duplex produced during the
course of infection and able to cleave Env mRNA [106].
The mode of action of miRNAs, that requires precise tar-
geted sequences, may argue against the existence of virus-
derived siRNAs, like it is encountered in plant, insect or
nematode. For instance, in the case of SV40, it would be
hard to reconcile the regulation of large T Antigen by a
specific viral miRNA in the presence of several siRNAs,
derived from the whole viral genome, and able to indis-
criminately cleave viral messengers. Of course, we cannot
exclude the possibility that these two small RNA species
(i.e. viral miRNA and virus-derived siRNAs) are not pro-
duced during the same steps of viral replication. Alterna-
tively, virus-derived siRNAs could be produced in
specialized cells, which have not yet been characterised,
and then propagate in the rest of the organism, likely
through the blood vessels. This hypothesis is supported by
(i) several studies that clearly demonstrate the effective
inhibition of the replication of several mammalian
viruses with artificially delivered siRNAs [112] and (ii) the
existence of silencing propagation, via SID-1, in mamma-
lian cell culture [57]. Moreover, chemically synthesised
siRNA have been shown to naturally enter epithelial cells
of the mouse jejunum after intravenous administration,
although cholesterol conjugation drastically increases this
ability [113].

Finally, long dsRNAs typically used to elicit RNA silencing
in other organisms potently activate a specific mamma-
lian cell defence mechanism, the Interferon (IFN)
Response [114] (for review on IFN [115]). This non-spe-
cific response was first reported in 1957 by Isaacs and
Lindenmann who showed that influenza virus-infected
chick cells secreted a factor that could, on its own, activate
an antiviral state when brought into contact of naive cells
[116,117]. In contrast to RNA silencing, this antiviral state
is broadly effective, as it could target both sequence
homologous and heterologous viruses. IFN response
often leads to cell death mainly due to a global shut-off in
protein expression (via the protein kinase R and the phos-
phorylation of the o subunit of the protein synthesis ini-
tiation factor 2) and a non-specific RNA degradation
(through the action of the 2',5'-oligoadenylate synthetase
and the RNaseL). Therefore, IFN might be considered as a
programmed suicide developed by infected cells to protect
naive cells from becoming infected. Interestingly, RNA
silencing and IFN response seem to be partially overlap-
ping because, for instance, (i) the double-stranded RNA-
specific adenosine deaminase ADAR edits miRNA precur-
sor and is also an effector of the IFN response [118], (ii)
some viral products efficiently inhibit both RNA silencing
and IFN response by targeting their common elicitor,
dsRNA [103], and (iii) the TAR Binding Protein (TRBP),
which is a negative regulator of PKR, is an essential com-
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ponent of the RISC [119-121]. In fact, it is currently
thought that RNA silencing and IFN pathway even antag-
onize [122-124]. Hence, the differences in anti-viral RNA
silencing observed between plant, insect and nematode in
one hand and mammals in the other may lie in the exist-
ence of this mammalian-specific IFN system. This aspect
may be appropriately studied in the marine shrimp
wherein dsRNA induces both sequence-specific anti-viral
silencing, similar to plant or insect, and non-specific
immunity [125].
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