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Tat gets the ""green" light on transcription initiation
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Abstract

Human immunodeficiency virus type | (HIV-1) Tat transactivation is an essential step in the viral
life cycle. Over the past several years, it has become widely accepted that Tat exerts its
transcriptional effect by binding the transactivation-responsive region (TAR) and enhancing
transcriptional elongation. Consistent with this hypothesis, it has been shown that Tat promotes
the binding of P-TEFb, a transcription elongation factor composed of cyclin TI and cdk9, and the
interaction of Tat with P-TEFb and TAR leads to hyperphosphorylation of the C-terminal domain
(CTD) of RNA Pol Il and increased processivity of RNA Pol Il. A recent report, however, has
generated renewed interest that Tat may also play a critical role in transcription complex (TC)
assembly at the preinitiation step. Using in vivo chromatin immunoprecipitation assays, the authors
reported that the HIV TC contains TBP but not TBP-associated factors. The stimulatory effect
involved the direct interaction of Tat and P-TEFb and was evident at the earliest step of TC
assembly, the TBP-TATA box interaction. In this article, we will review this data in context of
earlier data which also support Tat's involvement in transcriptional complex assembly. Specifically,
we will discuss experiments which demonstrated that Tat interacted with TBP and increased
transcription initiation complex stability in cell free assays. We will also discuss studies which
demonstrated that over expression of TBP alone was sufficient to obtain Tat activated transcription
in vitro and in vivo. Finally, studies using self-cleaving ribozymes which suggested that Tat
transactivation was not compatible with pausing of the RNA Pol Il at the TAR site will be discussed.

Tat transactivation: A historical perspective,
initiation vs elongation

Transcription of the HIV-1 provirus is characterized by an
early, Tat-independent and a late, Tat-dependent phase.
Transcription from the HIV-1 LTR is increased several
hundred-fold in the presence of Tat and the ability of Tat
to activate transcription is essential for virus replication.
Tat is an unusual transcription factor because it interacts
with a cis acting RNA enhancer element, TAR, present at
the 5' end of all viral transcripts (nt +1 to +59) [1-4]. In
fact, TAR was the first demonstration of a RNA enhancer

element. Unlike other eukaryotic enhancers, however, the
TAR element was only functional when it was placed 3' to
the HIV promoter and in the correct orientation and posi-
tion [5]. The location of the TAR in transcribed regions
was surprising, and to many, inconsistent with a role for
TAR in transcription initiation. In fact, the uniqueness of
the RNA enhancer element drove many investigators to
search for unique pathways in HIV Tat transactivation.
When Kao et al. [6] reported that in the absence of Tat the
majority of RNA polymerases initiating transcription stall
near the promoter, and later Laspia et al. [7] reported a
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small effect of Tat on transcription initiation but a large
effect on transcription elongation, the initiation model
quickly lost support. The observation that Tat binds spe-
cifically to the TAR RNA [8] and could function as an RNA
binding protein [9] gave further support for the elonga-
tion model, and it became quite well accepted that
through interaction with TAR, Tat promotes the assembly
of an active transcription elongation complex. The more
recent finding that Tat promotes the binding of P-TEFb, a
transcription elongation factor composed of cyclin T1 and
cdk9 [10] and, more recently, Brd4 in the active nuclear
complex [11] seemed consistent with the elongation
model. In fact, it has been shown that the interaction of
Tat with P-TEFb and TAR leads to hyperphosphorylation
of the C-terminal domain (CTD) of RNA Pol II and
increased processivity of RNA Pol II [12-22]. Moreover,
Tat induces P-TEFb dependent phosphorylation of Tat-
SF1 and SPT5 [23]. While TAR plays a critical role in Tat
transactivation, it is also clear that optimal Tat transactiva-
tion of HIV-1 gene expression requires upstream tran-
scription co-factors. Along these lines, it has been reported
that Tat physically interacts with the pre-initiation com-
plex including transcription factors such as Spl [24],
TATA binding protein (TBP) [25-27], cylinE/cdk2 [28],
TFIIH [21,22], Tip60 [29], RNA Pol 1I [30,31], as well as
coactivators such as CBP/p300 [32] and p/CAF [33,34].
Several excellent reviews of the role of Tat in transactiva-
tion have been published [1,35-40].

A role for Tat in transcription preinitiation
complex assembly

A recent report from M. Green's lab has, however, gener-
ated renewed interest that Tat's primary effect may in fact
be at the transcription complex (TC) assembly stage at the
pre-initiation step upstream of the +1 area, thereby pro-
moting both transcription initiation and elongation of
HIV-1 promoter [41]. The authors reported that Tat stim-
ulates TC assembly through a TAF-less TBP complex,
thereby promoting initiation and elongation [41]. The
stimulatory effect was evident at the earliest step of TC
assembly, the TBP-TATA box interaction. Furthermore,
much like the scenario in yeast, transcription of protein-
coding genes may involve alternative TCs that differ by the
presence or absence of certain TAFs. To analyze transcrip-
tion stimulation by Tat and other activators, such as VP16
and E1A, they performed ChIP experiments in transiently
transfected mammalian cells. Following addition of Tat,
there was a large increase in association of TBP, TFIIB,
mediator (enabling transcriptional activators to regulate
transcription by RNA polymerase II), and RNA polymer-
ase Il with the promoter. The increased binding of these
basal transcription factors paralleled the increase in tran-
scription. Interestingly, although TBP and the other GTFs
were efficiently recruited to the promoter in the presence
of Tat, there was no significant recruitment of the two
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TAFs analyzed, TAF1 (TAFII250) or TAF5 (TAFII100).
Consistent with their transfection data, they observed the
presence of TBP, TFIIB, mediator, Sp1, P-TEFb and RNA
polymerase Il with the integrated proviral promoter in
chronically HIV-1-infected cell lines, 8E5/LAV and U1.

In parallel control ChIP experiments analyzing Gal4-
VP16 and Gal4-Ela, the investigators demonstrated that
these activators supported assembly of a transcription
complex that contained all of the GTFs, including
TAFII1250 and TAFII100. By contrast, Gal4-Tat directed
assembly of a TC in which the TAFs were present at levels
significantly below that of TBP and other GTFs. Remarka-
bly, when assaying for effect of cyclin T1 and CDKO9, they
observed that P-TEFb was responsible for recruitment of
this unique TBP complex.

Finally, they concluded that RNA polymerase II was not
detected either near or far downstream of the transcrip-
tion start site in the absence of Tat and thus provided no
evidence for a paused (or stalled) RNA polymerase II.
Consistent with their ChIP data, nuclear run-off experi-
ments showed that Tat increased the density of RNA
polymerase II 9- to 15-fold within the first 25 nucleotides
downstream of the transcription start site, indicating that
Tat stimulates initiation.

It is interesting to note that while the authors do not see a
dependency on TAFII250 for Tat transactivation on the
HIV LTR, the interaction of Tat and TAFII250 is important
for Tat-mediated transcription repression. Tat represses
transcription of both the MHC class I genes and the beta2-
microglobulin gene. Repression results from the interac-
tion of Tat with the TAF1 component of the general tran-
scription factor, TFIID and depends exclusively on the C-
terminal domain of Tat, beginning at amino acid 73, with
a C-terminal limit between amino acids 80 and 83. Tat
repressor function also depends on the presence of a
lysine at position 41, located within the core of the pro-
tein. Tat repressor activity is independent of two N-termi-
nal domains essential for transactivation: the acidic
segment and the cysteine-rich region. The C-terminal
domain of Tat binds to a site on TAF1 that overlaps the
acetyl transferase (AT) domain, inhibiting TAF1 acetyl
transferase (AT) activity. Furthermore, promoters
repressed by Tat, including the MHC class I promoter, are
dependent on TAF1 whereas those that are not repressed
by Tat, such as SV40 and MuLV promoters, are independ-
ent of functional TAF1 [42-45].

Further evidence for the role of Tat in
preinitiation complex assembly

While these studies have renewed interest in the role of
Tat in promoting transcription initiation, the idea is cer-
tainly not new. For instance, Kashanchi et al. reported in
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1994 that the transcriptional activity of Hela extracts were
depleted after chromatography on a Tat affinity column,
through specific retention of TBP and some TAFs. The core
domain of Tat, amino acids 36-50, was required for the
interaction of Tat with TBP and a mutation at Lys 41,
which abolishes transactivation, abolished interaction
with TBP [46,47]. In fact, based on these results and ear-
lier studies that Tat increased transcription initiation com-
plex stability in cell free assays [48], the authors
speculated in this paper that Tat may increase the associa-
tion or dissociation of TFIID, or recruit a particular species
of functionally different TFIID to the HIV template. In
contrast to the studies of Raha et al. [41], by western blot
analysis Kashanchi et al. [46] detected TAFII250 in the
Tat-induced transcription complex. The relative abun-
dance of TBP and TAFII250 was not quantitatively evalu-
ated, however, so it is possible that less TAFII250 was
associated with the Tat-TBP complex.

Other studies have also pointed toward the functional
interaction of Tat and TBP. The activity of Tat, either wild-
type or fused to the DNA binding domain of GAL4
(GBTat), was tested using reporter constructs containing
GAL4 binding sites upstream of a minimal promoter cor-
responding to the HIV-1 TATA box, with or without the
TAR element. Overexpression of TBP led to a dramatic
increase in the activity of the GBTat protein. Analysis of
several Tat mutants indicated that both the cysteine-rich
and the core domains of this transactivator were necessary
and sufficient to activate transcription when TBP was
overexpressed. In vitro experiments showed that Tat binds
specifically to TBP, and follow up in vivo experiments indi-
cated a correlation between the ability of different Tat
mutants to bind TBP and their capacity to activate tran-
scription in vivo [27,49-51]. Still other studies that looked
at the interaction of TBP and Tat concluded that activation
of the LTR requires steps in addition to TBP recruitment
[52].

The Hernandez lab has previously shown that TBP bound
to the TATA box was required for the synthesis of short
and full-length transcripts as well as for Tat activation and
that both yeast TBP and the carboxy-terminal domain of
human TBP could replace full-length human TBP for these
processes [53]. Similar studies from the Lania lab indi-
cated similar activation by a TBP fusion. For instance, to
determine the synergy between Tat and GAL4-TBP in the
absence of any DNA-bound activator, the G1-38HIV
reporter was transfected into Hela cells with the GALA4-
hTBP and a Tat expression vector. Tat alone had no effect
on transcription, however, co-expression of Tat strongly
stimulated GAL4-hTBP transcription in the absence of any
DNA-bound activator. Synergy between Tat and DNA-
bound TBP protein was further confirmed by analysis of
the levels of specific transcripts, which were determined
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by RNase protection assay [54]. Therefore, artificial
recruitment of human TBP to the enhancerless HIV mini-
mal promoter was found to trigger gene expression, and
coexpression of Tat resulted in a marked synergy. The
functional cooperation between TBP and Tat was further
demonstrated using the Drosophila Schneider SL2 cells
[55].

Finally, with regard to the functional significance of Tat's
role in transcription complex assembly and levels of non-
processive transcription from the HIV-1 LTR, two manu-
scripts from the Jeang lab are worth noting. First, a central
question was asked in whether the LTR promoter "presyn-
thesizes" short nascent TAR RNA-containing transcripts
that remain poised awaiting Tat. To address this question,
the investigators used a self-cleaving ribozyme to define a
time window during which Tat action occurred, which
measured Tat trans-activation against two biological proc-
esses: RNA chain elongation and RNA self-cleavage [56].
To do this, they placed a rapidly self-cleaving ribozyme
downstream of TAR. The experimental model assumed
that if the ribozyme self-cleavage reaction was sufficiently
rapid then it should sever the TAR-Tat complex that was
attached to the nascent RNA chain and thus prevent an
interaction with the LTR promoter. Therefore, the speed of
one process (trans-activation) was compared against
another (RNA chain elongation leading to self-cleavage).
From their experiments, they concluded that an accumu-
lation of paused TAR transcripts between +42 and +80 was
unlikely, and the evidence that rapid cleavage at +80 did
affect (rate determine) the overall trans-activation process
was not compatible with pausing at this location on the
DNA template. Control experiments demonstrated that
the observed reduction in expression was specific for a
functional ribozyme and specific for trans-activation (as
opposed to a perturbation in basal activity or in RNA sta-
bility).

Second, when examining the short (S) and long (L) form
of HIV-1 RNA in an integrated provirus setting in vivo, they
suggested that S RNAs, while seen in unintegrated DNA
and/or cell-free assays, were not prevalent in the context
of integrated proviruses [57]. Basal transcription from a
vector containing SV40 sequence (pHIVCATSV) in Cos
cells was characterized by an abundance of S transcripts,
while a normal HIV vector (pLTRCAT) produced no such
RNAs. With Tat, both plasmids transcribed comparable
amounts of L transcripts. They concluded that abortive
transcripts may simply reflect transcription that occurs as
a consequence of replication induced by T antigen in cell
lines tested. These data were also consistent with earlier
reports on Tat's effect of TC complex stability when using
cell-free assays [48].
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While focus of the studies on Tat function was heavily
placed on the role of cellular kinases, protein phos-
phatases might also play an important role in the early
stages of HIV-1 transcription. Ammosova et al. [58] have
shown that PP1 and PP2A dephosphorylate CDK9 and
that inhibition of PP1 or PP2A phosphatase activity
decreases HIV transcription in vitro and in vivo. While the
authors concentrated on the activity of PP1 and PP2A on
autophosphorylation sites, which include the activation
site at Thr 186 and more C-terminal phosphorylation
sites, it is possible that these phosphatases play a role in
removing inhibitory CDK9 phosphorylation sites in the
preinitiation complex [[23], M. Zhou, personal communi-
cation].

Chromatin structure

In considering the effect of Tat on transcription initiation
and elongation, the effect of chromatin structure on the
integrated genome must be considered. Investigators have
shown that chromatin exerts a strong repressive role on
transcription initiation. Interestingly, in a 2003 study
using chronically infected U1 cells treated with phorbol
ester, Lusic et al. reported that Tat promotes the specific
recruitment of histone acetyltransferases to the viral pro-
moter, facilitating acetylation of histones H3 and H4 at
distinct nucleosomal regions, before the onset of viral
mRNA transcription [59]. In a separate study, Kiefer et al.
reported that nucleosome remodeling, not histone
acetylation, is the limiting step in transcriptional activa-
tion in Ul promonocytes [60]. It is possible therefore,
that Tat facilitates chromatin modifications, assembly of
the initiation complex and transcription elongation in a
series of sequential, coordinated events that leads to high
levels of HIV transcription.

Similarities to viral transactivators Herpesvirus
VP16 and IE, Adenovirus EIA and SV40 T-
antigen and HTLV-I Tax

We should not be surprised by the complexity of the Tat
transactivation process and the multifaceted effect of Tat
on multiple transcription factors involved in LTR regula-
tion. Examination of viral activators and their mechanism
of activation indicate how small DNA or RNA viruses have
evolved intricate mechanisms for controlling viral and cel-
lular gene expression. For example, the Herpesvirus VP16
activation domain can be divided into two modules - an
N-terminal subdomain (VPN) and a C-terminal sub-
domain (VPC). It has been shown [61] that VPC stimu-
lates core promoters that are either independent of or
dependent on TAFs (TATA box Binding Protein-Associ-
ated Factors). In contrast, VPN only activates the TAF-
independent core promoter, and this activity increases in
a synergistic fashion when VPN is dimerized (VPN2). The
VPN subdomain of VP16 also facilitates assembly of a
transcriptional complex containing TBP: TFIIA:TFIIB,

http://www.retrovirology.com/content/2/1/69

which lacks TAFs, and provides a mechanism that could
function at TAF-independent promoters. Thus, the viral
activator facilitates transcription through multiple func-
tional pathways.

Along the same lines, biochemical and genetic evidence
has suggested that the Herpesvirus IE proteins may per-
form functions similar to those of the TAFs in the tran-
scriptional complex. The IE proteins expressed from the
intact major IE gene, and to a lesser extent IEP86 alone,
could rescue the temperature-sensitive (ts) transcriptional
defect in TAFII250 BHK-21 ts13 cell line [62].

The adenovirus E1A protein is also a well studied tran-
scription activator. The 48-amino-acid conserved region 3
(CR3) of E1A, which is responsible for mediating transac-
tivation, appears to target several proteins of the transcrip-
tion initiation complex, including ATF-2, and
components of the basal transcription factor TFIID,
including TBP, hTAFII250, hTAFII55, and hTAFII135 [63].
This interaction allows E1A to stabilize the TFIID-TFIIA
complex to increase the level of activated transcription in
vivo.

Another viral activator, SV40 large T-antigen has also been
shown to specifically enhance the formation of the TBP-
TFIIA complex on the TATA element. The ability to facili-
tate TBP/TFIIA binding was complex and promoter
dependent since T-antigen could activate simple promot-
ers containing the TATA elements from the hsp70 and c-fos
gene promoters but failed to significantly activate similar
promoters containing the TATA elements from the pro-
moters of the SV40 early and adenovirus E2a genes. Fur-
thermore, the ability to stabilize the TBP-TFIIA complex
on the hsp70 and c-fos TATA elements, and not on the
SV40 early and E2A TATA elements, correlated with the
ability or inability to activate promoters containing these
TATA elements [64]. Interestingly, in the ts13 cell line, T-
antigen could rescue the temperature-sensitive (ts) defect
in TAFI1250. In contrast, neither E1A, small t-antigen, nor
mutants of T-antigen defective in transcriptional activa-
tion were able to rescue the ts defect [65], further implying
that T-antigen may act like a TAF activator.

Finally, while investigating the effect of HTLV-1 Tax on the
pre-initiation complex assembly, it has been shown that
Tax facilitates the binding of a variety of transcription fac-
tors including CREB, TFIIA, CBP/p300 and PCAF [66-69].
Interestingly, Caron et al., have shown that transactivation
by Tax was correlated with its ability to interact with the
C-terminal moiety of the TBP and hTAFII28 in transfected
Hela cells [70]. An increase in the intracellular concentra-
tion of hTAFII28 augmented transactivation by Tax. This
effect was also seen in COS-7 cells that have low levels of
endogenous TAFII28. TBP and hTAFII28 also cooperated
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The HIV promoter is comprised of a series of transcription control elements including NF-kB, Spl, TATA box, RNA initiation
site and the downstream TAR RNA enhancer element. In the presence of Tat, a complex interaction between activators which
include NF-kB and/or Spl bind to the upstream control region and interact with transcription factors which include, but may
not be limited to, TBP, TFIIH, P-TEFb and RNA Pol Il. Data from several laboratories now support a role for Tat in transcrip-
tion complex assembly. Tat and P-TEFb facilitate the binding of TBP to the complex, setting the stage for binding of other basal
transcription factors and assembly of the preinitiation complex. In the initiation complex, although both TFIIH and P-TEFb are
present, the Pol Il CTD is phosphorylated primarily by TFIIH at Ser5 (black). Following synthesis of the TAR RNA enhancer
and loss of TFIIH from the elongation complex, P-TEFb is autophosphorylated at Thr186. Transcription elongation requires the
interaction of Tat and P-TEFb with the TAR RNA which facilitates the phosphorylation of the Pol Il CTD at Ser2 (red) and
Ser5 (yellow), as well as the phosphorylation of Tat cofactors Tat-SFI and SPT5. Whether the Tat and P-TEFb bound to TAR
are transferred from the initiation complex, or represent the binding of additional Tat and P-TEFb remains to be established.
The Tat-modified kinase activity of P-TEFb is preferentially sensitive to low concentrations of DRB or flavopiridol. This model
assumes that the Tat and P-TEFb associated with the initiation complex transfers to the TAR RNA enhancer and perhaps to
the elongation complex, a point that has not yet been demonstrated.

to allow Tax activation of the entire HTLV-I promoter and ~ RNA polymerases, an increase in the concentration of
to partially rescue the phenotype of Tax mutants that had =~ hTAFI128, which binds directly to TBP, may compete with
an impaired ability to activate transcription. The authors  the TAFIs and TAFIIIs and drive more TBP into the forma-
speculated that since TBP was present in all three cellular  tion of a TFIID complex interacting with Tax. According to
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this model, overexpression of both TBP and hTAFII28
would most efficiently raise the concentration of TFIID
complexes capable of functioning with Tax.

Future considerations

Recent technical advances, such as ChIP and siRNA assays,
allowed Raha et al. [41] to more clearly demonstrate that
Tat facilitates TC assembly at the HIV initiation site in
vivo. The results of this study are consistent with and sup-
ported by previous studies which demonstrated that Tat,
pTEFb and HATSs are present on the HIV promoter and
support a role of Tat in transcriptional initiation
[23,32,59,71]. It should be noted that, in addition to tech-
nical advances, the ability to detect Tat in transcription
initiation is likely dependent upon the experimental sys-
tem. Along these lines, it should be noted that other recent
ChIP data are more consistent with an effect of Tat at tran-
scription elongation. Bres et al. recently reported that in
HelLa P4 cells SPT5, SPT6, RNAP II and Ser 5-P CTD were
present on the integrated HIV promoter in the absence of
Tat and ongoing transcription [72]. Future work will con-
tinue on the exciting and multifaceted and perhap
sequential role of Tat in chromatin remodeling, preinitia-
tion complex assembly, elongation, and processing and
will include questions such as: 1) How P-TEFb, which was
initially discovered as an elongation factor, selectively
recruits TBP alone or in complex with other TAFs and acti-
vators; 2) Are there TBP associated complexes that are
selective to Tat and not to other cellular promoters, and
can they be purified to homogeneity; 3) Is the TBP
recruited from the Poll or Pollll TC; 4) Does Tat act simi-
larly to TAF subunits replacing some or all of the TFIID
TAF subunits in vivo; 5) Can the data be reproduced in pri-
mary T- and monocytic latent patient samples? One thing
is certain however. More research and funding is needed
to define various mechanisms of Tat function in the hope
that the data will result in finding the very first specific
HIV transcription inhibitor in vivo.

Acknowledgements

The authors would like to thank the Brady and Kashanchi lab members for
their helpful and critical comments, Ms. Lynne Mied and Cynthia de la
Fuente for assisting with the manuscript and Dr. Sergei Nekhai for his con-
tribution on the phosphatase section. This work was supported by grants
from the George Washington University REF fund (A. Vertes and F.
Kashanchi) and NIH grants Al44357, Al43894, and 13969 to F.K.

References

l. Pumfery A, Deng L, Maddukuri A, de la Fuente C, Li H, Wade |D,
Lambert L, Kumar A, Kashanchi F: Chromatin Remodeling and Modi-
fication during HIV-1 Tat-activated Transcription. Curr HIV Res 2003,
1:261-2741.

2. Berkhout B, Gatignol A, Rabson AB, Jeang KT: TAR-independent
activation of the HIV-1 LTR: evidence that tat requires spe-
cific regions of the promoter. Cell 1990, 62:757-767.

3.  Calnan BJ, Biancalana S, Hudson D, Frankel AD: Analysis of
arginine-rich peptides from the HIV Tat protein reveals unu-
sual features of RNA-protein recognition. Genes Dev 1991,
5:201-210.

20.

21.

22.

23.

http://www.retrovirology.com/content/2/1/69

Cato AC, Henderson D, Ponta H: The hormone response ele-
ment of the mouse mammary tumour virus DNA mediates
the progestin and androgen induction of transcription in the
proviral long terminal repeat region. Embo | 1987, 6:363-368.
Selby M, Bain ES, Luciw PA, Peterlin BM: Structure, sequence, and
position of the stem-loop in tar determine transcriptional
elongation by tat through the HIV-Il long terminal repeat.
Genes Dev 1989, 3:547-58.

Kao SY, Calman AF, Luciw PA, Peterlin BM: Anti-termination of
transcription within the long terminal repeat of HIV-1 by tat
gene product. Nature 1987, 330:489-493.

Laspia MF, Rice AP, Mathews MB: HIV-1 Tat protein increases
transcriptional initiation and stabilizes elongation. Cell 1989,
59:283-92.

Garcia JA, Harrich D, Soultanakis E, Wu F, Mitsuyasu R, Gaynor RB:
Human immunodeficiency virus type | LTR TATA and TAR
region sequences required for transcriptional regulation.
Embo | 1989, 8:765-78.

Dingwall C, Ernberg |, Gait M), Green SM, Heaphy S, Karn J, Lowe AD,
Singh M, Skinner MA, Valerio R: Human immunodeficiency virus
| tat protein binds trans-activation-responsive region (TAR)
RNA in vitro. Proc Natl Acad Sci U S A 1989, 86:6925-9.

Marshall NF, Price DH: Control of formation of two distinct
classes of RNA polymerase Il elongation complexes. Mol Cell
Biol 1992, 12:2078-2090.

Jang MK, Mochizuki K, Zhou M, Jeong HS, Brady JN, Ozato K: The
bromodomain protein Brd4 is a positive regulatory compo-
nent of P-TEFb and stimulates RNA polymerase ll-depend-
ent transcription. Mol Cell 2005, 19:523-34.

Fujinaga K, Cujec TP, Peng J, Garriga J, Price DH, Grana X, Peterlin
BM: The ability of positive transcription elongation factor B
to transactivate human immunodeficiency virus transcrip-
tion depends on a functional kinase domain, cyclin T1, and
Tat. J Virol 1998, 72:7154-7159.

Garber ME, Wei P, KewalRamani VN, Mayall TP, Herrmann CH, Rice
AP, Littman DR, Jones KA: The interaction between HIV-I Tat
and human cyclin T1 requires zinc and a critical cysteine res-
idue that is not conserved in the murine CycTI protein.
Genes Dev 1998, 12:3512-3527.

Isel C, Karn J: Direct evidence that HIV-1 Tat stimulates RNA
polymerase Il carboxyl-terminal domain hyperphosphoryla-
tion during transcriptional elongation. | Mol Biol 1999,
290:929-941.

Jones KA: Taking a new TAK on tat transactivation. Genes Dev
1997, 11:2593-2599.

Ramanathan Y, Reza SM, Young TM, Mathews MB, Pe'ery T: Human
and rodent transcription elongation factor P-TEFb: interac-
tions with human immunodeficiency virus type | tat and car-
boxy-terminal domain substrate. | Virol 1999, 73:5448-5458.
Herrmann CH, Rice AP: Lentivirus Tat proteins specifically
associate with a cellular protein kinase, TAK, that hyper-
phosphorylates the carboxyl-terminal domain of the large
subunit of RNA polymerase Il: candidate for a Tat cofactor.
J Virol 1995, 69:1612-1620.

Nekhai S, Shukla RR, Kumar A: A human primary T-lymphocyte-
derived human immunodeficiency virus type | Tat-associ-
ated kinase phosphorylates the C-terminal domain of RNA
polymerase Il and induces CAK activity. | Virol 1997,
71:7436-7441.

Zhou M, Halanski MA, Radonovich MF, Kashanchi F, Peng |, Price DH,
Brady JN: Tat modifies the activity of CDK9 to phosphorylate
serine 5 of the RNA polymerase Il carboxyl-terminal domain
during human immunodeficiency virus type | transcription.
Mol and Cell Biol 2000, 20:5077-5086.

Yang X], Ogryzko VV, Nishikawa ], Howard BH, Nakatani Y: A p300/
CBP-associated factor that competes with the adenoviral
oncoprotein EIA. Nature 1996, 382:319-324.

Garcia-Martinez LF, Mavankal G, Neveu JM, Lane WS, Ivanov D,
Gaynor RB: Purification of a Tat-associated kinase reveals a
TFIIH complex that modulates HIV-I transcription. Embo |
1997, 16:2836-2850.

Parada CA, Roeder RG: Enhanced processivity of RNA
polymerase Il triggered by Tat-induced phosphorylation of
its carboxy-terminal domain. Nature 1996, 384:375-378.

Zhou M, Deng L, Lacoste V, Park HU, Pumfery A, Kashanchi F, Brady
JN, Kumar A: Coordination of transcription factor phosphor-

Page 6 of 8

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15046251
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15046251
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2201451
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2201451
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2201451
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1899841
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1899841
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1899841
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3034586
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3034586
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3034586
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2470647
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2470647
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2825027
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2825027
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2825027
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2553266
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2553266
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2721501
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2721501
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2476805
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2476805
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2476805
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1569941
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1569941
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16109376
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16109376
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16109376
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9696809
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9696809
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9696809
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9832504
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9832504
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10438593
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10438593
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10438593
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9334323
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10364292
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10364292
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10364292
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7853496
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7853496
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9311822
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9311822
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9311822
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8684459
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8684459
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8684459
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9184228
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9184228
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8934526
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8934526
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8934526
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15564463

Retrovirology 2005, 2:69

24.

25.

26.

27.

28.

29.

30.

3l

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

ylation and histone methylation by the P-TEFb kinase during
human immunodeficiency virus type | transcription. | Virol
2004, 78:13522-33.

Jeang KT, Chun R, Lin NH, Gatignol A, Glabe CG, Fan H: In vitro
and in vivo binding of human immunodeficiency virus type |
Tat protein and Spl transcription factor. | Virol 1993,
67:6224-6233.

Kashanchi F, Duvall JF, Dittmer |, Mireskandari A, Reid RL, Gitlin SD,
Brady JN: Involvement of transcription factor YB-1 in human
T-cell lymphotropic virus type | basal gene expression. | Virol
1994, 68:561-565.

Majello B, Napolitano G, Lania L: Recruitment of the TATA-bind-
ing protein to the HIV-1 promoter is a limiting step for Tat
transactivation. AIDS 1998, 12:1957-1964.

Veschambre P, Simard P, Jalinot P: Evidence for functional inter-
action between the HIV-1 Tat transactivator and the TATA
box binding protein in vivo. | Mol Biol 1995, 250:169-180.

Deng L, Ammosova T, Pumfery A, Kashanchi F, Nekhai S: HIV-1 Tat
interaction with RNA polymerase Il C-terminal domain
(CTD) and a dynamic association with CDK2 induce CTD
phosphorylation and transcription from HIV-1 promoter. |
Biol Chem 2002, 277:33922-33929.

Kamine ), Elangovan B, Subramanian T, Coleman D, Chinnadurai G:
Identification of a cellular protein that specifically interacts
with the essential cysteine region of the HIV-1 Tat transacti-
vator. Virology 1996, 216:357-366.

Cujec TP, Cho H, Maldonado E, Meyer ], Reinberg D, Peterlin BM:
The human immunodeficiency virus transactivator Tat
interacts with the RNA polymerase Il holoenzyme. Mol and
Cell Biol 1997, 17:1817-1823.

Mavankal G, Ignatius Ou SH, Oliver H, Sigman D, Gaynor RB: The
human immunodeficiency virus transactivator Tat interacts
with the RNA polymerase Il holoenzyme. Proc Natl Acad Sci U
S A 1996, 93:2089-2094.

Marzio G, Tyagi M, Gutierrez Ml, Giacca M: HIV-1 tat transactiva-
tor recruits p300 and CREB-binding protein histone acetyl-
transferases to the viral promoter. Proc Nat/ Acad SciU S A 1998,
95:13519-13524.

Benkirane M, Chun RF, Xiao H, Ogryzko VV, Howard BH, Nakatani
Y, Jeang KT: Activation of integrated provirus requires histone
acetyltransferase. p300 and P/CAF are coactivators for HIV-
| Tat. | Biol Chem 1998, 273:24898-24905.

Col E, Caron C, Seigneurin-Berny D, Gracia J, Favier A, Khochbin S:
The histone acetyltransferase, hGCNS5, interacts with and
acetylates the HIV transactivator, Tat. | Biol Chem 2001,
276:28179-28184.

Garber ME, Jones KA: HIV-1 Tat: coping with negative elonga-
tion factors. Curr Opin Immunol 1999, 11:460-465.

Karn J: Tackling Tat. | Mol Biol 1999, 293:235-254.

Brigati C, Giacca M, Noonan DM, Albini A: HIV Tat, its TARgets
and the control of viral gene expression. FEMS Microbiol Lett
2003, 220:57-65.

Giacca M: The HIV-I Tat protein: a multifaceted target for
novel therapeutic opportunities. Curr Drug Targets Immune
Endocr Metabol Disord 2004, 4:277-285.

Bannwarth S, Gatignol A: HIV-1 TAR RNA: the target of molec-
ular interactions between the virus and its host. Curr HIV Res
2005, 3:61-71.

Barboric M, Peterlin BM: A new paradigm in eukaryotic biology:
HIV Tat and the control of transcriptional elongation. PLoS
Biol 2005, 3:e76.

Raha T, Cheng SW, Green MR: HIV-1 Tat stimulates transcrip-
tion complex assembly through recruitment of TBP in the
absence of TAFs. PLoS Biol 2005, 3:e44.

Brown JA, Howcroft TK, Singer DS: HIV Tat protein require-
ments for transactivation and repression of transcription are
separable. | Acquir Inmune Defic Syndr Hum Retrovirol 1998, 17:9-16.
Howcroft TK, Palmer LA, Brown |, Rellahan B, Kashanchi F, Brady JN,
Singer DS: HIV Tat represses transcription through Spl-like
elements in the basal promoter. Immunity 1995, 3:127-138.
Carroll IR, Wang ], Howcroft TK, Singer DS: HIV Tat represses
transcription of the beta 2-microglobulin promoter. Mol
Immunol 1998, 35:1171-1178.

Weissman D, Brown JA, Howcroft TK, Hwang ], Chawla A, Roche
PA, Schiltz L, Nakatani Y, Singer DS: HIV-1 tat binds TAFI1250
and represses TAFII250-dependent transcription of major

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

6l.

62.

63.

64.

65.
66.

http://www.retrovirology.com/content/2/1/69

histocompatibility class | genes. Proc Natl Acad Sci U S A 1998,
95:11601-11606.

Kashanchi F, Piras G, Radonovich MF, Duvall JF, Fattaey A, Chiang
CM, Roeder RG, Brady JN: Direct interaction of human TFIID
with the HIV-1 transactivator tat. Nature 1994, 367:95-9.
Chiang CM, Roeder RG: Cloning of an intrinsic human TFIID
subunit that interacts with multiple transcriptional activa-
tors. Science 1995, 267(5197):531-6.

Bohan CA, Kashanchi F, Ensoli B, Buonaguro L, Boris-Lawrie KA,
Brady JN: Analysis of Tat transactivation of human immuno-
deficiency virus transcription in vitro. Gene Expr 1992,
2:391-407.

Wang Z, Morris GF, Rice AP, Xiong W, Morris CB: Wild-type and
transactivation-defective mutants of human immunodefi-
ciency virus type | Tat protein bind human TATA-binding
protein in vitro. | Acquir Inmune Defic Syndr Human Retrovirol 1996,
12:128-38.

Kashanchi F, Khleif SN, Duvall JF, Sadaie MR, Radonovich MF, Cho M,
Martin MA, Chen SY, Weinmann R, Brady |N: Interaction of
human immunodeficiency virus type | Tat with a unique site
of TFIID inhibits negative cofactor Drl and stabilizes the
TFIID-TFIIA complex. | Virol 1996, 70:5503-10.

Veschambre P, Roisin A, Jalinot P: Biochemical and functional
interaction of the human immunodeficiency virus type | Tat
transactivator with the general transcription factor TFIIB. |
Gen Virol 1997, 78:2235-45.

Xiao H, Lis JT, Jeang KT: Promoter activity of Tat at steps sub-
sequent to TATA-binding protein recruitment. Mol Cell Biol
1997, 17:6898-6905.

Pendergrast PS, Morrison D, Tansey WP, Hernandez N: Mutations
in the carboxy-terminal domain of TBP affect the synthesis
of human immunodeficiency virus type | full-length and
short transcripts similarly. | Virol 1996, 70:5025-34.

Majello B, Napolitano G, De Luca P, Lania L: Recruitment of
human TBP selectively activates RNA polymerase 1l TATA-
dependent promoters. | Biol Chem 1998, 273:16509-16.

Majello B, Napolitano G, Lania L: Recruitment of the TATA-bind-
ing protein to the HIV-1 promoter is a limiting step for Tat
transactivation. AIDS 1998, 12:1957-64.

Jeang KT, Berkhout B: Kinetics of HIV-1 long terminal repeat
transactivation. Use of intragenic ribozyme to assess rate-
limiting steps. | Biol Chem 1992, 267:17891-9.

Jeang KT, Berkhout B, Dropulic B: Effects of integration and rep-
lication on transcription of the HIV-1 long terminal repeat. |
Biol Chem 1993, 268:24940-9.

Ammosova T, Washington K, Debebe Z, Brady ], Nekhai S: Dephos-
phorylation of CDK9 by protein phosphatase 2A and protein
phosphatase-1 in Tat-activated HIV-1 transcription. Retrovi-
rology 2005, 2:47.

Lusic M, Marcello A, Cereseto A, Giacca M: Regulation of HIV-I
gene expression by histone acetylation and factor recruit-
ment at the LTR promoter. Embo | 2003, 22:6550-6561.

Kiefer HL, Hanley TM, Marcello JE, Karthik AG, Viglianti GA: Retin-
oic acid inhibition of chromatin remodeling at the human
immunodeficiency virus type | promoter. Uncoupling of his-
tone acetylation and chromatin remodeling. | Biol Chem 2004,
279:43604-43613.

Hori Roderick T, Shuping Xu , Xianyuan Hu , Sung Pyo : TF1IB-facil-
itated recruitment of preinitiation complexes by a TAF-
independent mechanism. Nucleic Acids Res 2004, 32:13.

Lukac DM, Harel NY, Tanese N, Alwine JC: TAF-Like Functions of
Human Cytomegalovirus Immediate-Early Proteins. | Virol
1997, 71:7227-7239.

Mazzarelli JM, Mengus G, Davidson |, Ricciardi RP: The Transacti-
vation Domain of Adenovirus EIA Interacts with the C Ter-
minus of Human TAFIII35. | Virol 1997, 71:7978-7983.
Damania B, Lieberman P, Alwine JC: Simian Virus 40 Large T
Antigen Stabilizes the TATA-Binding Protein-TFIIA Com-
plex on the TATA Element. Mol and Cell Biol 1998,
17:3926-3935.

Damania B, Alwine JC: TAF-like function of SV40 large T anti-
gen. Genes Dev 1996, 10:1369-138I.

Andrisani O, Dixon JE: Identification and purification of a novel
120-kDa protein that recognizes the cAMP-responsive ele-
ment. | Biol Chem 1990, 265:3212-8.

Page 7 of 8

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15564463
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15564463
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7690421
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7690421
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7690421
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8254772
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8254772
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9814863
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9814863
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9814863
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7608968
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7608968
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7608968
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12114499
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12114499
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12114499
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8607265
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8607265
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8607265
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8700889
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8700889
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8700889
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9811832
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9811832
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9811832
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9733796
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9733796
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9733796
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11384967
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11384967
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11384967
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10448148
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10448148
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10550206
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12644228
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12644228
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15578978
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15578978
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15638724
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15638724
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15719065
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15719065
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15719058
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15719058
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15719058
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9436753
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9436753
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9436753
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7621073
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7621073
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10199391
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10199391
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9751712
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9751712
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9751712
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7824954
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7824954
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7824954
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1282057
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1282057
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8764062
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8764062
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8764062
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9292011
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9292011
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9292011
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9372921
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9372921
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8764009
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8764009
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8764009
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9632719
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9632719
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9632719
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9814863
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9814863
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9814863
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1517225
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1517225
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1517225
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8227056
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8227056
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16048649
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16048649
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16048649
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14657027
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14657027
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14657027
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15299018
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15299018
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15299018
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9311796
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9311796
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9311891
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9311891
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9311891
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8647434
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8647434
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2137455
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2137455
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2137455

Retrovirology 2005, 2:69

67.

68.

69.

70.

71.

72.

Clemens KE, Piras G, Radonovich MF, Choi KS, Duvall JF, DejJong J,
Roeder R, Brady JN: Interaction of the human T-cell lympho-
tropic virus type | tax transactivator with transcription fac-
tor IIA. Mol Cell Biol 1996, 16:4656-64.

Kwok RP, Laurance ME, Lundblad JR, Goldman PS, Shih H, Connor
LM, Marriott S}, Goodman RH: Control of cAMP-regulated
enhancers by the viral transactivator Tax through CREB and
the co-activator CBP. Nature 1996, 380:642-6.

Jiang H, Lu H, Schiltz RL, Pise-Masison CA, Ogryzko VV, Nakatani Y,
Brady JN: PCAF interacts with tax and stimulates tax transac-
tivation in a histone acetyltransferase-independent manner.
Mol Cell Biol 1999, 19:8136-45.

Caron CC, Mengus G, Dubrowskaya V, Roison A, Davidson |, Jalinot
P: Human TAFI128 interacts with the human T cell leukemia
virus type | Tax transactivator and promotes its transcrip-
tional activity. Proc Natl Acad Sci U S A 1997, 94:3662-3667.

Ping YH, Rana TM: Tat-associated kinase (P-TEFb): a compo-
nent of transcription preinitiation and elongation com-
plexes. | Biol Chem 1999, 274:7399-7404.

Bres V, Gomes N, Pickle L, Jones KA: A human splicing factor,
SKIP, associates with P-TEFb and enhances transcription
elongation by HIV-1 Tat. Genes Dev 2005, 19:1211-1226.

http://www.retrovirology.com/content/2/1/69

Publish with BioMed Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."
Sir Paul Nurse, Cancer Research UK
Your research papers will be:
« available free of charge to the entire biomedical community
« peer reviewed and publishedimmediately upon acceptance
« cited in PubMed and archived on PubMed Central
« yours — you keep the copyright

Submit your manuscript here:

O BioMedcentral
http://www.biomedcentral.com/info/publishing_adv.asp

Page 8 of 8

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8756622
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8756622
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8756622
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8602268
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8602268
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8602268
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10567539
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10567539
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9108034
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9108034
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9108034
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10066804
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10066804
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10066804
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15905409
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15905409
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15905409
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Tat transactivation: A historical perspective, initiation vs elongation
	A role for Tat in transcription preinitiation complex assembly
	Further evidence for the role of Tat in preinitiation complex assembly
	Chromatin structure
	Similarities to viral transactivators Herpesvirus VP16 and IE, Adenovirus E1A and SV40 T- antigen and HTLV-1 Tax
	Future considerations
	Acknowledgements
	References

