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Abstract

Background: The antibacterial activity of host defense peptides (HDP) is largely mediated by
permeabilization of bacterial membranes. The lipid membrane of enveloped viruses might also be
a target of antimicrobial peptides. Therefore, we screened a panel of naturally occurring HDPs
representing different classes for inhibition of early, Env-independent steps in the HIV replication
cycle. A lentiviral vector-based screening assay was used to determine the inhibitory effect of HDPs
on early steps in the replication cycle and on cell metabolism.

Results: Human LL37 and porcine Protegrin-1 specifically reduced lentiviral vector infectivity,
whereas the reduction of luciferase activities observed at high concentrations of the other HDPs
is primarily due to modulation of cellular activity and/ or cytotoxicity rather than antiviral activity.
A retroviral vector was inhibited by LL37 and Protegrin-l to similar extent, while no specific
inhibition of adenoviral vector mediated gene transfer was observed. Specific inhibitory effects of
Protegrin-1 were confirmed for wild type HIV-I.

Conclusion: Although Protegrin-1 apparently inhibits an early step in the HIV-replication cycle,
cytotoxic effects might limit its use as an antiviral agent unless the specificity for the virus can be

improved.
Background innate, broad-spectrum antimicrobial defense mecha-
As a barrier and immune organ, the gastrointestinal tract,  nisms [2]. Host defense peptides (HDPs) of the innate

lung and skin play a key role in protecting the body from  immune response play an important role in the protective
a hostile environment [1]. The low incidence of infection  barrier function of the epithelia [3]. Host defense peptides
at normal epithelial surfaces reflects the presence of  have been isolated from diverse organisms, including
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plants, insects, bacteria and vertebrates [4]. Several classes
of mammalian peptide antibiotics have been ascribed piv-
otal roles in innate immunity [5]. Among these are vari-
ous cysteine-rich peptides such as defensins [6,7] and the
more structurally diverse cathelicidins [8]. Produced as
precursors, they require proteolytic processing to liberate
the mature functional antimicrobial peptide. Cathelici-
dins contain a conserved N-terminal cathelin domain,
and a structurally diverse C-terminal domain that pos-
sesses the peptide's antimicrobial activity. Rabbit CAP18
was the first cathelicidin precursor described, and its
mature peptide has broad-spectrum antimicrobial activity
[9]. Cathelicidins have since been identified in many
other species including hCAP18/LL37 in humans [10],
protegrins in swine [11-13], CRAMP in mice [14,15] and
SMAP29 in sheep [16]. Many of these peptides demon-
strate extremely broad-spectrum antimicrobial activity,
including Gram positive and Gram negative bacteria and
fungi [4,15]. In addition, they achieve bacterial killing
much more rapidly than any commercially available anti-
biotic [17]. Recently, a new family of synthetic, o-helical
HDPs called "ovispirins" was described [18-20]. Although
some of these modified peptides had similar antimicro-
bial activity of naturally occurring peptides, they mani-
fested appreciable cytotoxicity. We have demonstrated
recently that variants of Ovispirin, the so called Novispi-
rin peptides, displayed more favorable toxic/ therapeutic
ratios in vitro and broad spectrum activity in infected rat
burn model [21,22].

Some of these peptides are induced at epithelial surfaces
in response to invading organisms [23-25]. Many HDPs
kill microorganisms by causing membrane permeabiliza-
tion, although not necessarily as their sole mode of action
[26]. Some HDPs also direct chemotaxis, promote wound
healing, angiogenesis and contribute to adaptive immu-
nity by mobilizing memory T cells and immature den-
dritic cells [25,27]. Recent studies have also demonstrated
antitumor activity after treatment with HDPs [28].

In addition, several antiviral activities were reported.
Recently it has been demonstrated that rabbit neutrophil
peptide alpha-defensin NP1 protects cells from infection
with HSV-1 and 2 [29]. Other studies revealed that human
neutrophil peptide HNP1 to 3 and Theta-defensins also
inhibit HSV infection although by different mechanisms
[30-32]. The ancestral human theta-defensins retrocyclin
blocked HSV attachment [33]. The inhibition of adenovi-
rus replication by the antimicrobial peptide awaits identi-
fication of a mechanism of action [30]. Anti-HIV activity
of defensins were first reported 1993 by Nakashima and
coworkers [34]. The alpha-defensins exhibited anti-HIV
activity on at least two levels: directly inactivating virus
particles; and affecting the ability of target CD4 cells to
replicate the virus [35-37]. Binding to gp120 of HIV-1 and
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inhibition of HIV entry has also been identified as the
mechanism of inhibition of HIV infection by theta
defensins [38]. Due to their inhibitory effect on HIV-1
replication and due to an association of a single-nucle-
otide polymorphism in a beta defensin gene human beta-
defensins might also play an important role in host
defense against HIV-1 [39].

The antibacterial activity of HDPs is largely mediated by
pore formation leading to permeablization of the bacte-
rial membrane. Although some selectivity for bacterial
membranes has been described, the lipid membrane of
enveloped viruses might also be a target of antimicrobial
peptides [32,40]. This might allow development of antivi-
ral effector molecules for topical application against a
broad spectrum of enveloped viruses. Targeting host cell-
derived membrane components might be a particularly
interesting approach to inhibit viruses that rapidly
develop resistance to compounds directed against viral
proteins such as HIV. Therefore, we screened a panel of
different natural occurring and designer HDPs for Env-
independent inhibition of HIV infection at an early step in
the viral replication cycle.

Results

Given the potential cytotoxicity of HDPs, it was important
to discriminate between modulation of cell metabolism
and direct antiviral effects. We were concerned that HDPs
could modulate host cell metabolism without affecting
cell viability as assayed for example by standard MTT
assays. We therefore decided to use immunodeficiency
virus-based vectors transferring the luciferase gene to
determine both, the HDP antiviral activity and modula-
tion of cell metabolism. The luciferase activity of target
cells, stably transduced with the lentiviral vector prior to
HDP treatment should reveal any effect of HDPs on cellu-
lar transcriptional and translational efficacy. Treating cells
with HDPs during infection with the lentiviral vector and
comparison with results obtained with the stably trans-
duced cells should then allow identifying HDPs that
inhibit early steps in the viral replication cycle. To validate
the luciferase-based assay for modulation of cell metabo-
lism, 293 cells were stably transduced with a lentiviral vec-
tor transferring the luciferase gene. Incubation of
transduced cells with increasing concentrations of Prote-
grin-1 and LL37 led to a dose-dependent inhibition of
luciferase activity (Fig. 1). Comparison to the MTT test
revealed a similar dose response curve, although the MTT
test might be less sensitive at lower concentrations of the
HDPs. Testing cell proliferation by a BrdU incorporation
assay revealed a threshold level above which proliferation
is strongly reduced. To allow side by side evaluation of
cytotoxic and antiviral effects of HDPs with the same read-
out the luciferase-based assay was used in most subse-
quent experiments.
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Figure |

Comparison of different cytotoxicity assays. 293A target cells stably transduced with the luciferase gene were incubated
for 48 hours in the indicated concentrations of LL37 or Protegrin-|. Viability, cell proliferation and cell metabolism of parallel
cultures were assessed by a standard MTT assay, Brd-U incorporation and the luciferase assay, respectively. Values are
expressed as percentage of the values obtained from cultures without HDPs. The mean and the standard deviation of tripli-

cates are given.

Table I: Summary of the radial diffusion assay results comparing host defense peptides with a clinically used antibiotic (Ampicillin)

ME C (ug/ ml)
Organisms Protegrin-1 LL-37 HBD 2 Plectasin Novi- G10 Ampicillin
S. aureus 0,91 £ 0,04 474+0,1 9,13£0,5 242+04 42+04 10,50 £ 0,2
S. epidermidis 4,48 £ 0,2 13,09 £ 0,6 8,96 £ 0,2 820+ 0,5 2,8+0,02 ND
E. faecalis 4,46 +0,3 13,61 £0,7 - 10,60 + 0,7 4303 28,85 + 0,6
P. aeruginosa 33+1,1 12,28 £ 0,5 6,87 £ 0,8 > |28 1,56 + 0,4 ND
E. coli 2+0,l 11,66 £ 1,5 3,66 0,3 79,10+ 0,3 1,63£0,3 18,9 £0,9
A. baumanii 501 0,2 13,13 £0,2 3,19£05 > 128 4,5+ 0,02 ND

All clinical isolates from human wounds showed significant sensitivity to HDPs. ND: not determined. MEC: minimal effectory concentration. MEC >
128 means that the tested bacteria is not susceptible to the drug tested. Depicted data consists of 3 individual experiments; each condition was

performed in quadruplicates

A panel of HDPs containing members of the major classes
of antimicrobial peptides were analyzed for inhibitory
effects against lentiviral vectors. Given the variability of
the viral envelope protein, we focused on identifying Env-
independent inhibitory activities by using VSV-G pseudo-
typed lentiviral vectors. All antimicrobial peptides used in
this study, human cathelicidin LL37, recombinant human

B-Defensin-2, porcine Protegrin-1 (PG-1), fungal Plecta-
sin and Novispirin G10, inhibited gram positive and gram
negative bacteria revealing antimicrobial activity in the
expected range (Table 1) and confirmed bioactivity of the
peptides used.
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The inhibitory effect against the lentiviral vector was
determined by preincubation of the vector with human
cathelicidin LL37, recombinant human B-Defensin-2,
porcine PG-1, fungal Plectasin and Novispirin G10 for 30
minutes in increasing concentrations of peptide prior to
the addition of vectors with antimicrobial peptide to the
target cells. Stably transduced target cells were incubated
in parallel with the HDPs to detect effects on cell metabo-
lism. Luciferase activities were determined 2 days after
infection. All HDPs led to a reduction in luciferase activity
of cells transduced with the lentiviral vector (Fig. 2A-E),
but most of them also reduced the luciferase activity of
stably transduced target cells. Specific inhibition of early
steps of infection was only seen for the cathelicidin LL37
and PG-1. As an additional control for the specificity of
inhibition, a non-enveloped adenoviral vector transfer-
ring the luciferase gene was also incubated with the same
panel of HDPs. None of the HDPs led to a dose-depend-
ent inhibition of early steps of the adenoviral replication
cycle (Fig. 2F-J). Two-fold serial dilutions were used to
determine 50% inhibitory concentrations (ICs,) of LL37
and PG-1, resulting in ICs,s of approximately 30 pg/ml
and 16.8 pg/ml, respectively (Fig. 3).

In initial attempts to characterize the mechanism of inhi-
bition of lentiviral vector infectivity, LL37 and PG-1 were
added at different time points during infection: both
HDPs were either preincubated with the vector prepara-
tion for 30 minutes prior to addition to the cells or the
HDPs and the vector were added simultaneously to the
cells (Fig. 4A+B). In addition, cells were first infected with
the lentiviral vector for two hours prior to addition of the
HDPs. LL37 and PG-1 exerted the strongest inhibition
after preincubation of HDPs and the lentiviral vectors,
indicating a direct effect on infectivity of the vector parti-
cles. However, adding LL37 and PG-1 two hours after
incubation of cells with the lentiviral vector also led to a
stronger reduction of luciferase activity than observed
after incubation of cells stably transduced with the luci-
ferase gene suggesting a second target in the infection
cycle that is affected by LL37 and PG-1. To further discrim-
inate between direct inhibitory effects on vector particles
and effects mediated by potential HDP cell interactions
lentiviral vector particles were first incubated with LL37
and PG-1 for 30 minutes and then added either undiluted
or at a 1:10 dilution to the target cells. Due to a 10-fold
lower HDP concentration in the latter cultures, vector
infectivity should be reduced to a lesser extent, if inhibi-
tory effects are mediated by cellular targets. Comparable
dose-dependent inhibition curves (Fig 4C,D) of diluted
and undiluted vectors demonstrate that the inhibitory
effects of LL37 and PG-1 depend on the HDP concentra-
tion during preincubation of the vector particles and not
on the HDP concentration during subsequent cell culture.

http://www.retrovirology.com/content/2/1/2

The lentiviral vector used in this study had been pseudo-
typed with the G protein of vesicular stomatitis virus
(VSV-G). To evaluate whether LL37 and PG-1 directly tar-
get VSV-G or a lentiviral protein, the inhibitory effect of
these HDP against the lentiviral vector was compared side
by side to their effect on a retroviral vector containing the
amphotropic MLV Env for entry into target cells. The dose
dependent reduction in the luciferase activity in the target
cells was very similar in cells transduced with the lentiviral
or the MLV vector (Fig. 5).

The inhibition of HIV vectors containing the HIV-1 enve-
lope by LL37 and PG-1 were studied on P4CCR5 cells
expressing CD4 and coreceptors. ICs,s of 25 pg/ml and 14
pg/ml were observed for LL37 and PG-1, respectively (Fig
6A,B), while only minimal inhibitory effects on cell pro-
liferation were detected at these concentrations. Inhibi-
tion of early steps of wild type HIV-1 infection by LL37
and PG-1 was also evaluated on P4ACCR5 indicator cells,
which produce beta-Galactosidase upon expression of the
viral tat gene after infection. The BrdU incorporation assay
was used to evaluate modulation of cell function. A dose
dependent reduction of the titer of HIV-1 on PACCR5 cells
was observed for both HDPs. However, the IC;, of LL37
was approximately 3-fold higher than the IC;, previously
determined for the lentiviral vectors resulting in a narrow
gap between antiviral and antiproliferative effects of LL37.
In contrast, the ICs, of PG-1 was below 10 pg/ml, while
inhibitory effects on cell proliferation were not observed
up to concentrations of 50 ug/ml.

Discussion

From the panel of five HDP studied, the cathelicidin LL37
and PG-1 were found to specifically inhibit lentiviral and
retroviral vector, but not adenoviral vector infectivity. The
strongest inhibition was seen if the lentiviral vectors were
preincubated with LL37 and PG-1. This suggests that these
HDPs directly interacted with the vector particles, which is
consistent with our observation that inhibition was
dependent on the HDP concentration during preincuba-
tion of the vectors with HDPs, but not on the HDP con-
centration during infection of the cells. Since lentiviral
vectors and retroviral vectors were inhibited to a similar
degree although they do not share any viral protein, the
target for the HDP on the particles is probably cell-
derived. This could either be the lipid membrane derived
from the cell, which surrounds the vector particles or cel-
lular membrane proteins that are frequently incorporated
in lentiviral and retroviral particles during budding [41].
A permeabilizing effect of LL37 and PG-1 on the viral par-
ticles would be consistent with our data, but other mech-
anisms of inhibition cannot be excluded. While the
inhibitory effect of PG-1 was also detected with wild type
HIV-1 on P4CCRS5 cells, LL37 inhibited HIV-1 to lesser
degree then the lentiviral vectors. Due an ICs, of 88 pug/ml
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Figure 2

Inhibitory activity of HDPs against lentiviral and adenoviral vectors. Percent luciferase activity of 293A target cells
transduced in the presence of the indicated amounts of HDP with the VLABH lentiviral vector (A to E) or an adenoviral vector
(F to ]) both transferring the luciferase gene is shown. Modulation of cell metabolism was investigated in parallel by incubating
293A target cells stably transduced with a luciferase gene with the indicated amounts of HDP. The luciferase activity is
expressed as percentage of the luciferase activity of cells cultured in the absence of HDP. The mean and the standard deviation
of triplicates are given.
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50% inhibitory concentrations of LL37 and Protegrin-1. Two-fold serial dilutions were used to determine the ICsys of
LL37 (A) and Protegrin-1 for the VLABH vector (B). Modulation of cell metabolism was investigated in parallel by incubating
293A target cells stably transduced with a luciferase gene with the indicated amounts of HDP. The luciferase activity is
expressed as percentage of the luciferase activity of cells cultured in the absence of HDP. The mean and the standard deviation

of triplicates are given.

against wild type HIV-1, it is questionable whether LL37
concentrations are sufficiently high at mucosal mem-
branes to play a role in host defense against HIV-1.

Conclusions

Modulation of cell metabolism was generally seen at con-
centrations of HDPs exceeding 50 pug/ml, while the MEC
of the antibacterial activity ranged from 1 to 10 ug/ml.
This might leave a sufficient window for therapeutic inter-
vention of bacterial infection. However, for the treatment
of HIV-1, the therapeutic window of LL37 and PG-1 is
rather narrow. It should also be noted that the HDP-
induced modulation of cell metabolism and cytotoxicity
can be cell type dependent. Therefore, increasing the selec-
tivity of HDPs for early steps in the viral replication cycle
seems to be necessary for further development of the
human cathelicidin LL37 and the porcine Protegrin-1 as
antiviral agents for systemic or topical applications.

Methods

Preparation of vectors transferring the luciferase or GFP
genes

To generate lentiviral vector particles transferring the luci-
ferase gene, a codon-optimized (Geneart GmbH, Regens-
burg, Germany) HIV-1 gag-pol expression plasmid
(Hgp®™) [42] and a VSV-G expression plasmid (pHIT-G)
[43] were used to package the SIV-based vector VLABH.

This vector contains the luciferase gene replacing the GFP
gene of VGABH [44].5 nug of Hgpsy®, 2 nug of pHIT-G and 5
pg of VLABH were transiently cotransfected by the
CaPO  coprecipitation method into 293T cells as previ-
ously described [45]. An HIV vector construct containing
the GFP reporter gene (HIV-CSCG) [46] was also used to
prepare lentiviral vector particles by cotransfection with
Hgpyn, pcTat [47], pcRev [47] and pHIT-G or pSVIilenv3-
2, an HIV-1 envelope expression plasmid [48]. The MLV
vectors were prepared by cotransfection of pHIT-456,
pHIT-60 and pRV-172 [49]. Two days after transfection,
the supernatants were cleared from cellular debris by low
speed centrifugation (10 minutes, 1000 x g) and filtration
through 0.2 pm filters from Roth (Karlsruhe, Germany).
Aliquots were stored at -80°C.

Construction and Production of Ad.OW126 Vector

Beginning with a first generation E1- and E3-deleted ade-
noviral vector, we generated a replication-competent ade-
noviral vector Ad.OW126, which harbors in the E1 region
the firefly luciferase cDNA (subcloned from pGEM-Luc
(Promega, Madison, WI)), a IRES element [50,51], and an
Ad5 E1A AE1B-55K gene. The entire expression cassette is
driven by the human CMV-IE promoter in parallel to the
transcriptional orientation of the adenovirus E1 gene
products and terminated by the bovine growth hormone
polyadenylation site. The expression cassette was flanked
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Figure 4

Time and concentration dependent inhibition of lentiviral vectors by LL37 and Protegrin-1. The lentiviral vector
VLABH transferring the luciferase gene was either preincubated with 200 pg/ml of LL37 (A) or 50 pg/ml of Protegrin-1 (B) for
30 minutes (-30) or added simultaneously (0) with LL37 and Protegrin-1 to 293A target cells. Target cells were also preincu-
bated for 120 minutes with the lentiviral vector prior to addition of LL37 and Protegrin-1. Two days after infection luciferase
activities were determined as percentage of luciferase activities of cells cultured in the absence of HDPs. Cells stably trans-
duced with the luciferase gene were also cultured in the presence and absence of LL37 and PG-1| to determine the effect of
HDPs on the cell metabolism. The mean and the standard deviation of triplicates is given. A lentiviral vector transferring the
GFP gene (HIV-CSCG) was incubated for 30 minutes at the indicated concentrations of LL37 (C) or Protegrin-1 (D). The vec-
tor was then added directly to 293A target cells (undiluted) or after a 1:10 dilution in medium lacking the HDPs. The number
of GFP positive cells at each HDP concentration is given as percentage of GFP-positive cells of cultures transduced with diluted
and undiluted vectors in the absence of HDPs. The mean and standard deviation of triplicates are shown.

upstream by the Ad5 packaging sequence and down-
stream by the Ad5 pIX. The Ad.OW126 vector was
generated by in vitro ligation [52] to H5d1327 (kindly pro-
vided by T. Shenk, Princeton University, Princeton, NJ),
utilizing the unique Bst1107 I restriction site. The vector
was propagated in 293 cells and purified by two rounds of
CsCl density centrifugation [53], dialyzed (Slide-A-Lyzer,

Pierce, Rockford, IL) against 1500 ml of PBS with 1 mM
MgCl, and 10% glycerol four-times (1 hour each) at 4°C,
and stored at -80°C until use. The concentration of the
vector was determined by measuring absorbency at 260
nm [54], and the infectious titer was determined by
plaque assay on 293 cells [55]. The ratio of infectious to
non-infectious virus particles was approximately 1:80.
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Comparative analysis of inhibition of lentiviral and retroviral vector infectivity. Percent luciferase activity of 293A
target cells transduced in the presence of the indicated amounts of HDP with a lentiviral vector (VLABH) or a retroviral vector
(pPRV-172) both transferring the luciferase gene is shown. Modulation of cell metabolism was investigated in parallel by incubat-
ing 293A target cells stably transduced with a luciferase gene with the indicated amounts of HDP. The luciferase activity is
expressed as percentage of the luciferase activity of cells cultured in the absence of HDP. The mean and the standard deviation

of triplicates of two independent experiments are shown.

Generation of 293A cells stably transduced with a
luciferase gene

To stably transduce the luciferase gene into 293A cells, a
self-inactivating version of VLABH, VLABH-SIN similar to
VGABH-SIN [44] was packaged by cotransfection with
Hgpsy® and pHIT-G. 293A cells were plated in 24 well
plates at a density of 50.000 cells / well and transduced
with 200 pl of VLABH-SIN vector for two hours. Two days
after plating cells were transferred to one well of a six well
plate and transduced again with 1 ml of VLABH-SIN
vector. Cells were subsequently expanded resulting in
293-Luc cells.

Luciferase assay

The supernatant of infected 293A or 293-Luc cells, cul-
tured in 96 well plates was removed and cells were lysed
in 50 pl of cell lysis buffer (Promega, Pittsburgh, PA). 20
pl of the cell lysates were used in the firefly luciferase assay
system of Promega as described by the manufacturer. Each
single value of the triplicates was expressed as percent of
the mean of triplicates of control cultures infected with
the same vector in the absence of HDPs and the mean and
the standard deviation of the percent values was calcu-
lated for each triplicate.

Host defense peptides

The antimicrobial peptides (human LL37, porcine PG1-1,
mutants from the ovine SAP29: Novispirin G10 and fun-
gal Plectasin) used in this study were prepared by solid

phase synthesis and purified by RP-HPLC. Recombinant
human B-Defensin-2 was produced by a molecular farm-
ing approach in transgenic potato tubers and purified by
perfusion chromatography (data not shown). The pep-
tides (= 98% pure) were dissolved in 0.01% acetic acid
and used for all in vitro and in vivo studies. Potential endo-
toxin contamination was monitored with the chromoge-
nic Limulus amoebocyte lysate assay (BioWhittaker,
Walkersville, MD) using Escherichia coli endotoxin (sup-
plied with the kit) as the standard. Endotoxin levels for
the peptides were not detectable.

Bacteria

The following strains were used in this study: Gram-nega-
tive strains: Acinetobacter baumannii (ATCC 19606),
Escherichia coli (ATCC 25922) and Pseudomonas aeruginosa
(ATCC 27853) Gram-positive strains: Staphylococcus
aureus (ATCC 25923), Staphylococcus epidermidis (ATCC
12228) and Enterococcus faecalis (ATCC 29212).

All bacterial strains were analyzed with API test strips
(BioMerieux, Hazelwood, MO) to confirm identity and
aliquots were stored frozen in 50 % skim milk at -80°C.
Bacteria were grown overnight in trypticase soy broth
(Becton Dickinson, Franklin Lakes, NJ) at 275 rpm and
37°C. An aliquot of the resulting stationary phase cultures
was then transferred to 20 ml of trypticase soy broth and
incubated at 37°C for 2.5 hours to reach log phase. This
subculture was transferred to a 50 ml conical polystyrene
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Figure 6

Inhibitory effects of Protegrin-1 and LL37 on HIV-1 Env mediated vector entry (A, B) and HIV-I infection
(C,D). A lentiviral vector transferring the GFP gene (VGABH-SIN) was incubated at increasing concentrations of LL37 (A) or
Protegrin-1 (B) prior to transduction of PACCRS cells. The vector titer is given as percentage of the titer of the vector incu-
bated in the absence of HDPs. Wild type HIV-1 was incubated with increasing concentrations of LL37 (C) and Protegrin-1 (D).
The virus titer was subsequently determined on PACCRS5 indicator cells and is expressed as percentage of the titer of the
untreated HIV-1 virus stock. The toxicity of LL37 and Protegrin-| was determined in parallel using the BrdU incorporation

assay.

tube and centrifuged for 10 min at 4°C at 880 g. The bac-
terial pellet was washed once with chilled phosphate
buffered saline, pH 7.4, and resuspended in 5 ml of the
same cold buffer. One milliliter was removed to measure
its optical density at 620 nm. The bacterial concentration
was calculated from the following formula: CFU/ml =
ODy,p x 2.5 x 108.

Growth Inhibition Assay

To monitor bacterial growth inhibition in vitro a radial dif-
fusion assay was performed as previously described [56].
Briefly, the underlay agar consisted of 1% agarose (A-
6013, Sigma Chemical, St. Louis, MO) and 0.3 mg/ml

trypticase soy broth (TSB) powder in 10 mM sodium
phosphate with 100 mM NaCl (normal salt medium), pH
7.4. Bacteria (approximately 5 x 10¢ CFU) were mixed
with 10 ml of underlay gel (43°C) and immediately
poured into square 9 x 9 cm petri dishes. A series of 3 mm
wells was punched after the agarose solidified. After
appropriate serial dilutions were done, 5 pl of HDP, van-
comycin (Abbott Labs, Chicago, IL), gentamicin, cipro-
floxacin, or fluconazole (Sigma-Aldrich, St. Louis, MO)
were added to the designated wells. Plates were incubated
at 37°C for 3 hours. The bacteria-containing layer was
covered with a 10 ml overlay of the nutrient rich agar. The
overlay agar consisted of 6% (w/v) TSB and 1% agarose in
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PBS for all assays. After 18 h of incubation at 37°C, the
plates were stained with 0.001% Coomassie blue for 10 h.
The clear zones (bacterial growth inhibition) around the
punched wells indicated antibacterial activity. The diame-
ters of the clear zones were converted into units by sub-
tracting the well diameter and multiplying the difference
by 10. Results were plotted using a semi log scale and cor-
relation coefficients and X-intercepts obtained from linear
regression analysis. The minimal effective concentration
(MEC) corresponded to the X-intercept value. All assays
were performed in triplicates and repeated at least once.

Cytotoxicity and proliferation Assay

293-Luc cells were plated in 96 well plates at a density of
2 x 103 cells / well. After 48 hours, 50 pl of MTT-solution
(3 mg/ml) was added and incubated at 37° C under 5%
CO, for 1 hour. After this time medium was removed and
100 pl 0.04 N HCL + 10% SDS was used to dissolve the
resulting blue formazan crystals in living cells. The optical
density was determined at 550 nm. Each single value of
the triplicates was expressed as percent of the mean of trip-
licates of control cultures infected with the same vector in
the absence of HDPs and the mean and the standard devi-
ation of the percent values was calculated for each tripli-
cate. In addition the BrdU Cell proliferation ELISA with
chemiluminescence detection (Roche Diagnostics GmbH,
Mannheim, Germany) was performed. After 293-Luc cells
or P4CCR5 cells were plated in 96 well plates at a density
of 2 x 103 cells/well BrdU (5-bromo-2'-deoxyuridine) was
added to the cells with a resulting concentration of 10 uM
for the last 22 h of the incubation period. After removing
the culture medium, the cells were fixed and DNA was
denatured in one step with Fixdenat. Thereafter the cells
were incubated with Anti-BrdU-POD for 1 h at room tem-
perature. The chemiluminescence detection was meas-
ured after automatic injection of substrate solution with a
microplate-luminometer (Orion, Berthold detection sys-
tems, Pforzheim, Germany).

Inhibition of vector infectivity

To determine the effect of HDPs on vector infectivity and
cell metabolism, 293A target cells were plated in
triplicates into 96-well plates at 2 x 103 cells / well. After
overnight incubation, the supernatant of the wells were
removed and replaced by 25 pl vector preparation and 25
ul HDP at twice the final concentration indicated. 50 pul
fresh medium with HDP at the final concentration indi-
cated was added after two hours. One (adenoviral vector)
or two (lentiviral and retroviral vector) days after infec-
tion, the supernatant was removed and 50 pl of cell lysis
buffer (Promega) was added. Lysates were stored at -80°C
until determination of the luciferase activity of the
extracts. The affect of HDPs on cell metabolism was deter-
mined in parallel by plating 293-Luc cells exactly the same
way as 293A cells and the luciferase activity was deter-

http://www.retrovirology.com/content/2/1/2

mined after one (as a control to inhibition of adenoviral
vector infectivity) or two (as a control of lentiviral infec-
tivity) days of incubation with HDPs. For GFP-expressing
vectors, vector titers were calculated from the number of
GFP positive cells per well as previously described [45]
and the BrdU incorporation assay was used to monitor
cytotoxic effects.

Inhibition of HIV-1

Stocks of HIV-1 were generated by transient transfection
of 293T cells with the molecular clone pNL4-3. 25 ul of
the virus stock were incubated for 30 minutes at room
temperature with 25 pul of LL37 or PG-1 adjusted to twice
the final concentration indicated. The mixture was added
to PACCR5 cells plated the day before at a density of 2 x
103 cells / well of 96 well plate. 50 pl fresh medium with
HDP at the final concentration indicated was added after
two hours. Two days after infection, the supernatant was
removed and cells were stained by X-Gal. The number of
infected cells per well were counted in the microscope.

Competing interest
The author(s) declare that they have no competing
interests.

Authors' contributions

LS, BT and JM performed most of the experiments. LS,
OW, ML, EL, HH, HS and KU participated in the experi-
mental design, data interpretation and writing of the
manuscript.

Acknowledgement

Recombinant human B-Defensin-2 was kindly provided by Michael Kleine at
Planton GmbH (Kiel, Germany). Novispirin G-10 and Plectasin (WO 03/
044049) were kindly provided by Hans-Henrick Christensen and the AMP
team at Novozymes A/S (Copenhagen, Denmark). We would like to thank
Ralf Wagner for providing Hgps/, Ulrike Blémer for HIV-CS-CG, Joachim
Hauber for pcTat and pcRev, Michael Malim for pHIT-G, and Paula Cannon
for pHIT456, pHIT60 and pRV172. This work was supported by a grant
from the FORUM program of the Ruhr-University Bochum.

References

. Allgower M, Schoenenberger GA, Sparkes BG: Burning the largest
immune organ. Burns 1995, 21:57-47.

2. Steinstraesser L, Oezdogan Y, Wang SC, Steinau HU: Host defense
peptides in burns. Burns 2004, 30:619-627.

3. Schroder JM, Harder J: Human beta-defensin-2. Int | Biochem Cell
Biol 1999, 31:645-651.

4. Lehrer RI, Ganz T: Endogenous vertebrate antibiotics.
Defensins, protegrins, and other cysteine-rich antimicrobial
peptides. Ann N Y Acad Sci 1996, 797:228-239.

5.  Boman HG: Gene-encoded peptide antibiotics and the con-

cept of innate immunity: an update review. Scan | Immunol

1998, 48:15-25.

Ganz T, Lehrer RI: Defensins. Pharmacol Ther 1995, 66:191-205.

Lehrer RI, Ganz T: Antimicrobial peptides in mammalian and

insect host defence. Curr Opin Immunol 1999, 11:23-27.

8.  Zanetti M, Gennaro R, Romeo D: Cathelicidins: a novel protein
family with a common proregion and a variable C-terminal
antimicrobial domain. FEBS Lett 1995, 374:1-5.

9.  Llarrick JW, Morgan |G, Palings |, Hirata M, Yen MH: Complemen-
tary DNA sequence of rabbit CAP18--a unique lipopolysac-

No

Page 10 of 12

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8546818
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8546818
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15475133
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15475133
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10404637
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8993365
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8993365
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8993365
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7667395
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10047545
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10047545
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7589491
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7589491
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7589491
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1883348
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1883348

Retrovirology 2005, 2:2

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.
31

charide binding protein. Biochem Biophys Res Commun 1991,
179:170-175.

Agerberth B, Gunne H, Odeberg ], Kogner P, Boman HG, Gudmunds-
son GH: FALL-39, a putative human peptide antibiotic, is
cysteine-free and expressed in bone marrow and testis. Proc
Natl Acad Sci U S A 1995, 92:195-199.

Steinstraesser L, Klein RD, Aminlari A, Fan MH, Khilanani V, Remick
DG, Su GL, Wang SC: Protegrin-1 enhances bacterial killing in
thermally injured skin. Crit Care Med 2001, 29:1431-1437.
Steinstraesser L, Burghard O, Nemzek |, Fan MH, Merry A, Remick
DG, Su GL, Steinau HU, Wang SC: Protegrin-1 increases bacte-
rial clearance in sepsis but decreases survival. Crit Care Med
2003, 31:221-226.

Kokryakov VN, Harwig SS, Panyutich EA, Shevchenko AA, Aleshina
GM, Shamova OV, Korneva HA, Lehrer RI: Protegrins: leukocyte
antimicrobial peptides that combine features of corticos-
tatic defensins and tachyplesins. FEBS Lett 1993, 327:231-236.
Gallo RL, Kim K], Bernfield M, Kozak CA, Zanetti M, Merluzzi L, Gen-
naro R: Identification of CRAMP, a cathelin-related antimi-
crobial peptide expressed in the embryonic and adult
mouse. | Biol Chem 1997, 272:13088-13093.

Shin SY, Kang SW, Lee DG, Eom SH, Song WK, Kim JI: CRAMP ana-
logues having potent antibiotic activity against bacterial, fun-
gal, and tumor cells without hemolytic activity. Biochem
Biophys Res Commun 2000, 275:904-909.

Bagella L, Scocchi M, Zanetti M: cDNA sequences of three sheep
myeloid cathelicidins. FEBS Lett 1995, 376:225-228.

Steinberg DA, Hurst MA, Fujii CA, Kung AH, Ho JF, Cheng FC, Loury
D), Fiddes JC: Protegrin-1: a broad-spectrum, rapidly microbi-
cidal peptide with in vivo activity. Antimicrob Agents Chemother
1997, 41:1738-1742.

Yamaguchi S, Huster D, Waring A, Lehrer RIl, Kearney W, Tack BF,
Hong M: Orientation and Dynamics of an Antimicrobial Pep-
tide in the Lipid Bilayer by Solid-State NMR Spectroscopy.
Biophys | 2001, 81:2203-2214.

Saiman L, Tabibi S, Starner TD, San_Gabriel P, Winokur PL, Jia HP,
McCray PB, Tack BF: Cathelicidin peptides inhibit multiply anti-
biotic-resistant pathogens from patients with cystic fibrosis.
Antimicrob Agents Chemother 2001, 45:2838-2844.

Brogden KA, Kalfa VC, Ackermann MR, Palmquist DE, McCray PB,
Tack BF: The ovine cathelicidin SMAP29 kills ovine respira-
tory pathogens in vitro and in an ovine model of pulmonary
infection. Antimicrob Agents Chemother 2001, 45:331-334.

Tack BF, Sawai MV, Kearney WR, Robertson AD, Sherman MA,
Wang W, Hong T, Boo LM, Wu H, Waring A}, Lehrer Rl: SMAP-29
has two LPS-binding sites and a central hinge. Eur | Biochem
2002, 269:1181-1189.

Steinstraesser L, Tack BF, Waring AJ, Hong T, Boo LM, Fan MH, Rem-
ick DI, Su GL, Lehrer RI, Wang SC: Activity of Novispirin G10
against Pseudomonas aeruginosa In Vitro and in Infected
Burns. Antimicrob Agents Chemother 2002, 46:1837-1844.

Gallo RL, Huttner KM: Antimicrobial peptides: an emerging
concept in cutaneous biology. | Invest Dermatol 1998,
111:739-743.

Huttner KM, Bevins CL: Antimicrobial peptides as mediators of
epithelial host defense. Pediatr Res 1999, 45:785-794.

Fehlbaum P, Rao M, Zasloff M, Anderson GM: An essential amino
acid induces epithelial beta -defensin expression [In Process
Citation]. Proc Natl Acad Sci U S A 2000, 97:12723-12728.

Friedrich CL, Moyles D, Beveridge TJ, Hancock RE: Antibacterial
action of structurally diverse cationic peptides on gram- pos-
itive bacteria. Antimicrob Agents Chemother 2000, 44:2086-2092.
Yang D, Chen Q, Chertov O, Oppenheim JJ: Human neutrophil
defensins selectively chemoattract naive T and immature
dendritic cells. J Leukoc Biol 2000, 68:9-14.

Papo N, Shai Y: New lytic peptides based on the D,L-amphip-
athic helix motif preferentially kill tumor cells compared to
normal cells. Biochemistry 2003, 42:9346-9354.

Sinha S, Cheshenko N, Lehrer RI, Herold BC: NP-1, a rabbit alpha-
defensin, prevents the entry and intercellular spread of her-
pes simplex virus type 2. Antimicrob Agents Chemother 2003,
47:494-500.

Bastian A, Schafer H: Human alpha-defensin | (HNP-1) inhibits
adenoviral infection in vitro. Regul Pept 2001, 101:157-161.
Daher KA, Selsted ME, Lehrer RI: Direct inactivation of viruses
by human granulocyte defensins. J Virol 1986, 60:1068-1074.

32.
33.

34.

35.

36.

37.

38.

39.

40.

41.
42.

43.

44.

45.

46.

47.

48.

49.

50.

51,

52.

53.

http://www.retrovirology.com/content/2/1/2

Cole AM, Lehrer RI: Minidefensins: antimicrobial peptides with
activity against HIV-1. Curr Pharm Des 2003, 9:1463-1473.

Yasin B, Wang W, Pang M, Cheshenko N, Hong T, Waring A}, Herold
BC, Wagar EA, Lehrer RI: Theta defensins protect cells from
infection by herpes simplex virus by inhibiting viral adhesion
and entry. | Virol 2004, 78:5147-5156.

Nakashima H, Yamamoto N, Masuda M, Fujii N: Defensins inhibit
HIV replication in vitro. Aids 1993, 7:1129.

Zhang K, Lu Q, Zhang Q, Hu X: Regulation of activities of NK
cells and CD4 expression in T cells by human HNP-1, -2, and
-3. Biochem Biophys Res Commun 2004, 323:437-444.

Zaharatos GJ, He T, Lopez P, Yu W, Yu J, Zhang L: alpha-Defensins
Released Into Stimulated CD8+ T-Cell Supernatants Are
Likely Derived From Residual Granulocytes Within the Irra-
diated Allogeneic Peripheral Blood Mononuclear Cells Used
as Feeders. | Acquir Inmune Defic Syndr 2004, 36:993-1005.
Mackewicz CE, Yuan J, Tran P, Diaz L, Mack E, Selsted ME, Levy JA:
alpha-Defensins can have anti-HIV activity but are not CD8
cell anti-HIV factors. Aids 2003, 17:F23-32.

Wang W, Owen SM, Rudolph DL, Cole AM, Hong T, Waring AJ, Lal
RB, Lehrer RI: Activity of alpha- and theta-defensins against
primary isolates of HIV-1. | Immunol 2004, 173:515-520.

Braida L, Boniotto M, Pontillo A, Tovo PA, Amoroso A, Crovella S: A
single-nucleotide polymorphism in the human beta-defensin
I gene is associated with HIV-I infection in Italian children.
Aids 2004, 18:1598-1600.

Cole AM: Minidefensins and other antimicrobial peptides:can-
didate anti-HIV microbicides. Expert Opin Ther Targets 2003,
7:329-341.

Gould §), Booth AM, Hildreth JE: The Trojan exosome
hypothesis. Proc Natl Acad Sci U S A 2003, 100:10592-10597.
Wagner R, Graf M, Bieler K, Wolf H, Grunwald T, Foley P, Uberla K:
Rev-independent expression of synthetic gag-pol genes of
human immunodeficiency virus type | and simian immuno-
deficiency virus: implications for the safety of lentiviral
vectors. Hum Gene Ther 2000, 11:2403-2413.

Fouchier RA, Meyer BE, Simon JH, Fischer U, Malim MH: HIV-I
infection of non-dividing cells: evidence that the amino-ter-
minal basic region of the viral matrix protein is important
for Gag processing but not for post-entry nuclear import.
Embo | 1997, 16:4531-4539.

Grunwald T, Pedersen FS, Wagner R, Uberla K: Reducing mobili-
zation of simian immunodeficiency virus based vectors by
primer complementation. | Gene Med 2004, in press:.

Schnell T, Foley P, Wirth M, Munch J, Uberla K: Development of a
self-inactivating, minimal lentivirus vector based on simian
immunodeficiency virus. Hum Gene Ther 2000, | 1:439-447.
Miyoshi H, Blomer U, Takahashi M, Gage FH, Verma IM: Develop-
ment of a self-inactivating lentivirus vector. | Virol 1998,
72:8150-8157.

Malim MH, Hauber ], Fenrick R, Cullen BR: Immunodeficiency
virus rev trans-activator modulates the expression of the
viral regulatory genes. Nature 1988, 335:181-183.

Sodroski J, Goh WC, Rosen C, Campbell K, Haseltine WA: Role of
the HTLV-NII/LAV envelope in syncytium formation and
cytopathicity. Nature 1986, 322:470-474.

Soneoka Y, Cannon PM, Ramsdale EE, Griffiths JC, Romano G, Kings-
man SM, Kingsman AJ: A transient three-plasmid expression
system for the production of high titer retroviral vectors.
Nucleic Acids Res 1995, 23:628-633.

Ghattas IR, Sanes JR, Majors JE: The encephalomyocarditis virus
internal ribosome entry site allows efficient coexpression of
two genes from a recombinant provirus in cultured cells and
in embryos. Mol Cell Biol 1991, 11:5848-5859.

Morgan RA, Couture L, Elroy-Stein O, Ragheb ], Moss B, Anderson
WEF: Retroviral vectors containing putative internal ribos-
ome entry sites: development of a polycistronic gene trans-
fer system and applications to human gene therapy. Nucleic
Acids Res 1992, 20:1293-1299.

Okada T, Ramsey W], Munir |, Wildner O, Blaese RM: Efficient
directional cloning of recombinant adenovirus vectors using
DNA-protein complex. Nucleic Acids Res 1998, 26:1947-1950.
Graham FL, Prevec L: Methods for construction of adenovirus
vectors. Mol Biotechnol 1995, 3:207-220.

Page 11 of 12

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1883348
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7529412
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7529412
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11445704
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11445704
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12545019
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12545019
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8335113
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8335113
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8335113
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9148921
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9148921
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9148921
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10973820
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10973820
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10973820
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7498547
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7498547
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9257752
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9257752
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11566791
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11566791
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11557478
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11557478
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11120991
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11120991
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11120991
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11856344
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11856344
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12019098
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12019098
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12019098
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9804331
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9804331
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10367766
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10367766
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11058160
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11058160
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11058160
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10898680
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10898680
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10898680
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10914484
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10914484
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10914484
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12899621
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12899621
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12899621
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12543649
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12543649
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12543649
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11495691
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11495691
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3023659
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3023659
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12769726
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12769726
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15113897
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15113897
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15113897
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8397954
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8397954
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15369771
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15369771
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15369771
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15247551
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15247551
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15247551
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14502030
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14502030
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14502030
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15210812
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15210812
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15238780
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15238780
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12783570
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12783570
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12947040
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12947040
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11096444
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11096444
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11096444
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9303297
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9303297
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10697118
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10697118
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10697118
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9733856
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9733856
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3412474
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3412474
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3412474
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3016552
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3016552
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3016552
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7899083
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7899083
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1658618
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1658618
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1658618
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1313966
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1313966
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1313966
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9518487
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9518487
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9518487
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7552690
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7552690

Retrovirology 2005, 2:2

54.

55.

56.

Mittereder N, March KL, Trapnell BC: Evaluation of the concen-
tration and bioactivity of adenovirus vectors for gene
therapy. | Virol 1996, 70:7498-7509.

Graham FL, Smiley J, Russell WC, Nairn R: Characteristics of a
human cell line transformed by DNA from human adenovi-
rus type 5. | Gen Virol 1977, 36:59-74.

Steinberg DA, Lehrer RI: Designer assays for antimicrobial pep-
tides. Disputing the "one-size- fits-all" theory. Methods Mol Biol
1997, 78:169-186.

http://www.retrovirology.com/content/2/1/2

Publish with BioMed Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."
Sir Paul Nurse, Cancer Research UK
Your research papers will be:
« available free of charge to the entire biomedical community
« peer reviewed and publishedimmediately upon acceptance
« cited in PubMed and archived on PubMed Central
« yours — you keep the copyright

Submit your manuscript here:

O BioMedcentral
http://www.biomedcentral.com/info/publishing_adv.asp

Page 12 of 12

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8892868
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8892868
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8892868
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=886304
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=886304
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=886304
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9276304
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9276304
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Table 1

	Results
	Discussion
	Conclusions
	Methods
	Preparation of vectors transferring the luciferase or GFP genes
	Construction and Production of Ad.OW126 Vector
	Generation of 293A cells stably transduced with a luciferase gene
	Luciferase assay
	Host defense peptides
	Bacteria
	Growth Inhibition Assay
	Cytotoxicity and proliferation Assay
	Inhibition of vector infectivity
	Inhibition of HIV-1

	Competing interest
	Authors' contributions
	Acknowledgement
	References

