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Introduction
CCR5 is not only a chemokine receptor expressed by sev-
eral immune cells, including T cells, macrophages, and 
dendritic cells, but it is also required by the R5 HIV tropic 
virus to infect CD4 + T cells [1–3]. Mutations in the gene 
encoding CCR5 for example, the ∆  32 bp deletion, have 
been associated with either delayed progression to AIDS 
or resistance to HIV infection [4–9]. This knowledge 
has led to the development of drugs that competitively 
bind CCR5 to reduce viral entry and CD4 + T cell deple-
tion [10–12]. Understanding host-pathogen interac-
tion and deciphering immune correlates of protection is 
vital to identifying therapeutic and drug design targets. 
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Abstract
Background Several mechanisms including reduced CCR5 expression, protective HLA, viral restriction factors, 
broadly neutralizing antibodies, and more efficient T-cell responses, have been reported to account for HIV control 
among HIV controllers. However, no one mechanism universally accounts for HIV control among all controllers. In this 
study we determined whether reduced CCR5 expression accounts for HIV control among Ugandan HIV controllers. 
We determined CCR5 expression among Ugandan HIV controllers compared with treated HIV non-controllers through 
ex-vivo characterization of CD4 + T cells isolated from archived PBMCs collected from the two distinct groups.

Results The percentage of CCR5 + CD4 + T cells was similar between HIV controllers and treated HIV non-controllers 
(ECs vs. NCs, P = 0.6010; VCs vs. NCs, P = 0.0702) but T cells from controllers had significantly reduced CCR5 expression 
on their cell surface (ECs vs. NCs, P = 0.0210; VCs vs. NCs, P = 0.0312). Furthermore, we identified rs1799987 SNP among 
a subset of HIV controllers, a mutation previously reported to reduce CCR5 expression. In stark contrast, we identified 
the rs41469351 SNP to be common among HIV non-controllers. This SNP has previously been shown to be associated 
with increased perinatal HIV transmission, vaginal shedding of HIV-infected cells and increased risk of death.

Conclusion CCR5 has a non-redundant role in HIV control among Ugandan HIV controllers. HIV controllers maintain 
high CD4 + T cells despite being ART naïve partly because their CD4 + T cells have significantly reduced CCR5 
densities.
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This study determined whether CCR5 accounts for HIV 
control among Ugandan HIV controllers. These indi-
viduals have the intrinsic capacity to delay HIV progres-
sion to AIDS without antiretroviral therapies. Generally, 
mechanisms underlying HIV control among controllers 
remain unknown and those reported vary among differ-
ent populations.

HIV controllers have been reported in Uganda but 
the mechanisms for their HIV control remain largely 
unknown [13–15]. Variations in the expression of several 
host factors including HLA, CCR5, and viral restriction 
factors, have been reported as underlying factors asso-
ciated with this phenotype [16–20]. However, mecha-
nisms for HIV control are heterogeneous with no one 
mechanism accounting for HIV control among all con-
trollers. HLA, for example, only accounts for approxi-
mately 20% of HIV controllers with some individuals 
with the perceived protective HLA progressing rapidly 
to AIDS. Furthermore, in 2020, Amanya and colleagues 
reported that a subset of Ugandan HIV controllers carry 
the rs10838525 SNP (R136Q variant) within the Trim 5a 
encoding gene [21]. TRIM 5a is a viral restriction factor 
that interferes with HIV decapsidation [22]. This muta-
tion enhances the protein’s affinity for HIV-1 and recent 
reports show it may be superior at blocking HIV-1 infec-
tion compared to the wild type [23]. However, it only 
accounted for a subset of HIV controllers.

Our study determined whether reduced CCR5 accounts 
for HIV control among Ugandan HIV controllers. Previ-
ous studies have reported that reduced CCR5 expression 
protects CD4 + T cells from infection by the R5 tropic 
virus impairing viral entry and replication thus impeding 
HIV progression [6, 24]. Despite being ART-naive, HIV 
controllers maintain comparable CCR5 + CD4 + T cells to 
treated HIV non-controllers. However, through ex-vivo 
characterization of CD4 + T cells from HIV controllers, 
we show that controllers have significantly reduced CCR5 
expression which could partly account for the reduced T 
cell depletion and delayed progression to AIDS.

Results
Clinical characteristics of study participants
We included 14 elite controllers, 10 viremic controllers, 
and 7 treated HIV non-controllers from the elite study 
[13]. The participant characteristics are summarized in 
Table 1 while the detailed demographic and clinical char-
acteristics of study participants are in additional Table 1. 
All HIV controllers were in care for at least five years 
without ART. None of the HIV controllers had been initi-
ated on ART during blood collection or previously. The 
comparison group comprised treated HIV non-control-
lers who had suppressed HIV viral load and maintained 
CD4 + T cell count greater than 500 cells/ul for at least 
five years. The mean CD4 + T cell count for all HIV con-
trollers was above 500 cells/ul while the viral load was 
undetectable in elite controllers and lay between 50 and 
2000 copies/ml for viremic controllers.

The percentage of CD4 + T cells is comparable between HIV 
controllers and non-controllers
Many studies, including a recent study by Claireaux and 
colleagues have reported that HIV controllers maintain 
high CD4 + T cells without ART [6]. To the contrary, 
non-controllers require ART to inhibit viral replica-
tion, CD4 + T cell depletion, and delayed progression to 
AIDS. In agreement with previous studies, we found no 
statistical difference between the CCR5 + CD4 + T cell 
percentages between HIV controllers and HIV-treated 
non-controllers (Fig. 1; ECs vs. NCs, P = 0.6010; VCs vs. 
NCs, P = 0.0702).

Table 1 Summary of characteristics of study participants
Elite 
controllers

Viremic
controllers

Non
controllers

Number 14 10 7

Mean age, years 40±8 44±9 39±5

CD4 cells/ ul 944±195 774±94 884±197

Mean VL/ ml UD 670±505 192±81

Mean duration in 
care(years)

7±2 8±2 6±1

UD: Undetectable. A measure of central tendency and variance: (Mean± SD)

Fig. 1 Percentage of CCR5 + CD4 + T cells between HIV controllers and 
non-controllers. EC: Elite controllers, VC: viremic controllers, and NC: non-
controllers. Each point represents one individual
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HIV controllers have reduced CCR5 expression on CD4 + T 
cells compared to non-controllers
How CD4 + T cells from Uganda HIV controllers avoid 
infection and depletion upon encountering the virus 
remains incompletely understood. Recently, Claireaux et 
al. reported that HIV controllers maintain high CD4 + T 
cell counts because their T cells have reduced CCR5 
expression restricting viral entry and cell depletion [6, 
24]. We evaluated whether reduced CCR5 expression 
could account for this phenotype among Ugandan HIV 
controllers. We found that HIV controllers had signifi-
cantly reduced CCR5 expression compared to treated 
HIV non-controllers (Fig. 2; ECs vs. NCs, P = 0.0210; VCs 
vs. NCs, P = 0.0312).

Mutations identified in the promoter region of the CCR5 
gene
Many mutations within the CCR5 gene including delta 
32  bp deletion, either abrogate or reduce CCR5 expres-
sion among HIV controllers [4–7]. Other studies have 
reported that increased expression of β-chemokine 
ligands upon high-avidity antigen/TCR interactions con-
tributes to autocrine CCR5 downregulation in HIV con-
trollers without CCR5 mutations [6, 24]. Whether these 
factors account for reduced CCR5 expression among 
Ugandan HIV controllers remains to be determined. 
We evaluated whether CCR5 promoter polymorphisms 
contribute to reduced CCR5 expression among Ugan-
dan HIV controllers because the delta 32  bp mutation 
previously reported to impair CCR5 expression is rare 
in Africa [25, 26]. Many mutations within the promoter 
region have been reported to reduce CCR5 expression 
[27–30]. We found rs1799987 SNP (-2459 A/G) predomi-
nantly among HIV controllers (71.4% of the elite control-
lers and 60% of the viremic controllers) while rs41469351 

(-2132  C/T) SNP was predominantly found among the 
treated HIV non-controllers (57.1%). From previous 
studies, rs1799987 SNP has been reported to reduce 
CCR5 expression while rs41469351 has been associated 
with increased perinatal HIV transmission and vaginal 
HIV shedding [27, 30–33].

Discussion
The reasons underlying delayed HIV progression among 
Ugandan HIV controllers remain largely undetermined 
[13, 14, 34]. The mechanisms for HIV control are het-
erogenous with no one mechanism universal to all HIV 
controllers [17, 18, 35–37]. Amanya and colleagues 
reported that a subset of Ugandan HIV controllers car-
ries rs10838525 SNP (R136Q variant) within the Trim 
5a encoding gene [21]. This SNP increases the affinity 
of TRIM 5a for HIV capsid thus enhancing interference 
with viral decapitation [23, 35] suggesting that genetic 
factors contribute to HIV control mechanisms. In this 
study, we show that HIV controllers significantly down-
regulate their expression of CCR5 on CD4 + T cells com-
pared to non-controllers despite their similar levels of 
CD4 + T cells. Further, we report that rs179998, a SNP 
known to reduce CCR5 expression may be partly respon-
sible for this low expression because we found it to be 
highly predominant in the HIV controllers in our study.

Many studies have previously reported that decreased 
CCR5 expression reduces HIV viral entry and replica-
tion [6, 24, 38, 39]. Gonzalo-Gil and colleagues have pre-
viously showed that CD4 + T cells from HIV controllers 
are resistant to infection with the R5 tropic HIV and that 
this phenotype is reversed by introducing CCR5 [24]. 
Furthermore, Claireaux and colleagues have recently 
reported that Gag-specific CD4 + T cells from HIV con-
trollers have downregulated CCR5, significantly decreas-
ing their susceptibility to R5 tropic HIV entry [6]. In 
agreement with Claireaux and colleagues, we also found 
that Ugandan HIV controllers have significantly reduced 
CCR5 expression compared to non-controllers (Fig.  2) 
but with comparable percentages of CD4 + T cells (Fig. 1). 
We believe HIV controllers maintain high CD4 + T cell 
counts partly because their T cells have significantly 
reduced CCR5 expression which protects them from 
infection and depletion.

Impaired CCR5 expression can be due to functional 
or genetic factors [6]. Claireaux and colleagues have 
shown that a subset of controllers carry biallelic muta-
tions for example, Q280P, which significantly reduce 
CCR5 expression [6]. Many other mutations have been 
reported to impair CCR5 expression [28–30, 40, 41]. Our 
focus was on mutations within the promoter region that 
have been previously reported to reduce CCR5 expres-
sion and shown to delay HIV-1 disease progression. We 
found rs1799987 SNP and rs41469351 SNP among HIV 

Fig. 2 CCR5 densities on CD4 + T cells among HIV controllers compared to 
non-controllers. EC: Elite controllers, VC: viremic controllers, and NC: non-
controllers. Each point represents one individual
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controllers and treated HIV non-controllers respectively. 
In agreement with McDermott et al. and Knudsen et al., 
rs1799987 SNP was more pronounced among individu-
als that delayed progression to AIDS [27, 42]. In several 
other studies, rs1799987 SNP has been associated with 
significantly reduced in vitro promoter activity, CCR5 
expression, and HIV propagation compared to wild-type 
ORF [27, 30, 43–48].

On the other hand, treated HIV non-controllers pre-
dominantly had the rs41469351 SNP. Kostrikis et al. and 
John et al. have reported that infants with rs41469351 
SNP have enhanced susceptibility to HIV − 1 infection 
[31, 32]. Kostrikis et al. reported that this mutation is 
associated with increased perinatal HIV transmission. To 
the contrary, John et al. and Singh et al. did not find such 
a relationship [32, 33]. However, John et al. reported that 
women with the rs41469351 SNP had a 3.1-fold increased 
risk of death during the 2-year follow-up period and sig-
nificantly increased vaginal shedding of HIV-1–infected 
cells [32]. We believe rs41469351 SNP influences HIV 
infection, but its impact on CCR5 expression and viral 
entry remains to be determined.

Because mutations in the CCR5 gene partly account 
for the reduced CCR5 expression among HIV control-
lers, other mechanisms that could account for this phe-
notype have been explored. Claireaux and colleagues 
have recently reported that increased expression of 
β-chemokine ligands upon high-avidity antigen/TCR 
interactions contributes to autocrine CCR5 downregu-
lation in controllers without CCR5 mutations [6]. We 
believe a similar mechanism could explain the reduced 
CCR5 expression among the remaining subset of Ugan-
dan HIV controllers who do not carry mutations associ-
ated with reduced CCR5 expression.

Conclusion
HIV controllers maintain comparable CCR5 + CD4 + T 
cells to treated HIV patients, and this could be partly 
because of the significantly reduced CCR5 expression. 
Reasons for the reduced CCR5 expression among Ugan-
dan HIV controllers remain to be determined, but we 
identified rs1799987 SNP among a subset of controllers. 
This SNP has been previously reported to reduce CCR5 
expression.

Limitations of the study
The study population was constrained because partici-
pants were recruited at a time when the test and treat 
policy was being initiated in Uganda. All individuals that 
were initiated on treatment by the time of enrolment 
were excluded regardless of their previous HIV control 
status. Furthermore, we were unable to include healthy 
HIV unexposed or exposed controls, but previous stud-
ies show that HIV controllers have reduced CCR5 

expression compared to both non-controllers and healthy 
uninfected individuals [24, 49, 50].

Methods
The aim, research design, and setting of the study
This laboratory-based cross-sectional study was con-
ducted to characterize CCR5 expression between HIV 
controllers and treated HIV non-controllers in Uganda. 
We utilized PBMCs from the Elite study that recruited 
participants from Makerere University Joint Aids Pro-
gram (MJAP) ISS clinic between 2016 and 2018 in 
Uganda [13]. The immunology experiments were con-
ducted at Makerere University College of Health Sci-
ences, Molecular and Immunology Laboratory. The 
molecular biology experiments were conducted at the 
Center for AIDS Research (CFAR) laboratory, Joint Clini-
cal Research Center in Kampala, Uganda.

Participant characteristics
The study utilized PBMCs collected by the elite study 
[13]. Before implementing the test and treat policy, the 
Elite study recruited HIV+, ART-naive individuals aged 
18 years and older who were under care for at least 
five years at Makerere University Joint AIDS Program 
(MJAP), Mulago ISS clinic in Kampala, Uganda [13]. 
Patient records were reviewed, and individuals that main-
tained baseline viral load below 2000 copies per milliliter 
and serial CD4 counts greater than 500 cells/ml in the 
absence of ART were recruited. The study participants 
were classified into the elite (< 50 copies/ml) and viremic 
controllers (50–2000 copies/ml) based on their HIV viral 
load. The control group included treated HIV + non-con-
trollers who suppressed HIV for at least five years. The 
study excluded individuals with hemoglobin of 10 mg/dL 
or active opportunistic infection. The School of Biomedi-
cal Sciences, Higher Degrees Research and Ethics Com-
mittee (SBS HDREC), Makerere University (SBS-604) 
approved the research.

Laboratory methods
Sample processing and thawing
PBMCs were retrieved from liquid nitrogen and imme-
diately thawed in a water bath set at 37  °C. After that, 
they were transferred into 10 ml of R-10 media and cen-
trifuged at 1500  rpm for 10  min. The supernatant was 
decanted, and the pellet was resuspended in 5 ml R-10 
media (10% FBS, 1% Pen-strep, 1% L-Glutamine, 1% 
Hepes Buffer) RPMI) for counting. The cells were stained 
with trypan blue and counted using an automatic cell 
counter (Invitrogen, Carlsbad, California, USA).

CCR5 phenotyping
CD4 T cells were isolated from PBMCs retrieved from 
liquid nitrogen using the EasySep™ Human Isolation Kit 
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(Stem Cell Technologies) according to the manufacturer’s 
protocol. The isolated cells were assessed for purity using 
flow cytometry. Briefly, cells were stained with anti-CD3 
and anti-CD4 and ran on the BD FACS Canto II (BD Bio-
sciences, Franklin Lakes, New Jersey, USA). Samples with 
an average purity of ≥ 95% were considered for stimula-
tion. CD4 + T cells were then stimulated with anti-CD3 
(eBioscience Clone CD28.2) and anti-CD28 (eBiosci-
ence clone OKT3) at a 5  µg/ml concentration each and 
incubated for 48  h at 370  C in a CO2 incubator. After 
incubation, cells were washed and stained for CCR5 
phenotyping monoclonal antibodies. Cells were stained 
with Zombie aqua and antibodies against CD3, CD4, 
and CCR5 (BD bioscience, San Jose, CA, USA) and were 
acquired on an eight-color FACS CANTO II (BD Bio-
sciences, San Jose, CA, USA). Data were analyzed using 
FlowJo version 10.1 (San Carlos, CA, USA). The gating 
strategy used is shown in Additional Fig. 1.

DNA extraction and PCR amplification
DNA was extracted from CD4 + T cells using the QIAamp 
DNA mini-Kit (Qiagen, Inc., Valencia, CA, USA) per the 
manufacturer’s instructions. The CCR5 promoter region 
was amplified as described by Picton et al. [51]. Briefly, 
a PCR master mix was prepared with high fidelity Super 
script III platinum Taq polymerase (Invitrogen, Carlsbad, 
CA, USA), 2X reaction buffer, 5 Mm MgCL2 and prim-
ers (Forward- 5′CCAAGCACCAGCAATTAGC3′ and 
Reverse 5′TGCCACCACAGATGAATGTC3′) devel-
oped using GenBank sequence with accession number 
U95626. PCR was run with the following cycling condi-
tions; Initial denaturation at 95 °C for 3 min; 31 cycles of 
denaturation at 95 °C for 30 s, annealing at 60 °C for 30 s, 
extension at 68  °C for 2.40  min; followed by 68  °C for 
7 min. The promoter amplicon size was 2189 base pairs 
[51].

Sequencing
PCR amplicons were cleaned using the ExoSAP IT and 
sequenced using an ABI version 3.1 BigDye Kit (Applied 
Biosystems, Catalogue no. 4,337,456) and ABI3500xl 
Genetic Analyzer. Briefly, a master mix was prepared as 
follows; 0.5 µl Big Dye terminator, 1.75 µl 5X sequencing 
buffer, 2.5  µl primer (sequences in Additional Table  2), 
and 4.25  µl water. 9  µl of sequencing master mix was 
added into each well, where 1 µl of DNA was added. PCR 
amplification was subjected to thermal cycling as fol-
lows: 96 °C for 1 min; 30 cycles of denaturation at 96 °C 
for 30 s, annealing at 60 °C for 30 s, extension at 68 °C for 
2.40 min; followed by 68 °C for 7 min.

Sanger sequence data analysis
Mutation surveyor version 5.5 (Soft Genetics; Pennsyl-
vania, USA) was used to identify mutations. U95626 and 

NT_022517 reference sequences were used in assembly 
[52]. The CCR5 numbering system was used where the 
first nucleotide of the translational start site is desig-
nated as + 1, and the nucleotide immediately upstream 
from that is − 1 [53]. A search of the GenBank NCBI SNP 
database (dbSNP) determined whether polymorphisms 
detected in this study had been previously reported.

Statistics
Statistical analysis was performed using GraphPad 
Prism 7. The Mann-Whitney and Kruskal Wallis test for 
non-parametric variables facilitated the comparison of 
differences among groups. P values < 0.05 indicated a sig-
nificant difference.
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