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SHORT REPORT

Natural killer T cells contribute to the 
control of acute retroviral infection
Elisabeth Littwitz‑Salomon*, Simone Schimmer and Ulf Dittmer

Abstract 

Background: Natural killer T cells (NKT cells) play an important role in the immunity against viral infections. They 
produce cytokines or have direct cytolytic effects that can restrict virus replication. However, the exact function of 
NKT cells in retroviral immunity is not fully elucidated. Therefore, we analyzed the antiretroviral functions of NKT cells 
in mice infected with the Friend retrovirus (FV).

Results: After FV infection numbers of NKT cells remained unchanged but activation as well as improved effector 
functions of NKT cells were found. While the release of pro‑inflammatory cytokines was not changed after infection, 
activated NKT cells revealed an elevated cytotoxic potential. Stimulation with α‑Galactosylceramide significantly 
increased not only total NKT cell numbers and activation but also the anti‑retroviral capacity of NKT cells.

Conclusion: We demonstrate a strong activation and a potent cytolytic function of NKT cells during acute retroviral 
infection. Therapeutic treatment with α‑Galactosylceramide could further improve the reduction of early retroviral 
replication by NKT cells, which could be utilized for future treatment against viral infections.
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Findings
Natural killer T cells (NKT cells) are innate-like T lym-
phocytes, which recognize glycolipid antigens presented 
by the non-classical major histocompatibility complex 
(MHC) class I-like molecule CD1d. NKT cells express 
markers, which are associated with the T cell (αβ T cell 
receptor) as well as the NK cell (e.g. NK cell activating 
C-type lectin NK1.1) lineage. They can be divided into 
type I (invariant or classical) and type II (non-classical) 
NKT cell subsets dependent on the expression of the 
invariant Vα14-Jα18 gene segment in mice or Vα24-Jα18 
receptor in humans [1]. Activation of NKT cells occur 
in the absence of prior foreign antigen priming [2, 3]. 
For their activation several pathways are feasible such as 
direct stimulation via CD1d-presented lipids and/or in 
combination with the cytokines Interleukin (IL)-12, IL-18 
as well as type I interferons (IFNs) or only cytokine-
mediated activation without T cell receptor signaling [4]. 
NKT cells reveal important immunoregulatory functions 

by massive release of T helper (Th) 1 or Th2 cytokines. 
Thus, NKT cells activate and recruit several other cell 
types including NK cells, T cells, B cells, dendritic cells 
and neutrophils [5, 6]. In addition, they can kill infected 
or transformed cells through Fas-FasL mediated apopto-
sis and/or the perforin/granzyme exocytosis pathway [7, 
8]. Engagement of the death receptor Fas by FasL results 
in apoptosis mediated by caspase activation [9].

NKT cells are essential for the containment of bacte-
rial, parasites, fungal pathogens, cancer, and also viral 
infections. The importance of NKT cells during viral 
infections becomes clear given that several viruses like 
Lymphocytic Choriomeningitis Virus (LCMV), Cyto-
megalovirus (CMV), vesicular stomatitis virus, vaccinia 
virus, Herpes Simplex Virus (HSV)-1 and Human Immu-
nodeficiency Virus (HIV)-1 disrupt CD1d expression on 
infected target cells to evade antiviral effects of NKT cells 
[10–13]. In those studies, mainly IFNγ production by 
NKT cells was analyzed. However, the exact role of NKT 
cells during retroviral infection is not known so far.

The Friend virus (FV) mouse model can be utilized 
to analyze and therapeutically modulate the function of 
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NKT cells during acute retroviral infection in  vivo. We 
and others have previously shown that NK cells play an 
important role in innate FV immunity [14–16], but NKT 
cells were not studied so far. FV inoculation into mice 
leads to infection of erythroid precursor cells as well as 
granulocytes and B cells [17]. FV consists of two com-
ponents: the spleen focus forming virus (SFFV) and the 
Friend murine leukemia virus (F-MuLV). SFFV repre-
sents the pathogenic but replication-defective part of the 
viral complex whereas F-MuLV is replication-competent 
but apathogenic [18]. Infection of C57BL/6 mice results 
only in mild splenomegaly, but high dose infection facili-
tates establishment of a chronic infection. In FV-infected 
mice, the highest viral loads are found in the bone mar-
row and spleen, so we analyzed these two organs after 
acute FV infection [19]. Here, we demonstrate the activa-
tion and anti-retroviral efficacy of NKT cells during acute 
FV infection. Furthermore, we elucidated the poten-
tial role of NKT cells for immunotherapy of retrovirus 
infections.

NKT cells became activated during initial FV infection
In some viral infections, the NKT cell population is 
depleted early after infection [20–22]. To analyze changes 
of the NK1.1+ cell population during initial FV infection 
(3 days post infection (dpi)), we first analyzed the absolute 
numbers of NK cells (CD3−NK1.1+CD49b+) and NKT 
cells (CD3+NK1.1+) in the bone marrow (Fig. 1a) and the 
spleen (Fig. 1b). Absolute numbers of NK1.1+ cells were 
around three times higher in the spleen in comparison 
to the bone marrow. Mainly NK cells but not NKT cells 
accounted for this difference in numbers. After FV infec-
tion no significant difference between the groups of naïve 
and the FV-infected mice was detectable, indicating that 
infection did not expand or diminish the NKT cell popu-
lation. NKT cells are dependent on the MHC class I-like 
CD1d glycoprotein but only type I NKT cells respond to 
α-Galactosylceramide (αGalCer) stimulation [23]. There-
fore, we stained cells with an αGalCer pre-loaded CD1d 
tetramer to identify type I NKT cells and detected very 
similar percentages for NKT cells (CD3+NK1.1+) and 
invariant NKT cells (CD3+ αGalCer pre-loaded CD1d 
tetramer+; Additional file 2: Figure S2 A) after FV infec-
tion. We also characterized NKT cell subsets based on 
their expression of CD4 and CD8. During FV infection 
NKT cells showed a predominant double-negative (DN) 
phenotype (Fig.  1c, d). Compared to naïve NKT cells, 
CD4+ and CD8+ NKT cell subsets slightly expanded dur-
ing FV infection, while the DN population was dimin-
ished (data not shown). After FV infection the activation 
of NKT cells, measured by the expression of the activa-
tion markers CD69 (Fig. 1e, Additional file 1: Figure S1), 

CD86 (Fig.  1f, Additional file  1: Figure S1) and CD43 
(Fig.  1g, Additional file  1: Figure S1), was significantly 
enhanced. For most activation markers the percent-
age of positive NKT cells was 2–3 times higher after FV 
infection in both analyzed organs. Similarly, we detected 
an enhanced activation of invariant NKT cells (CD3+ 
αGalCer pre-loaded CD1d tetramer+) after FV infection 
in both organs compared to invariant NKT cells from 
naïve mice (Additional file 2: Figure S2 B).

Although we could not detect differences in total NKT 
cell numbers, we detected a more activated phenotype of 
NKT cells in FV-infected mice.

Cytokine production by NKT cells during initial FV infection
NKT cells can produce a variety of Th1 or Th2 cytokines 
resulting in immunity or immune suppression. We ana-
lyzed pro-inflammatory cytokines like IFNγ (Fig. 2a) and 
tumor necrosis factor (TNF) α (Fig.  2b) as well as anti-
inflammatory cytokines such as IL-10 (Fig. 2c) and IL-13 
(Fig.  2d). We did not observe increased IFNγ or TNFα 
production by NKT cells post FV infection, whereas we 
detected significant higher percentages of NKT cells pro-
ducing anti-inflammatory cytokines. In comparison to 
the naïve group, six-times more IL-10 producing cells 
were found in the bone marrow and three-times more in 
the spleen at 3 dpi. Also the percentage of IL-13+ NKT 
cells was significantly increased in the spleen post FV 
infection.

Thus, acute FV infection seems to induce the produc-
tion of anti-inflammatory but not pro-inflammatory 
cytokines in NKT cells.

Acute FV infection enhanced the cytotoxic potential of NKT 
cells
For the efficient containment of many virus infections 
effector functions from cytotoxic cells are necessary. 
NKT cells are competent cytokine producers but also 
known for their direct cytotoxic activity against virus-
infected cells [7, 8]. To investigate the cytotoxic potential 
of NKT cells after FV infection, we analyzed the expres-
sion of degranulation marker CD107a (lysosomal-associ-
ated membrane protein-1 (LAMP-1), Fig. 3a, Additional 
file 1: Figure S1) associated with the release of granzyme 
and perforin from cytotoxic granula and FasL (Fig.  3b, 
Additional file 1: Figure S1) [24]. In both analyzed organs, 
we detected an increase in the percentage of CD107a and 
FasL expressing NKT cells after FV infection, which was 
statistically significant for both organs. In the spleen, we 
detected around 7% CD107a+ NKT cells in naïve mice 
and up to 16% in mice acutely infected with FV. A more 
than two fold higher percentage of FasL expressing NKT 
cells in the bone marrow was measured in FV-infected 
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mice in comparison to naïve mice. We further analyzed 
whether this increase in the expression of surrogate 
markers for cytotoxicity was associated with enhanced 
cytolytic activity of NKT cells after FV infection. Indeed, 
co-incubation of NKT cells isolated from FV-infected 
mice with the FV-transformed tumor cell line FBL-3 
showed a significant increase of FBL-3 cell elimination 
when compared to NKT cells isolated from naïve mice 
(Fig. 3c).

The data demonstrates that acute FV infection 
enhances the ability of NKT cells to kill FV-transformed 
target cells.

Cytokine production and cytotoxicity of NKT cell 
sub‑populations during early FV infection
During acute FV infection we revealed a Th2-like 
cytokine profile but at the same time markers of cyto-
toxicity in NKT cells. We were wondering if these con-
tradictory functions were mediated by different NKT 
sub-populations. Therefore, we determined the propor-
tions of CD4+, CD8+ and DN subsets from NKT cells 
producing pro-inflammatory and anti-inflammatory 
cytokines, as well as cytotoxic molecules (Table  1). The 
production of IL-10 and IL-13 was mainly associated with 
CD4+ NKT cells, whereas IFNγ and TNFα were mainly 
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Fig. 1 Absolute cell numbers and activation of NKT cells. Mice were infected with FV and bone marrow and spleen cells were harvested at 3 dpi. 
Cells were isolated and stained for NK cells (CD3−NK1.1+CD49b+, dotted bars) and NKT cells (CD3+NK1.1+, shaded). Absolute numbers of NK1.1+ 
cells are displayed in a (bone marrow) and b (spleen). The percentages of CD4+ (black bars), CD8+ (gray bars) and double‑negative (DN, white bars) 
subsets of NKT cells in FV‑infected mice were displayed in c (bone marrow) and d (spleen). NKT cells were analyzed for the activation markers CD69 
(e), CD86 (f) and CD43 (g) using flow cytometry. In e, f and g, mean percentage (±SEM) of bone marrow cells are depicted with white bars whereas 
splenocytes are displayed in gray bars. A minimum of five mice per group were used. Experiments were repeated at least five times. Statistically 
significant differences between naïve and FV‑infected mice were determined by the Mann–Whitney test and are indicated by single asterisk for 
p < 0.05 and double asterisk for p < 0.01
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produced by DN NKT cells. The analysis of CD107a+ and 
FasL+ NKT cells and their subset distribution identified 
the DN NKT cells in the spleen and bone marrow as the 
predominantly cytotoxic NKT cell population (Table 1).

These results suggest different functions of NKT cell 
sub-populations, with CD4+ NKT cells mainly produc-
ing anti-inflammatory cytokines, whereas DN NKT cells 
express molecules associated with cytotoxicity.

Antiviral effect of NKT cells in vivo and therapeutic 
stimulation of NKT cells during FV infection
Our current results show that acute FV infection acti-
vates NKT cells to produce anti-inflammatory cytokines, 
but at the same time enhances their cytotoxic potential. 
It was therefore of interest if these cells would increase 
or reduce FV loads in  vivo. To analyze this we per-
formed an adoptive transfer experiment with NKT cells 
from FV-infected mice into acutely FV-infected mice 
and subsequently determined their viral loads. In bone 
marrow and spleen, a significant decrease of more than 
80% in the viral burden was detected post transfer of 
NKT cells (Fig.  4a), indicating that the virus-activated 

NKT cells mediated anti-retroviral effects in vivo. In the 
1990s, αGalCer was identified as an exogenous activator 
for CD1d-restricted NKT cells [25]. First, it was isolated 
from extracts of a marine sponge but in 1995 a synthetic 
analogue called KRN 7000 was identified [26]. We used 
this compound to therapeutically stimulate NKT cells 
during an acute FV infection. In the bone marrow of FV-
infected mice, treatment with the immunomodulatory 
αGalCer (KRN 7000) led to increased NKT cell numbers 
(Fig.  4b, Additional file  2: Figure S2 C) and augmented 
their activation (Fig.  4c). FasL expression by NKT cells 
was significantly increased in FV-infected and αGalCer-
treated mice (Fig. 4d), but treatment of naïve mice with 
αGalCer did not result in any increase in FasL expres-
sion (data not shown). NKT cell stimulation in naïve mice 
slightly increased the production of anti-inflammatory 
cytokines but no increase in IFNγ was detected (data not 
shown). However, we found an augmented IFNγ produc-
tion by NKT cells in the FV-infected and αGalCer-treated 
group of mice similar to the increased FasL expression 
(data not shown, Fig. 4d). At 3 dpi, we detected a mean 
viral titer of 23542 FV-infected cells per million cells in 
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Fig. 2 Cytokine production by NKT cells after FV infection. Bone marrow cells (white bars) and splenocytes (grey bars) were isolated from naïve or 
FV‑infected mice (3 dpi). Cells were stimulated and stained for the pro‑inflammatory cytokines IFNγ (a) and TNFα (b) and the anti‑inflammatory 
cytokines IL‑10 (c) and IL‑13 (d). Mean (±SEM) values are indicated by bars. At least nine animals per group out of at least six experiments were used 
for analysis. Differences between naïve and FV‑infected mice were analyzed using the Mann–Whitney test and are indicated by single asterisk for 
p < 0.05 and double asterisk for p < 0.01
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the bone marrow, whereas the viral loads in FV-infected 
αGalCer treated mice were only around 2875 FV-infected 
cells per million cells (Fig.  4e). Thus, the stimulation of 
NKT cells resulted in an 87.8% reduction of viral loads, 
which correlated with the expansion, activation and FasL 

expression of NKT cells in this organ (Fig.  4b–d). We 
also analyzed the effect of αGalCer therapy at a later time 
point and detected a more than one log reduction in viral 
loads at 7 dpi in the spleen and bone marrow due to the 
treatment (Fig.  4f ). Taken together, FV-activated NKT 
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Fig. 3 Cytotoxicity of NKT cells after FV infection. Mice were infected with FV and were sacrificed at 3 dpi. As control group non‑infected mice 
were used. Single cell suspensions were prepared from bone marrow (white bars) and spleens (gray bars) of mice. Effector functions were measured 
by the degranulation marker CD107a (a) and apoptosis‑inducing FasL (b) and analyzed by flow cytometry. Data were collected from at least five 
independent experiments and at least eight animals per group. In c, NKT cells from naïve and FV‑infected mice were isolated and splenic and bone 
marrow NKT cells were mixed. NKT cells were co‑incubated with CFSE‑labeled, FV‑transformed tumor cells (FBL‑3 cells). Cells were stained for viabil‑
ity and immediately analyzed using flow cytometry. At least four animals per group out of at least two experiments were used for analysis. Mean 
(±SEM) values of percentages are indicated by bars. Statistically significant differences between groups were analyzed with the Mann–Whitney test 
and are indicated by single asterisk for p < 0.05 and double asterisk for p < 0.01

Table 1 Cytokine production and cytotoxicity of NKT cell sub-populations during early FV infection

Cytokine production and effector functions of NKT cell subsets were analyzed by flow cytometry. Mean values and standard deviation were calculated from at least 
nine values out of three independent experiments. Outliers were identified with the Rout method and removed

DN double‑negative

Bone marrow Spleen

CD4+ CD8+ DN CD4+ CD8+ DN

IFNγ 17 ± 6 12 ± 9 70 ± 9 24 ± 5 7 ± 6 67 ± 10

TNFα 29 ± 8 13 ± 7 51 ± 19 35 ± 7 11 ± 8 46 ± 15

IL‑10 46 ± 6 11 ± 10 37 ± 6 64 ± 9 3 ± 3 26 ± 8

IL‑13 50 ± 9 2 ± 1 37 ± 7 65 ± 10 3 ± 3 27 ± 11

CD107a 24 ± 4 6 ± 5 64 ± 11 23 ± 11 11 ± 6 58 ± 17

FasL 8 ± 6 12 ± 7 76 ± 8 13 ± 12 20 ± 12 55 ± 15



Page 6 of 10Littwitz‑Salomon et al. Retrovirology  (2017) 14:5 

cells mediated anti-retroviral effects in  vivo and thera-
peutic activation of NKT cells can improve the control of 
acute FV infection.

Stimulation with αGalCer also led to NK cell 
(CD3−CD49b+NK1.1+) activation and cytokine pro-
duction. We therefore analyzed the expression of CD69 
on NK cells and their production of pro-inflammatory 
cytokines in FV-infected mice after αGalCer adminis-
tration (Additional file  2: Figure S2 D). We detected an 
activation of NK cells post FV infection, which was sig-
nificantly enhanced post αGalCer therapy (Additional 
file 2: Figure S2 D, CD69, black bars). The αGalCer treat-
ment also increased the percentages of TNFα produced 
by NK cells (Additional file  2: Figure S2 D, gray bars). 
IFNγ production by NK cells was induced by FV infec-
tion, but was not further enhanced post αGalCer admin-
istration (Additional file 2: Figure S2 D, white bars). Thus, 
secondary effects of NKT cell stimulation on NK cells 
may partly contribute to the anti-retroviral effects after 
αGalCer therapy.

In this report, we analyzed the impact of NKT cells 
on the control of viral replication during initial phase of 

acute FV infection (3 dpi). We could demonstrate cyto-
toxicity of activated NKT cells and anti-retroviral activ-
ity in vivo. Most importantly, antiviral functions of NKT 
cells could be further increased by glycolipid αGalCer 
therapy that resulted in approximately 90% reduction in 
viral loads.

Various functions of NKT cells were also described in 
other viral infections. For example, increased numbers of 
NKT cells were detected in the lungs of influenza A virus 
(IAV) infected mice and the survival rate of NKT knock-
out mice after IAV infection was reduced [27, 28]. In 
these studies, the activation of NKT cells correlated with 
the reduction of IAV replication and reduced weight loss 
of mice [27]. Furthermore, NKT cells decreased immu-
nopathology during IAV infection by reducing the accu-
mulation of inflammatory monocytes in the lung [29]. In 
HIV infection NKT cell responses are difficult to analyze 
because functions of NKT cells are impaired and HIV 
infection results in loss of NKT cells within the first year 
of infection [30–32]. The initiation of antiretroviral ther-
apy (ART) in HIV-infected individuals results in a slow 
recovery of circulating NKT cell subsets and improves 
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Fig. 4 Antiviral activity of NKT cells and NKT cell activating therapy. Mice were infected with FV and splenocytes as well as bone marrow cells were 
used for adoptive transfer experiments. NKT cells were isolated and 1 × 105 NKT cells were transferred i.v. into acutely FV‑infected mice (a). At 3 dpi, 
viral loads were determined in the recipient mice. At least four mice from two different experiments were used. In b–f, one group of mice was 
injected with αGalCer at 0 dpi (FV + αGalCer) for stimulation of NKT cells. Absolute numbers of NKT cells per organ are shown in b. A representative 
histogram of the NKT cell activation of FV‑infected mice after αGalCer stimulation is displayed in c. Effector function were measured by the apop‑
tosis‑inducing FasL and analyzed by flow cytometry. Data were collected from at least three independent experiments. At least eight animals per 
group were used for analysis. Viral loads after αGalCer treatment were examined by infectious centers assay at 3 dpi (e) and 7 dpi (f). Mean (±SEM) 
values of percentages are indicated by bars. A minimum of nine mice out of three independent experiments (b, d, e) or at least four mice from two 
different experiments were used for f. Statistically significant differences between groups were analyzed with the Mann–Whitney test (a, e, f) or the 
Kruskal–Wallis test (b, d) and are indicated by single asterisk for p < 0.05; double asterisk for p < 0.01 or triple asterisk for p < 0.001. ns not significant
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their functionality [31, 32]. Recently it was shown that 
NKT cells can directly recognize and respond specifically 
to HIV-1-infected DCs [33]. In this study, NKT cell sens-
ing of HIV-infected cells depends on the expression of 
the CD1d molecule and the presentation of endogenous 
lipid antigen, which is at least partially downregulated by 
the accessory proteins Nef and Vpu [33]. HIV is closely 
related to SIV that causes AIDS in macaques and serves 
as a well-accepted primate model for HIV infection [34]. 
A study in SIV-infected macaques that develop AIDS ver-
sus SIV-infected sooty mangabeys that are disease resist-
ant, revealed a hypofunction of NKT cells in SIV-infected 
macaques [35]. The authors concluded that NKT dys-
function may play a role in AIDS pathogenesis and that 
immunoregulatory NKT cells might prevent generalized 
immune activation and immunodeficiency [35]. During 
acute FV infection, NKT cells showed direct cytotoxic 
activity, but no increased production of pro-inflamma-
tory cytokines. Thus, the antiviral effect of these cells in 
FV-infected mice was most likely mediated by direct tar-
get cell killing and not by cytokine-induced activation of 
other effector cells. If the enhanced production of anti-
inflammatory cytokines by NKT cells after FV infection 
counter-regulates immunopathology, as reported for the 
IAV model and SIV-infected AIDS-resistant sooty mang-
abeys, remains to be investigated in future studies.

Diverse immunoregulatory functions of NKT cells can 
be classified by phenotypic differences based on their 
CD4 and CD8 expression or by the absence of both mol-
ecules (DN) [1, 5]. In humans, CD4− NKT cells reveal a 
rather cytolytic function and a Th1-biased cytokine pro-
file while CD4+ NKT cells produce high levels of Th2 and 
also Th1-associated cytokines and exhibit immunoregu-
latory functions [36, 37]. During HIV and SIV infec-
tion, the CD4+ NKT cell subset was depleted, which was 
inversely correlated with viral loads [21, 22, 38] whereas 
others did not detect any correlations between NKT cell 
depletion and viral set points [30, 39]. During FV infec-
tion we did not detect a depletion of CD4+ NKT cells 
probably due to the fact that FV mainly infects erythroid 
precursor cells as well as granulocytes and B cells [17]. 
Similar to other studies we found that CD4+ NKT mainly 
produced Th2 cytokines, whereas the DN NKT cell sub-
set expressed markers associated with immune activation 
and cytotoxicity. Therefore, the anti-retroviral activity of 
NKT cells during FV infection is most likely mediated by 
the DN NKT cell sub-population.

Immunotherapies targeting NKT cells as effectors 
aim at increasing NKT cell numbers or enhancing their 
effector functions. For the stimulation of NKT cells in 
SIV-infected macaques the exact protocol is of cru-
cial importance for the proper initiation of NKT cell 

responses [40]. Treatment protocols from mouse experi-
ments were not successful for the activation of NKT cells 
in humans and macaques [41]. Recently it was demon-
strated that the administration of αGalCer to macaques 
infected with SIV resulted in an initial transient decline 
of NKT cell frequencies followed by an NKT cell expan-
sion at six to nine days post αGalCer therapy [40]. Never-
theless, αGalCer was able to efficiently activate NKT cells 
in SIV-infected macaques [41]. In acutely FV-infected 
mice, the activation of NKT cells with αGalCer was asso-
ciated with increased NKT cell numbers in the bone 
marrow and slightly in the spleen, better activation, and 
improved antiviral responses of NKT cells. Stimulation 
of FV-infected animals with αGalCer resulted in a sig-
nificantly increased FasL expression on NKT cells, which 
was not seen in naïve mice stimulated with αGalCer. 
Therefore, αGalCer treatment might be an interesting 
new immunotherapy against retroviral infections. Inter-
estingly, αGalCer was also tested as a mucosal adjuvant 
against genital herpes [42]. Here, immunization with 
HSV-2 glycoprotein D in combination with αGalCer 
improved the IgG antibody response and resulted in 
complete protection against vaginal HSV-2 challenge 
[42]. In Hepatitis B virus (HBV) infection, NKT cells 
were shown to be initially activated and contribute to 
the antiviral immune response by promoting adaptive 
immune responses [43]. Independently of T and B cells, 
stimulation of NKT cells with αGalCer abolished viral 
replication and increased concentrations of IFNγ and 
type I IFNs in HBV-transgenic mice were detected [44]. 
However, type I IFN responses do not play a critical role 
in the FV model because they are actively suppressed 
by the virus [45, 46]. In hepatitis virus infections NKT 
cells also seem to have opposing effects on pathogen-
esis. Beside the positive effects of activated hepatic NKT 
cells in preventing acute liver injury, inflammation and 
fibrosis, other studies demonstrated that NKT cells may 
also contribute to hepatic injuries in an FasL-dependent 
damage of hepatocytes [47, 48]. Furthermore, the exces-
sive activation of NKT cells can result in accelerated liver 
damage [48, 49]. Thus, activation of hepatic NKT cells 
was not only associated with beneficial effects but also 
with impaired liver regeneration in HBV-transgenic mice 
[50]. In the FV model, αGalCer therapy had a beneficial 
effect on the course of infection, but important aspects 
of immunopathology have to be carefully considered for 
every pathogen when augmenting NKT cell responses.

In this report, we describe the impact of NKT cells on 
the control of an acute retroviral infection. Stimulation 
of NKT cells with αGalCer improved their anti-retroviral 
potential, which might be an interesting new approach 
for immunotherapy of acute virus infections.
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Methods
Mice and FV infection
Seven to ten weeks old female inbred C57BL/6 (B6, Har-
lan Laboratories, Germany) were used for the experi-
ments. All mice were treated in accordance with the 
regulations and guidelines of the institutional animal 
care and use committee of University of Duisburg-Essen. 
The FV stock used in these experiments was FV complex 
containing B-tropic Friend murine leukemia helper virus 
and polycythemia-inducing spleen focus-forming virus. 
The stock was prepared as a 15% spleen cell homogenate 
from BALB/c mice infected 14 days previously with 3000 
spleen focus-forming units (SFFU). Mice were injected 
intravenously with 0.1 ml phosphate-buffered saline con-
taining 40,000 SFFU of FV. The virus stock did not con-
tain lactate dehydrogenase-elevating virus. Mice were 
sacrificed 3  dpi by cervical dislocation and spleen and 
bone marrow (two legs) were harvested.

IC assay
Infectious centers (IC) were detected by tenfold dilu-
tions of single-cell suspensions of splenocytes and bone 
marrow cells onto Mus dunnis cells. Co-cultures were 
incubated for three days, fixed with ethanol, stained with 
F-MuLV envelope-specific monoclonal antibody 720 and 
developed with peroxidase-conjugated goat anti-mouse 
antibody and aminoethylcarbazol for the detection of 
foci.

Flow cytometry
Cell surface staining was performed for 15  min in the 
dark using PBS. The exclusion of dead cells was achieved 
using Zombie UV dye (BioLegend). Cells were stimu-
lated with Ionomycin (500  ng/ml), PMA (25  ng/ml), 
Monesin (1×, BioLegend) and Brefeldin A (2  μg/ml) 
diluted in IMDM buffer and incubated for 3  h at 37  °C 
to detect cytokines and FasL expression. For intracellu-
lar stainings BD Cytofix/Cytoperm Fixation/Permeabi-
lization kit was used. Surface and intracellular stainings 
were performed using following antibodies: CD3 (17A2, 
eBioscience), CD43 (1B11, BioLegend), CD49b (Dx5, 
eBioscience), CD69 (H1.2F3, eBioscience) CD86 (GL1, 
BioLegend), CD107a (ID4B, BioLegend), FasL (MFL3, 
BD Pharmingen), IFNγ (XMG1.2, eBioscience), IL-10 
(JES5-16E3, eBioscience) IL-13 (eBio13A, eBioscience), 
NK1.1 (PK136, eBioscience), and TNFα (MP6-XT22, 
BioLegend).

In vitro cytotoxicity assay
FBL-3 tumor cells were cultured in RPMI plus 1% Penicil-
lin/Streptomycin and 10% FBS. In vitro cytotoxicity assay 
was performed using 1 × 104 CFSE stained FBL-3 tumor 
cells and 25 ×  104 isolated NKT cells from the spleen 

and the bone marrow of naive or FV-infected mice. The 
assay was performed in 96-well U-bottom plates and co-
incubation took place for 24  h in a humidified 5% CO2 
atmosphere at 37 °C. Cells were washed once, stained for 
fixable viability dye (FVD, eBioscience) to exclude dead 
cells and analyzed by flow cytometry.

NKT cell stimulation and isolation
At day 0 of FV infection, NKT cells were stimulated by 
i. p. application of 2 µg chemically synthesized αGalCer 
(KRN7000, Cayman Chemical Company) diluted in PBS. 
For isolation of NKT cells, CD3+ cells were isolated with 
MagniSort® Mouse CD3 Positive Selection Kit (eBiosci-
ence) and cells were sorted for NK1.1+ cells. For transfer 
experiment, 1 × 105 NKT cells per mouse were diluted in 
PBS and injected i.v. at the day of FV infection.

Statistical analyses
Statistical analyses and graphical presentations were 
computed with Graph Pad Prism version 6. Statistical dif-
ferences between two different groups were determined 
by the Mann–Whitney test. Differences between three 
groups were analyzed by Kruskal–Wallis test. Outliers 
were identified with the Rout method.
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Additional files

Additional file 1: Figure S1. Activation and effector functions of NKT 
cells during early FV infection. Splenocytes were isolated from FV‑
infected mice (3 dpi) and analyzed using flow cytometry. Representative 
histograms of the NKT cell activation (CD69, CD86, CD43) and effector 
functions (CD107a, FasL) are shown.

Additional file 2: Figure S2. Type I NKT cells and αGalCer therapy during 
the acute FV infection. Mice were infected with FV and sacrificed at 3 dpi. 
As control group non‑infected mice were used. Single cell suspensions 
were prepared from the bone marrow and spleens of mice. Representa‑
tive histograms for the identification of NKT cells and invariant NKT cells of 
a FV‑infected mouse are shown in A. Activation of invariant NKT cells were 
analyzed in both organs by the measurement of early activation marker 
CD69 (B). Six animals per group out of two experiments were used for 
analysis. Statistically significant differences between groups were analyzed 
with the Mann–Whitney test and are indicated by single asterisk for 
p < 0.05. Representative histograms of NKT cells (CD3+NK1.1+) and type I 
NKT cells (CD3+ αGalCer pre‑loaded CD1d tetramer+ NK1.1+) from naïve, 
FV‑infected and FV‑infected plus αGalCer‑treated mice are shown in C. 
Activation, IFNγ and TNFα production of NK cells (CD3–CD49b+NK1.1+) is 
shown in D for groups of naïve, FV‑infected and FV‑infected plus αGalCer‑
treated mice. Data were collected from at least four independent experi‑
ments. At least seven animals per group were used for analysis. Mean 
(±SEM) values of percentages are indicated by bars. Statistically significant 
differences between groups were analyzed with the Kruskal–Wallis test 
and are indicated by single asterisk for p < 0.05 and triple asterisk for 
p < 0.001.
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