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Abstract

Macrophages are important target cells for the Human Immunodeficiency Virus Type I (HIV-1) in vivo. Several studies
have assessed the molecular biology of the virus in this cell type, and a number of differences towards HIV-1
infection of CD4+ T cells have been described. There is a broad consensus that macrophages resist HIV-1 infection
much better than CD4+ T cells. Among other reasons, this is due to the presence of the recently identified host cell
restriction factor SamHD1, which is strongly expressed in cells of the myeloid lineage. Furthermore, macrophages
produce and release relatively low amounts of infectious HIV-1 and are less sensitive to viral cytotoxicity in
comparison to CD4+ T cells. Nevertheless, macrophages play a crucial role in the different phases of HIV-1 infection.
In this review, we summarize and discuss the significance of macrophages for HIV-1 transmission, the acute and
chronic phases of HIV-1 infection, the development of acquired immunodeficiency syndrome (AIDS) and
HIV-associated diseases, including neurocognitive disorders. We propose that interaction of HIV-1 with macrophages
is crucial during all stages of HIV-1 infection. Thus, long-term successful treatment of HIV-1 infected individuals
requires potent strategies to prevent HIV-1 from entering and persisting in these cells.
Review
Introduction
HIV-1 infects various cell types of the immune system.
CD4+ T helper cells are major target cells for HIV-1 in
the blood, since they can express high levels of the HIV-
1 receptor CD4 on their surface and are highly permis-
sive for HIV-1 production [1,2]. However, other immune
cells also express CD4 and HIV-1 co-receptors at the
cell surface and thus also serve as viral targets. Among
them macrophages were described, more than twenty
five years ago, to carry markers of productive HIV-1
infection in vivo [3], although they express only low
levels of CD4.
Macrophages are terminally differentiated, non-dividing

cells, derived from circulating monocytes [4]. They repre-
sent a distinct population of phagocytes which are found
under different names in various tissues (e.g. microglia in
the brain, alveolar macrophages in the lung, or Kupffer
cells in the liver) [4,5]. Macrophages play an important
role in the innate and adaptive immune response. They
phagocytose cellular debris and pathogens, but also act
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as professional antigen presenting cells (APC), trigger-
ing antibody responses by the presentation of pathogen
derived peptides via the MHC-II pathway to CD4+ T
cells [5] and activating CD8+ cytotoxic T-cells (CTL) by
cross-presentation of HIV-1 antigens [6]. The life spans
of macrophages can differ greatly, depending on their
immunological roles and tissue localizations. Thus inflam-
matory macrophages derived from circulating monocytes
die after a few days [7], whereas microglia or alveolar
macrophages can live from several weeks up to years
[8-10]. Due to their dissemination over different tissues
and their capacity to infiltrate virtually all organs including
the brain, macrophages might critically contribute to the
spread of HIV-1 within a patient [11-13]. Furthermore,
next to human mammary epithelial cells [14,15], macro-
phages have been implicated as key cells responsible for
mother-to-child transmission due to breast feeding [16].
The progressive loss of CD4+ T cells and high-level

virus production by these cells are the irrefutable cause
of immune deficiency [17]. However, the relevance of
macrophages for the transmission, spread and patho-
genicity of HIV-1 is less clear. One reason for this is the
large diversity of possible interactions of macrophages
with HIV-1. For example macrophages can differ both in
their capacity to permit HIV-1 entry as well as their
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capacity to support the HIV-1 replication cycle [18-20].
Infection frequently results in only limited virus produc-
tion, and in vivo infection may be apparent in only a
minor proportion of macrophages within certain macro-
phage subpopulations [19,21,22]. In addition, macro-
phages are much more resistant to cytopathic effects of
lentiviral replication than for example activated CD4+
T cells [23-25], and HIV-1 has evolved sophisticated
mechanisms to prolong the life span of infected macro-
phages [24,26]. Especially long-lived macrophages may
therefore harbor the virus for long time periods, thus
constituting HIV-1 reservoirs and posing a major obs-
tacle to virus eradication from infected individuals. Here,
we summarize and discuss the growing body of evidence
suggesting an important role of macrophages throughout
the different phases of HIV-1 infection.

Transmission of HIV-1 to the host: Macrophages
encounter HIV-1 at mucosal surfaces
Worldwide, the predominant mode of primary HIV-1
infection is through heterosexual intercourse [27]. HIV-
1 and other sexually transmitted pathogens have to
pass the genital mucosal barrier, which strongly hinders
infection due to its low pH, the closed epithelium and
antiviral factors present in vaginal secretions [28,29].
Nevertheless, pathogens are able to cross the mucosal
barrier, especially through small mucosal lesions that
occur during sexual intercourse and impair epithelial in-
tegrity. Macrophages, dendritic cells (DC) and CD4+/
CCR5+ memory T cells patrolling the mucosal sur-
face are the first immune cells facing the virus [21].
Most sexually transmitted HIV-1 isolates use the CCR5
coreceptor for infection [30]. Therefore, next to CD4+/
CCR5+ memory T cells, both dendritic cells as well
as macrophages may be infected. Since mature DCs
potently resist HIV-1 infection by various mechanisms,
including the high expression of the recently identified
restriction factor SamHD1, only a small proportion of
DCs is productively infected [31-33]. Instead, they cap-
ture the virus via cell surface lectins such as DC-SIGN
and home into lymph nodes or other secondary lymph-
atic organs, where they transmit surface bound HIV-1 to
CD4+ T cells [32,34,35].
In contrast, resident macrophages in the mucosa usu-

ally do not migrate to lymph nodes. Non-infected
macrophages take up and process the virus and present
HIV-1 derived peptides via MHC-II to CD4+ T cells.
Additionally, they help to optimize the anti-HIV CTL
response due to cross presentation of virus derived
peptides via MHC-I [6]. We postulate that cross priming
of CTLs by macrophages and DCs is crucial for HIV
pathogenicity, since an effective CTL response can con-
trol HIV-1 in vivo [36]. In addition it was recently
demonstrated that HIV-1 infected macrophages can be
killed by CTLs [37], although HIV-1 has evolved
mechanisms to down-modulate MHC-I from the surface
of virus infected CD4+ T cells [38,39] and macrophages
[40,41]. Thus, macrophages in the mucosa contribute to
the humoral and cellular immune response during the
acute phase of HIV-1 infection.
A significant proportion of macrophages at the muco-

sal surface is productively infected with HIV-1 [42].
Since macrophages secrete cytokines that attract/recruit
T lymphocytes to sites of infection, they can “support”
establishment of viral infection by enlarging the number
of primary target cells [43-46]. A particularly malicious
feature of HIV-1 infected macrophages is that they may
transmit the virus to CD4+ T cells at the mucosal sur-
face via cell to cell contact during HIV-antigen presenta-
tion [47,48]. Considering the latter, we could think of a
scenario in which a productively infected macrophage
interacts with CD4+ T cells as a consequence of MHC
class II mediated presentation of HIV-1 antigens and
simultaneously transmits the virus to the interacting
CD4+ T cell, even though this has not been shown
experimentally, yet. The so-called virological synapse,
which is established during cell-to-cell transmission of
the virus [48,49], resembles the immunological synapse
formed between antigen presenting cells and CD4+
T cells [50]. Thus, macrophage associated HIV-1 might
hijack parts of the antigen presentation machinery for
efficient transmission to adjacent cells.
In sum, recent evidence clearly establishes that vaginal

macrophages are productively infected during sexual
transmission of HIV-1. However, these tissue-associated
macrophages stay at the mucosal surface and therefore
probably do not transport HIV-1 to secondary lymphoid
organs. Instead they recruit CD4+ T cells and contri-
bute to the establishment of infection at sites of viral
entry, i.e. the mucosal barrier.

Hiking with macrophages: HIV-1 spread during the
acute infection
During acute infection, virus is disseminated to second-
ary lymphoid organs, in particular to the gut associated
lymphoid tissue (GALT). There is strong evidence that
most of the CD4+ T cells in the GALT, including CD4+
memory T cells are directly depleted by massive HIV-1
propagation, accompanied by the loss of integrity of the
intestinal barrier [51,52]. This causes translocation of
lipopolysaccharide (LPS) and other bacterial products
into the blood stream, driving generalized immune acti-
vation associated with rapid AIDS progression [51,53].
When compared to other macrophages like those of the
vaginal mucosal tissue, intestinal macrophages seem to
be relatively resistant against HIV-1 infection [42]. How-
ever, in their function as antigen presenting cells, they
might be involved in the orchestration of the primary
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antibody response which suppresses HIV-1 virus loads at
the onset of the chronic phase. Circulating monocytes
are also recruited to the intestinal sites of viral replica-
tion and inflammation and differentiate into inflamma-
tory macrophages. While these are permissive for HIV-1
infection [54], their role in the establishment and spread
of HIV-1 is uncertain, since their half-life is only around
two to three days [7]. Simultaneous to the establishment
of infection in the lymphoid tissue and the breakdown of
the intestinal barrier, virus is shed into the blood, which
is evidenced by a dramatic increase in plasma viral loads
[17,52]. From there, HIV-1 might infect perivascular
macrophages, which have been shown in the monkey
model to produce virus in the brains of SIV infected
macaques, already at 14 days post inoculation [55]. In
contrast to other tissue residing macrophages, perivascu-
lar macrophages are highly migratory and infiltrate other
organs e.g. the lung and the brain [56]. They have a life-
span of up to three months and are resistant to HIV-1
induced cytotoxic effects [57]. Hence, perivascular
macrophages, next to latently infected monocytes, ap-
pear to be important cells for dissemination of HIV-1
throughout the body, including the brain. This conclu-
sion is supported by evidence from studies by Thomp-
son and colleagues, who detected viral DNA in
perivascular macrophages and astrocytes in the brains of
SIV infected macaques as early as 10 days post infection
of the animals [58,59]. Furthermore the same group also
demonstrated the presence of HIV-1 DNA in perivascu-
lar macrophages and parenchymal microglial cells as
well as in astrocytes in human brain tissue of pre-
symptomatic HIV-1 infected individuals that died of
non-HIV associated reasons [59]. This finding raises the
possibility of viral persistence in brain macrophages and
astrocytes, which are both extremely long-lived cell types
that may exist for the life span of the host [8,60,61].
Overall, macrophages play a two-faced role in the

acute phase of HIV-1 infection. On the one hand, they
help to establish infection at sites of viral entry and peri-
vascular macrophages disseminate the virus in various
organs including the brain. Thus, an important fact is
that HIV-1 infection of the brain - an immune sanctuary
and reservoir organ for HIV-1 - might occur early after
HIV-1 transmission, during acute infection. On the
other hand, macrophages are critically involved in the
initiation and the orchestration of the adaptive cellular
and humoral immune response which finally helps to di-
minish viral burden, leading to the reduction of viraemia
which is typical of the onset of chronic infection [62].

Macrophages are viral hideouts during the chronic phase
of infection
The chronic phase can be considered as a standoff
between the immune system and HIV-1. CD4+ T cells
not only die because of cytotoxic T lymphocyte (CTL)
responses but also due to active viral replication, direct
HIV-1 induced cytotoxic effects, and excessive immune
activation. However, depleted CD4+ T cells are replen-
ished because of the regenerative capacity of the im-
mune system and are prone to HIV-1 infection due to
the generalized state of immune activation [63]. Cell free
virus is efficiently inactivated by neutralizing antibodies;
whereas cell-to-cell transmission enables HIV-1 to partly
evade this immune response [64,65]. Thus, cell-to-cell
transfer is likely to be the predominant mode of infec-
tion and spread in the chronic phase.
Accumulating data suggest that macrophages are

important and specialized viral reservoirs, storing HIV-1
particles in internal compartments. The presence of
mature HIV-1 in intracellular vesicles of macrophages
was demonstrated long ago [66], and there is some con-
troversy in the field regarding the origin of the HIV-1
accumulations in macrophages. This has been addressed
in two other comprehensive reports [67,68] and is not
the topic of the present review. Irrespective of the origin
of intracellular virus containing compartments in macro-
phages, they seem to represent a hideout for HIV-1. The
Stevenson lab demonstrated some years ago that macro-
phages can store infectious HIV-1 particles for many
weeks [69]. Recently, we and others assessed the accessi-
bility of the internal virus compartments from the exter-
ior and found that high molecular weight substances,
including broadly neutralizing antibodies are excluded
[65,70]. Thus, infectious HIV-1 within macrophages gen-
erally seems to be protected from neutralizing antibodies.
Of note, there are some hints that HIV-1 could rapidly
be transferred from macrophage internal compartments
to adjacent CD4+ T cells and uninfected MDM [48,49],
and recently it was postulated that HIV-1 infected
macrophages release virus containing exosomes and
microvesicles to facilitate and enhance HIV-1 dissemin-
ation [71]. In sum, potent immune evasion mechanisms
mediated by macrophages contribute to the inability of
the immune system to achieve HIV-1 clearance within
the acute and chronic phases of infection (see also
Figure 1).

The role of macrophages during AIDS progression
The continuous killing of CD4+ T cells in the course of
HIV-1 infection inevitably leads to an impaired immune
response, the acquired immune deficiency syndrome
(AIDS). AIDS is characterized by a breakdown of the
immune system and the loss of its capacity to control
HIV-1 viraemia and to protect against opportunistic
pathogens and tumors [17]. While mainly HIV-1 var-
iants that use CCR5 as coreceptor (R5 viruses) are trans-
mitted and prevalent during acute infection, a switch
toward viruses that use the CXCR4 coreceptor (X4



Figure 1 Role of macrophages in HIV-1 infection and disease progression. The number of CD4+ T cells and viral genome copies in plasma
during the different phases of HIV-1 infection are presented in a schematic drawing. The dotted lines indicate the effects of antiretroviral therapy
(ART). The contribution of macrophages to each phase of HIV-1 infection is indicated below the scheme. Abbreviations: CNS, central nervous
system; BBB, blood brain barrier; OI, opportunistic infections; ART, antiretroviral therapy.
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viruses) occurs in about 50% of patients in the course of
infection [72]. Since X4 viruses exert increased cytotox-
icity, this coreceptor switch is associated with an acceler-
ated progression of AIDS [73]. Macrophages are infected
by CCR5 tropic HIV-1. This raises the question whether
de novo infection of macrophages plays a subordinate
role for AIDS pathogenesis. However, it has to be con-
sidered that the majority of CD4+ T cells are depleted
in the AIDS stage; and a large proportion of patients
progressing to AIDS still harbor viruses that use CCR5
for cell entry [72,74]. This indicates that macrophages
indeed are involved in the late stages of HIV-1 infection.
Figure 1 depicts various reasonable scenarios for the

potential relevance of macrophages for disease progres-
sion, some of which are supported by evidence from the
SIV/monkey model. For one, HIV-1 infected macro-
phages might be responsible for a large proportion of
the virus load in the face of declining CD4+ T cells [75].
In addition, since macrophages and monocytes are im-
portant cells for the orchestration of the innate immune
response, macrophage-damage might impede the host
defense against opportunistic infections [76-78]. In con-
trast, macrophages might also serve as targets for AIDS
relevant pathogens, e.g. Mycobacterium tuberculosis,
thereby fueling the establishment of opportunistic infec-
tions associated with the progression of AIDS.
Apart from the more obvious roles of macrophages in

AIDS progression, there is a sophisticated regulation of
macrophage activation and deactivation that could critic-
ally influence HIV-1 pathogenicity [46]. This concept of
differential macrophage polarization in the course of
AIDS progression was introduced by Guido Poli and can
now be refined by recent progress in this area [79,80].
Blood circulating monocytes or monocyte-derived macro-
phages (M0) are either differentiated into proinflamma-
tory M1 or anti-inflammatory M2 macrophages devoted
to tissue repair. Macrophage polarization is influenced by
a number of cytokines, however, mainly by GMCSF (M1)
or MCSF (M2) [46,81]. Due to the high levels of MCSF
circulating in the plasma, it is highly likely that the M2
phenotype generally prevails in the blood prior to acute
HIV-1 infection. Interestingly, M2 macrophages restrict
HIV-1 infection at a post-integration step without effects
on protein expression levels or HIV-1 DNA [79]. In con-
trast, M1 macrophages restrict HIV-1 prior to integration,
but do not exhibit a post-integration block [79]. Intri-
guingly, in the acute phase of infection, the Th1 response
in conjunction with a number of proinflammatory cyto-
kines favors the M1 phenotype of macrophages. Thus,
previously infected macrophages with a M2 phenotype
are now shifted toward a productively infected M1 pro-
file [46,80]. The activation state of macrophages is highly
flexible and might vary depending on tissue localization
and specific macrophage functions [80,81]. This argues
against postulating a general polarization state of macro-
phages in a certain stage of disease. Nevertheless, it
has been proposed that the majority of macrophages
in later HIV-1 infection stages represent IL-4/IL-13 acti-
vated M2 macrophages which would restrict HIV-1 pro-
duction [46]. In this context it is noteworthy, that a
recent report demonstrated a Nef-driven phenotypic
shift of M2 to M1-like macrophages [82]. Thus, we could
envision a scenario in HIV-1 infected patients, in which
mainly M2-prevailing macrophages are infected. These
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M2-macrophages produce HIV-1 proteins, but no infec-
tious virus particles, due to a terminal restriction that
blocks completion of HIV-1 replication. However, this
restriction is subverted by the Nef induced phenotypic
shift to M1-like macrophages, resulting in completion of
the viral cycle and a proinflammatory M1 phenotype.
Nef-activated and HIV-1 infected macrophages might

be critically involved in the apoptosis of CD4+ and
CD8+ T cells. While we could not confirm direct apop-
totic effects of Nef in primary HIV-1 infected T cells [39],
a more complex signaling network involving Nef in
HIV-1 infected macrophages seems to be responsible
for bystander T cell apoptosis. This whole concept is ela-
borated in a recent review by Herbein and colleagues
and we refer the interested reader to this work for more
details [45]. In sum, HIV-1 Nef, Tat and Vpr promote
the survival and gene expression of HIV-1 infected
macrophages. CD4+ T cells will be activated by factors
secreted from infected macrophages and either killed
directly, killed by infection or subverted into CD4+ T
cell reservoirs. In contrast, CTLs are destroyed by a
pathway dependent on the synergistic action of the
TNF/TNFR and GP120. These complex mechanisms of
CD4+ and CD8+ T cell death induced by HIV-1 infected
macrophages will undoubtedly contribute to the total
loss of T cells and finally AIDS development. With the
appearance of opportunistic infections, macrophages will
finally be deactivated due to increasing levels of IL-10
[46,81]. In the very late stages of disease, this will lead
to a total breakdown of macrophage mediated adaptive
immunity and immune deficiency.

HIV-1 infected macrophages under antiretroviral
therapy (ART)
Current ART involves treatment of infected individuals
with several anti-HIV drugs that target different steps of
viral replication. ART can permanently suppress viral
loads in the plasma to levels beneath the detection limit
of most assays approved for clinical use [83,84]. How-
ever, even long term ART cannot eliminate all infected
cells from the patients, and virus levels rapidly rebound
if antiviral treatment is stopped [83,85]. This is due to
the persistence of HIV-1 in long-lived reservoirs. Cell
types that contribute to HIV-1 persistence by formation
of reservoirs include latently infected resting CD4+ T
cells with integrated provirus, dendritic cells, macro-
phages, bone marrow haematopoietic stem cells and
astrocytes [86-89]. Furthermore, persistence of HIV-1 is
also promoted by the presence of the virus in so called
viral sanctuaries – infection sites in the body which are
difficult to reach by antiviral drugs and are additionally
immune privileged niches [13,90]. Therefore, eradication
of HIV-1 from these sites is hardly feasible [89]. One of
the most important HIV-1 sanctuaries is the central
nervous system (CNS), especially the brain. It contains
HIV-1 reservoir cells, infected macrophages and astro-
cytes, for long-term virus persistence. This virus persist-
ence is one of the major challenges for HIV-1 therapy
and cure [61,91]. The presence of HIV-1 in reservoirs
and sanctuaries leads to a dramatic increase of viral load
if the therapy is stopped or interrupted, with the conse-
quence that HIV-1 infected individuals require lifelong
ART [92].
Macrophages are definitively involved in boosting

HIV-1 rebound after stopping ART. Macrophages store
high amounts of unintegrated viral DNA in circular
form, and infected macrophages and monocytes were
found in ART treated HIV-1 patients with viral loads
under the detection limit [93-95] as well as in the brains
of pre-symptomatic HIV-1 patients [59]. Furthermore, as
already indicated, HIV-1 produced by tissue-associated
macrophages might be targeted insufficiently by antiviral
drugs due to the low bioavailability of the drugs in cer-
tain tissues [96]. Another remarkable feature rendering
macrophage associated HIV-1 resistant toward HIV-1
protease inhibitors (PI) are multidrug pumps [97-99], al-
though their involvement in PI resistance was recently
questioned [100]. Their biological role is to allow macro-
phage resistance against toxins. However, these drug
pumps also lower the concentration of inhibitors within
the macrophage, decreasing concentrations of the anti-
HIV drugs and possibly promoting the emergence of
escape mutants [97,99]. Collectively, all these different
lines of evidence establish that even under prolonged
ART, HIV-1 persists in macrophages.
Involvement of macrophages in HIV-1 associated
neurological disorders
HIV-1 infection of the CNS/brain is associated with
various nervous system dysfunctions. A severe form
of neurocognitive impairment, called HIV-1 associated
dementia (HAD), can occur in up to 10% of untreated
individuals. While HAD has declined since the introduc-
tion of ART [101], a milder disease form, HIV-1 asso-
ciated neurocognitive disorders (HAND), continues to
prevail in up to 50% of HIV-1 infected individuals, even
under optimal treatment conditions [102-104].
Monocytes and macrophages mediate HIV-1 neuroin-

vasion and contribute to HIV-1 in the brain and neur-
onal damage [12,13,105]. As already outlined, invasion
of the brain begins very early in infection and can con-
tinue throughout the lifetime of the infected individual.
Invading CD14+ CD16+ monocytes and perivascular
macrophages can transmit the virus to microglial cells
and astrocytes and establish infection and chronic
inflammation of the CNS [106,107]. Neuroinvasion of
HIV-1 may dysregulate the blood brain barrier and alter
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its permeability by various mechanisms including infec-
tion and loss of astrocytes [108].
Neurons very rarely show signs of HIV-1 infection

in vivo, and entry and replication of HIV-1 in human
neuronal cultures is very inefficient [109]. Thus glial
cells, both microglia (brain macrophages) and astrocytes,
are believed to be the effector cells of neuronal damage.
Microglia and perivascular macrophages are the princi-
pal innate immune cells of the brain and therefore
believed to play a central role in causing the neurological
dysfunctions associated with infection [106]. Markers for
productive HIV-1 infection (e.g. Gag proteins) have been
identified mainly in macrophages in brain tissues from
infected individuals, leading to the notion that macro-
phages are the predominant target cells for HIV-1 in the
brain [110]. Furthermore, macrophage-tropic HIV-1 env
genes and HIV-1 variants have been isolated from brain
tissues of HIV-1 infected individuals, providing further
support for HIV-1 infection of brain macrophages
[74,111,112]. While the role of other brain cell types in
HIV-1 infection and neuropathogenicity is beyond the
scope of this review, it is important to point out that
macroglia cells, particularly astrocytes, very likely also
play important roles in HIV-1 entry, neuronal damage
and virus persistence in the brain [109,113-115].
The histopathological hallmarks of HIV-1 infected

brains include accumulation and activation of brain
macrophages and occurrence of multinucleated giant
cells, probably reflecting fusion of HIV-1 producing
microglial cells [116]. The number and extent of activa-
tion of macrophages/microglial cells seem to be a better
correlate for the severity of neurological disease cells
than productive infection. Activation of monocytes/
macrophages is mediated both directly by HIV-1 infec-
tion, and indirectly by factors secreted by activated
cells in the brain. Activated macrophages/microglia can
secrete a plethora of potentially neuromodulatory cellu-
lar factors, both harmful and protective [96,101,110].
Among them are TNF-α, IL-1β, IL-6 and macrophage
colony stimulating factor (MCSF) as well as granulocyte
monocyte colony stimulating factor (GMCSF). Once
released, these cytokines can amplify the pool of acti-
vated cells and increase neuroinflammation of the CNS
by paracrine and autocrine mechanisms [117,118]. Fur-
thermore numerous studies have attributed neurotoxic
activities to several HIV-1 proteins, including gp120,
Nef, Tat and Vpr, which may occur both in cell-
associated as well as soluble forms in the CNS (compre-
hensively reviewed in [46,101,109,119] for example). The
aforementioned polarization of macrophages to an M1-
like phenotype by the HIV-1 Nef protein might also con-
tribute to neuropathogenesis [82]. M1 macrophages
might be critically involved in the production and
release of a variety of neurotoxic small molecules
including quinolinate, platelet activating factor, nitric
oxide and glutamate, all of which are involved in the de-
velopment of neuronal injury, neuron and astrocyte
death [101].
Clearly there is interplay between the different media-

tors of neuronal damage during HIV-1 infection of the
brain, and this interplay makes it difficult to dissect the
impact of an individual viral or cellular factor on HIV-1
induced neuronal damage. However, undoubtedly,
macrophages play a central role in the development of
HAND. Neurological disorders develop in all stages of
HIV-1 infection, even under long term antiretroviral
treatment [120]. Thus it will be of importance to further
delineate the pathogenesis of HAND and develop anti-
retroviral and other drugs that are able to cross the
blood brain barrier, target viral brain reservoirs and pre-
vent HIV-1 production by microglia.

HIV-1 restriction in macrophages
In recent years a variety of host cell factors suppressing
HIV-1 at different steps in the viral replication cycle
have been described and are now collectively called
HIV-1 restriction factors (RF) [121]. Most but not all
RFs are induced by interferon-α and exert potent anti-
viral activity in cell culture. However, despite the pres-
ence of host cell restrictions, HIV-1 efficiently replicates
and causes AIDS in most untreated individuals. Coevo-
lution of virus and host has resulted in the acquisition of
potent viral antagonists that counteract viral restriction
mechanisms of the host cell. For this purpose HIV-1 has
a repertoire of versatile and rapidly evolving so-called
accessory proteins, namely Nef, Vif, Vpr and Vpu. It is
well established that Vif counteracts the cytidine deami-
nase APOBEC3G [122] and Vpu inactivates the antiviral
factor Tetherin [123,124]. Furthermore, the Nef proteins
of some simian immunodeficiency viruses (SIV) have
evolved to block the action of Tetherin [125]. The SIV
counterpart of Vpr, the Vpx protein, antagonizes the
recently identified dideoxynucleotide hydrolase SamHD1
[33,126]. SamHD1 depletes the pool of deoxynucleoside
triphosphates within the cell and thereby prevents
reverse transcription of the HIV-1 RNA genome [127].
Of note, degradation of SamHD1 by Vpx is sufficiently
rapid to allow reverse transcription post fusion of the
virus with the host cell [128]. Since recent data suggest
that counteraction of SamHD1 by Vpx is initiated in the
nucleus [129], virion delivered Vpx has to be rapidly
transferred into the nucleus before the initiation of
reverse transcription.
Macrophages express high amounts of Tetherin and

SamHD1, whereas CD4+ T cells express no or only low
levels of these RFs [41,126,130]. As a consequence, in
ex vivo experiments, viral production and release in
macrophages is strongly impaired by tetherin and is only
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partly restored by Vpu nor does HIV-1 Vpr contain the
ability to antagonize SamHD1 [41,126]. Other factors
inhibiting HIV-1 replication in macrophages are for
example Viperin [131] - although its general role in
primate lentiviral restriction has recently been ques-
tioned [132] - and p21/cip/waf [133]. p21 might inacti-
vate HIV-1 Integrase and therefore block efficient HIV-1
provirus formation [134]. However, p21 is broadly
expressed and could also play an important role in non-
myeloid cells [134,135]. Furthermore there is some con-
troversy regarding p21 function since it may also be
involved in post-integration regulation of viral transcrip-
tion [87]. Other potent host cell restrictions in myeloid
cells have been described [18], and recent exciting work
identified novel restriction factors e.g. NMAPT/visfatin
[136] and PAF1c [137] which might play previously
unrecognized important roles in cells of the monocyte/
macrophage lineage. Further experimentation investigat-
ing the role of the latter in the HIV-1 replication cycle is
important and warranted.
What is the reason for efficient HIV-1 replication in

macrophages in vivo despite the presence of RFs inhibit-
ing replication in vitro/ex vivo? Not all RFs are counter-
acted by HIV-1 accessory proteins and for example
Tetherin is expressed in very high amounts in macro-
phages [41,130]. As already outlined in this review,
depending on their polarization and activation, macro-
phages are differentially permissive for HIV-1 infection
and replication. Thus, macrophage polarization and acti-
vation could not only alter levels of HIV-1 restriction
factors but also influence the expression of host genes
positively regulating HIV-1 replication in macrophages,
for example the recently identified proteins ADAM10
[138] and PKC-delta [139].
Macrophages can also restrict production of viral anti-

gens from stably integrated replication-competent HIV-1
genomes, thus escaping detection by the immune system
post infection. Various mechanisms may limit HIV-1
production in macrophages and other reservoir cells
[87,91]. For example a mechanism recently discovered in
astrocytes involves the selective restriction of production
of viral structural proteins in cells with ongoing viral
transcription by a family of host cell factors (Risp/
Fam21) that interfere with the activity of the HIV-1 Rev
protein [140]. Since viral structural proteins contain
numerous antigenic epitopes [141], restriction of their
production would facilitate the escape of the infected
cell from the immune system.
Finally, there are large donor dependencies concerning

the replicative capacity of HIV-1 in macrophages [142].
The constant coevolution of the virus and the host has
not only shaped the functionality of viral accessory pro-
teins but also of host cell factors, as was recently
demonstrated for SIV Vpx and SamHD1 in a series of
articles [143-145]. Considering this, host cell donor
variations in macrophage RF expression levels, or poly-
morphisms in HIV-1 restriction factors affecting their
functionality, might dictate the susceptibility towards
HIV-1. In this context it is noteworthy that a recent re-
port investigated the possible connection between
SamHD1 polymorphisms in HIV-1 patients and infec-
tion and control of the virus. However, no association
could be found [146]. Apart from this study, none of the
hypotheses mentioned above, (i.e. correlation of host cell
restriction factor expression in cellular subsets with virus
loads and AIDS progression or potential correlation with
viral RF countermeasures) has been experimentally chal-
lenged. Thus it will be of high relevance to answer them
in future studies.
Conclusions
In this review we have highlighted the tremendous im-
portance of macrophages throughout all stages of HIV-1
infection (see Figure 1). Recent exciting developments
include the discovery of novel restriction factors present
in macrophages, the potential influence of macrophage
polarization on the susceptibility towards HIV-1 and the
cumulating experimental evidence establishing the role
of macrophages in early HIV-1 transmission into the
CNS, associated with neurological disorders. In consid-
eration of the currently available potent therapy regi-
mens that allow suppression of HIV-1 replication in
HIV-1 infected individuals for decades, HIV-1 associated
neurocognitive dysfunction will become an even more
prominent problem in the upcoming years. Therefore, it
is crucial to develop novel therapeutic options to target
HIV-1 reservoirs in the brain. In addition, it might be
indicated to treat HIV-1 already during acute infection
in order to inhibit viral dissemination through infected
monocytes and macrophages into the CNS and the for-
mation of other long term reservoirs.
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