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Host restriction factors in retroviral infection:
promises in virus-host interaction
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Abstract

Retroviruses have an intricate life cycle. There is much to be learned from studying retrovirus-host interactions.
Among retroviruses, the primate lentiviruses have one of the more complex genome structures with three
categories of viral genes: structural, regulatory, and accessory genes. Over time, we have gained increasing
understanding of the lentivirus life cycle from studying host factors that support virus replication. Similarly, studies
on host restriction factors that inhibit viral replication have also made significant contributions to our knowledge.
Here, we review recent progress on the rapidly growing field of restriction factors, focusing on the antiretroviral
activities of APOBEC3G, TRIM5, tetherin, SAMHD1, MOV10, and cellular microRNAs (miRNAs), and the
counter-activities of Vif, Vpu, Vpr, Vpx, and Nef.
Review
As an obligatory intracellular parasite with limited
genome size, retroviruses interact with both supportive
and inhibitory host factors to complete their life cycle.
Supportive factors help the virus enter the cell, duplicate
its viral genome, make viral proteins, and release new
progeny particles, while inhibitory factors could, in
principle, intervene against the virus at every step of rep-
lication. These inhibitory factors are collectively called
host restriction factors. Unique from other viruses, ret-
roviruses require replication steps such as RNA reverse
transcription and DNA integration, which create ad-
ditional targets for restriction. Historically, the first host
restriction for retroviruses was discovered when murine
leukemia virus (MLV) infection was found to be inhi-
bited by the Friend virus susceptibility factor-1 (Fv1) [1].
In the mouse genome, there are at least two Fv1 alleles
(Fv1n, Fv1b) that confer resistance to B-tropic MLV
(B-MLV) or N-tropic MLV (N-MLV) infection. The
B-MLV strains efficiently infect Fv1b/b homozygous
Balb/c mice but not the Fv1n/n homozygous NIH/Swiss
mice, whereas the N-MLV strains have an opposite tro-
pism. The Fv1 gene is located on mouse chromosome 4
[2], which encodes an endogenous retrovirus Gag-like
protein [3]. Fv1 recognizes the MLV capsid (CA) protein
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reproduction in any medium, provided the or
through a single residue at position 110 [4], and blocks
the nuclear import of reverse transcribed retroviral pre-
integration complex [5], but the precise mechanism is
still unknown.
The initial observations on Fv1 have been followed by

the discovery of additional restriction factors in mamma-
lian cells [6]. In general, restriction factors have been
identified from non-permissive cells, where virus replica-
tion is severely restricted. The restriction phenotype can
be dominant and potent and can suppress viral replica-
tion up to several orders of magnitude. Thus, when a
non-permissive cell is fused with a permissive cell, the
heterokaryon inherits the restrictive phenotype. Another
finding with restriction factors is that they can display
hallmarks of positive genetic selection during evolution,
indicative of their beneficial advantage to the host in set-
tings of host-pathogen conflicts. Moreover, restriction
factors can be constitutively or inducibly (e.g. induced
by interferon) expressed, and many viruses have evolved
countervailing stratagems to neutralize the activities of
restriction factors. For example, HIV-1 co-opts the host
ubiquitin/proteasome system (UPS) to degrade cellular
restriction factors. The recent advances accrued from
studying restriction factors have expanded our views on
virus-host interaction as well as host innate immunity to
viral infections [7]. The findings have not only provided
a more comprehensive understanding of the virus life
cycle, but have also offered clues on new antiviral
mechanisms and targets. Below, we survey the antiviral
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activities of several cellular restriction factors that
impede HIV replication, including APOBEC3, TRIM5α,
tetherin, SAMHD1, MOV10 and cellular miRNAs; and
we outline viral countermeasures to subdue these
restrictions (Figure 1).

APOBEC3 proteins
APOBEC3 (A3) refers to Apolipoprotein B mRNA-
editing enzyme catalytic polypeptide-like 3 proteins,
which include A3A, A3B, A3C, A3DE, A3F, A3G, and
A3H. These genes are tandemly arrayed on human
chromosome 22 and were discovered by homology
search using the APOBEC1 signature sequence [8,9].
The A3DE gene was initially proposed as two separated
genes (A3D, A3E); later, it was shown to produce alter-
natively spliced mRNAs from a single gene. Unlike
humans, the mouse genome encodes only a single A3
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gene. Altogether these proteins belong to the cytidine
deaminase family that includes four additional members:
activation-induced cytidine deaminase (AID), APOBEC1,
APOBEC2, and APOBEC4. All APOBEC proteins have
one or two copies of zinc-coordinating deaminase domain
(the Z domain) with a signature motif HxEx23–28PCxxC,
which catalyzes cytidine deamination that converts
cytosines to uracils (C to U) on a variety of vertebrate-
specific RNA/DNA targets (Figure 2). APOBEC1 regu-
lates lipid metabolism [10], and AID contributes to
antibody production [11]. The physiological function of
APOBEC2 and APOBEC4 is still unknown. A3A, A3C,
and A3H have one copy of Z domain, whereas A3B,
A3DE, A3F, and A3G have two. The functions of these
A3 proteins on viral infection were not clear, until it
was discovered that A3G has a very potent anti-HIV-1
activity.
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Discovery of A3 protein antiretroviral activity
The discovery of A3’s antiviral role originated from the
characterization of one HIV-1 accessory gene function.
The vif gene encodes a ~23 kDa “virion infectivity
factor”, which is expressed in all lentiviruses except for
equine infectious anemia virus (EIAV). Vif is absolutely
required for HIV-1 replication in non-permissive cells,
although it is not required in permissive cells [12,13]. Vif
must be present in the viral producer cells; otherwise,
viral replication is strongly blocked at the reverse tran-
scription step in target cells [13]. It was hypothesized
that permissive cells either express a Vif-like positive
factor, which would replace the vif gene function, or that
non-permissive cells express an inhibitory factor, which
would require Vif for counteraction [14]. A genetic com-
plementation assay performed by fusing the non-
permissive cells with permissive cells demonstrated that
the non-permissive phenotype is inheritable, indicating
that the non-permissive cells express a dominant inhibi-
tory factor [15,16]. By subtraction of cDNAs of non-
permissive cells from those of permissive cells, this
inhibitor was identified as A3G [17].
The discovery of A3G’s anti-HIV-1 activity has invited

further investigation on its sister proteins. A3F was iden-
tified as the second restriction factor from this family
[18,19], and the inhibitory activities of A3B, A3DE, and
A3H were subsequently uncovered [20-23]. Among
these five anti-HIV A3 proteins, A3B is expressed very
poorly in primary tissues due to unexplained reason
[24], and the A3H gene is highly polymorphic [25-27].
So far, seven A3H haplotypes (I-VII) have been identified
in human populations [26,28]. However, only haplotypes
II, V, and VII could be stably expressed, and their total
allelic frequencies are less than 30%. In addition, due to
a Tyr-to-Cys substitution at position 320, the human
A3DE anti-HIV-1 activity is reduced by approximately
20-fold [29], although the potent A3DE antiviral activity
is still retained in chimpanzees [30]. The endogenous
A3DE, A3F, and A3G have the most relevant anti-HIV-1
activity in vivo [31], although A3DE and A3F may have
weaker activity than A3G [32].
The antiviral activity of A3 proteins extends to

other retroviruses such as hepatitis B virus (HBV)
[33], SIV [34], HTLV-1 [35], foamy virus [36-38],
EIAV [39], MLV [40], and mouse mammary tumor
virus (MMTV) [41]. While A3A and A3C do not
have anti-HIV-1 activity, A3A strongly inhibits adeno-
associated virus (AAV) replication [42], and A3C
inhibits SIV replication [43]. In addition, all the A3
proteins inhibit the replication of retrotransposons,
although the levels of this activity may vary [44]. A3
expression is highly inducible by type I interferons
(IFNs), particularly in myeloid-derived cells [45,46].
Both A3DE and A3G genes have been subjected to
strong positive selection during evolution [30,47]. In
addition, A3 knockout mice are more susceptible to
MMTV, MLV, and mAIDS virus infection [41,48-50].
Thus, A3 genes play an important role in defending
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in vivo against both exogenous retrovirus and en-
dogenous retroelements.

Action of A3: deamination-dependent and -independent
inhibition
To inhibit viral replication, A3 proteins are typically pack-
aged into retroviral particles from the producer cells [51],
and delivered to the target cells by infection (Figure 1).
The human A3G has 384 amino acids, and contains dupli-
cative Z domains with different functions (Figure 2).
Unlike the C-terminal Z domain, the N-terminal Z
domain is a pseudocatalytic domain that does not have
any enzymatic activity. However, the N-terminal Z domain
has high affinity for RNA-binding and determines A3G
packaging into virions [52]. In conjunction with an adja-
cent 124YYxW127 motif [53], the pseudocatalytic site of the
N-terminal Z domain interacts with the HIV-1 Gag pro-
tein in the nucleocapsid (NC) region, in an RNA-
dependent manner [54-61], resulting in A3G packaging
into HIV-1 virions. The YYxW motif is also present in
other A3 proteins, and it is required for A3H packaging
[28], indicating its important role in regulating this critical
step of A3 antiviral activity.
After being delivered to target cells, the C-terminal

enzymatically active Z domain inhibits viral replication
by either cytidine deamination-dependent or -independ-
ent mechanisms at the reverse transcription step. The
active Z domain can directly deaminate cytosines (C) to
form uracils on newly synthesized minus-strand viral
cDNAs, leading to changes in the viral sequences
[39,62-64]. Since these edited cDNAs contain uracils
that are usually not present in DNA molecules, they
may be recognized by DNA repair enzymes for degra-
dation. Otherwise, they are copied into the plus strand
DNA during DNA synthesis, generating DNA molecules
containing G-to-A hypermutations that compromise
viral genome integrity. This process is generally termed
the cytidine deamination-dependent mechanism. Not
every cytosine is mutated, and different A3 proteins have
their own dinucleotide preference sequence. For ex-
ample, A3G prefers to mutate minus strand 5’-CC-to-
CU and cause plus strand 5’-GG-to-AG mutation
[65]; A3B, A3DE, A3F, and A3H mutate 5’-TC-to-TU
and cause 5’-GA-to-AA mutation [22-24,65]; and A3DE
also mutates 5’-CG-to-UG and causes 5’-GC-to-AC
mutation [22]. All these three types of G-to-A hypermu-
tations are detectable from HIV-1 patients, and it is still
unclear which enzyme takes the major responsibility for
the 5’-GT-to-AT mutation [66]. The three-dimensional
structure of the A3G C-terminal domain has been solved
by nuclear magnetic resonance (NMR) and X-ray crys-
tallography [67-69]. This part of the protein shows a
globular structure that is formed by five β-sheets and six
α-helices and contains a substrate-binding surface. The
X-ray structure further shows a deep groove in this
region for substrate binding, which is composed of
several critical residues including N244, W285, R313,
Y315, D316, and R374. The Y315 residue (or Y307 in
A3F) is crucial for deaminase activity. This residue is
replaced with a Cys (C320) in human A3DE (Figure 2);
this change significantly reduces A3DE anti-HIV-1 acti-
vity [29]. Taken together, the findings provide strong
evidence that deaminase activity is important to A3’s
anti-HIV-1 activity.
In addition to the introduction of catastrophic muta-

tions, A3F and A3G directly block the process of viral
reverse transcription. They reduce the efficiency of
tRNAlys3 priming to the viral RNA template, elongation
of reverse transcription, and DNA strand transfer
[70-76]. Moreover, they block viral integration [75,77].
All these inhibitory mechanisms are still not fully under-
stood, but they are generally thought to arise from a
deamination-independent antiviral mechanism. Notably,
there is a great deal of confusion in the literature regar-
ding deaminase-dependent versus deamination-inde-
pendent mechanisms. Although initial investigations
suggested that the deaminase activity was not required
for antiviral activity, later studies demonstrated that it is
required when the A3 proteins are expressed at physio-
logical levels [78-81]. In contrast, it has been consis-
tently observed that A3 proteins block viral replication
even in the absence of cytidine deamination, particularly
when HTLV-1, AAV, HBV, and retrotransposons are
targeted by A3 proteins [33,35,42,82-87]. Thus, the dea-
minase activity is always required, and in various settings
the mechanism is deamination-independent.
Although a different opinion exists [88], several lines

of evidence indicate that A3 proteins may require other
cellular cofactors. First, APOBEC1, which is the foun-
ding member of this family, requires a cofactor.
APOBEC1 introduces a premature stop codon in apoli-
poprotein (apo) B100 mRNA through C-to-U editing to
produce a truncated form of this protein [10]. This
process requires an interaction with the APOBEC1 com-
plementation factor (ACF) to form a holoenzyme, or
so-called editosome to edit the target sequence [89,90].
Thus, A3 proteins may also require a cellular cofactor
for target recognition. Second, both A3F and A3G form
two distinctive protein complexes: a high molecular
mass (HMM) complex over 700 kDa and a low molecu-
lar mass (LMM) complex below 100 kDa [91]. The A3G
HMM complex contains cellular RNAs and predomi-
nantly exists in immortalized cell lines; this complex
changes into an enzymatically active LMM complex
when treated with RNases. Over a hundred A3G-
binding proteins, most of which are RNA-binding pro-
teins, have been identified from these complexes
[92-94]. It is conceivable that some of them may
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facilitate A3G virion packaging and/or antiviral activity.
Third, the cellular expression levels of A3G do not always
correlate with its antiviral activity. This phenomenon is
particularly remarkable in the human CD4+ CEM-derived
T cells. The parental CEM cell line is non-permissive for
Vif-deficient (ΔVif) HIV-1 due to A3G expression, and its
derivative CEM-SS cells are permissive because they do
not express A3G. Notably, its derivative A3.01 and
CEM-T4 cell lines express significant levels of A3G, but
they can support ΔVif HIV-1 replication [79]. Absence of
a critical cofactor may explain why A3 proteins are not
active in these cells.

Action of Vif: degradation-dependent and -independent
inactivation
Because virion packaging is required for A3G antiviral
activity, a critical action of Vif is to exclude A3 proteins
from virions in order to protect viral replication [95].
This is achieved by degradation-dependent and/or inde-
pendent mechanism in the viral producer cells.
The degradation-dependent mechanism hijacks the cel-

lular proteasomal pathway to degrade A3 proteins to
ensure that insufficient A3 proteins are packaged into the
virions. HIV-1 Vif has 192 amino acids and contains 12
highly conserved motifs (Figure 3). These motifs form
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domains to interact with HIV-1 Vif. Vif binds to the
A3G N-terminal subdomain 128DPD130 [53], and it
recognizes the A3F C-terminal 289EFLARH294 domain
and a residue 324E [116-118]. The EFLARH domain, also
present in A3C and A3DE, further determines their Vif
sensitivity (Figure 2) [118]. These interactions assemble
the A3-Vif-Cul5 E3 protein complex, which induces
polyubiquitylation and proteasomal degradation of these
A3 proteins.
The A3G polyubiquitylation sites have been mapped

to lysine residues 297, 301, 303, and 334 [119]. However,
there is evidence that A3G is polyubiquitylated through
the N-terminus [120,121]. Notably, Vif itself is polyubi-
quitylated by the same E3 ligase [100] and is degraded
via the proteasome [122-124]; and Vif polyubiquitylation
is very critical for A3G proteasomal degradation [125].
To initiate proteasomal degradation, a protein should
have at least two signals: an attached polyubiquitin chain
and an unstructured region (USR) [126]. The polyubi-
quitin chain is required for proteasome recognition, and
the USR allows the protein to enter the narrow prote-
asome entrance channel to initiate degradation. Al-
though both signals can be present in the same protein,
they can also work in trans in two different proteins that
bind to each other. A protein missing any signal may
remain stable, until it binds to an adaptor protein to
compensate for the missing signal. Since A3G is well
structured, it is possible that A3G degradation is
dependent on the polyubiquitin chain on Vif, but not on
A3G itself. Thus, more investigation is needed to under-
stand better whether A3G polyubiquitylation is critical
for its neutralization, and how Vif polyubiquitylation
contributes to this process.
The action of Vif is highly species-specific. Vif from

HIV-1 only inactivates A3G from human; and Vif from
SIV, isolated from African green monkey (AGM), does
not inactivate human A3G. Nevertheless, Vif from SIV
isolated from rhesus macaque (MAC) inactivates A3G
from all humans, African Green monkeys, and macaques
[127]. The resistance of agmA3G to HIV-1 Vif is due to
a single mutation in the 128DPD130 motif of A3G, which
is adjacent to A3G 124YYxW127 packaging motif [53];
notably, this motif is changed to 128KPD130 in the
agmA3G [128-130]. In addition, a N-terminal domain in
HIV-1 Vif, 14DRMR17, determines Vif activity for A3G
from different species [131].
Recently, the core-binding factor β (CBF-β) was identi-

fied as a critical cofactor for Vif [132,133]. CBF-β forms
a heterodimer with the RUNX transcription factors and
increases the complex binding to the target DNA [134].
Knockdown of CBF-β expression in 293T cells was
found to compromise Vif ’s ability to trigger A3G degra-
dation, but it is still controversial whether CBF-β
stabilizes Vif protein itself, or simply induces Vif
conformational changes to stabilize the Vif-Cul5 com-
plex. In addition, its critical role in Vif function needs to
be verified in human T cells.
Many extant observations can be explained by the

A3G degradation-dependent inhibition model; however,
emerging evidence suggests that this is not the only
mechanism for Vif to neutralize A3G. For example, if
Vif-induced A3G degradation is fully responsible for
A3G inactivation, then the levels of A3G reduction by
Vif in viral producer cells should be proportional to
those in virions. In fact, the levels of A3G reduction by
Vif in virions are always much more pronounced than
those in viral producer cells. Thus, Vif is apparently able
to block A3G encapsidation in the absence of an
induction of degradation [135]. The existence of this
degradation-independent mechanism is supported by
two mutational studies. The A3G C97A mutant is resis-
tant to Vif induced proteasomal degradation, but its
activity is still neutralized by Vif [136]. In addition, Vif
proteins that show different ability to degrade A3G
exhibit similar efficiencies in neutralizing A3G [137]. In
fact, Vif can inactivate A3G enzymatic activity in E. coli,
which does not have an UPS for protein degradation
[138]. Thus, it seems reasonable that Vif employs both
degradation-dependent and -independent mechanisms
to counteract A3G’s antiviral activity.

A3 and HIV evolution
Because HIV-1 replicates in A3-expressing cells in the
presence of Vif, it has been thought that Vif completely
counteracts A3’s antiviral activity. However, the virus
may not benefit from a complete inhibition of A3 acti-
vity. Although lethal mutations inhibit viral replication,
sublethal mutations can promote viral propagation in
hosts through a promotion of genome evolution. HIV-1
is notorious for its rapid evolution. It maintains an opti-
mal mutation rate that allows viral escape from adaptive
immunity and development of drug resistance. Among
various mutations, the appearance of G-to-A hypermu-
tations is the most frequent [139], which may explain
why the HIV-1 genome is extremely A-rich [140,141].
Although G-to-A hypermutations have been attributed
to the errors of the low-fidelity viral reverse transcriptase
and viral genomic recombination, it has been recently
appreciated that A3 proteins are significantly responsible
for this type of mutation. Analyses of viral hypermuta-
tions at population levels have detected both GG→AG
or GA→AA dinucleotide motifs for introducing hyper-
mutations [142-145]. In addition to inhibition of viral
replication, A3 proteins may create beneficial hypermu-
tations, which generate viral quasispecies and diversify
viral genomes [146-148]. Both A3G and A3F facilitate
viral adaptation to the new drug treatment environment
if their activities are not completely neutralized by Vif
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[149,150]. Several mechanisms may cause A3 activity to
not be completely neutralized by Vif. First, the relative
levels of protein expression may determine neutralization.
Because A3 expression is interferon inducible, A3 expres-
sion level may well exceed the Vif expression level at the
early stage of viral replication, which may make it impos-
sible for Vif to neutralize fully A3 proteins. Second, the
degree of neutralization may be regulated at the levels of
protein quality. The vif gene itself could become the target
for hypermutation and become polymorphic during
natural infection. Any mutation that interferes with Vif
binding to A3 and/or Cul5 E3 ligase will compromise A3
neutralization by Vif, resulting in incomplete A3 inactiva-
tion [151,152]. Thus, it is anticipated that a balance
between Vif and A3 proteins has to be established over
time to maintain optimal viral fitness and composition of
viral quasispecies in vivo. It is also conceivable that viral
replication could be inhibited if this balance is disrupted
by pharmacological intervention [153], either by a
complete inhibition of Vif activity [154-156], or by a com-
mensurate inhibition of A3 enzymatic activity [157].

TRIM5
TRIM5 belongs to the tripartite motif (TRIM)-contai-
ning protein family, which has over 100 members [158].
All TRIM proteins have three motifs, including a N-
terminal RING finger motif, followed by one or two B-
box motifs, and then by a coiled-coil motif [159-161].
The RING, B-box, and coiled-coil motifs are also collect-
ively called the RBCC domain. The C-terminal regions
of these proteins vary, but most of them have a SPRY
(also known as B30.2) motif. The RING finger binds to
two zinc atoms, and usually has E3 ubiquitin ligase
activity; the B-box and CC domains promote protein
oligomerization. Human TRIM5 has six major isoforms,
with the α isoform most abundantly expressed (~50%)
[162]. Human TRIM5α has 493 amino acids, and it is
the only isoform that has the C-terminal SPRY domain
(Figure 4). Its RING and B-box 2 domains are separated
by the linker 1 (L1) region, and its coiled-coil and SPRY
domains are separated by the linker-2 (L2) region. The
SPRY domain has been functionally replaced with another
host protein cyclophilin A (CypA) in a number of monkey
1 15 58 95 127 131

L1RR BB CCCC

E3

Oligomerization

Dimeriz

121R

TRIM5α

Figure 4 Schematic illustration of human TRIM5α protein. Numbers in
motif (CC), two linkers (L1, L2), and SPRY domain are indicated. Four variab
determines oligomerization, and the critical residue (R332) in V1 region tha
species, resulting in another protein TRIM-CypA [163].
TRIM5α and TRIM-Cyp are the only isoforms that have
antiretroviral activity and inhibit retroviral replication in a
species-specific manner.

Discovery of TRIM5 antiretroviral activity
Although Fv1 is only expressed in mice, the N-MLV
strains encounter an Fv1-like restriction in non-murine
species including humans, and this unknown MLV
inhibitor was named restriction factor 1 (Ref-1) [164].
Ref1 also inhibits EIAV replication in human cells [165].
HIV-1 and some SIV strains encounter another Fv1-like
restriction when they infect some non-human species.
For example, HIV-1 replication is inhibited in the Old
World Monkeys (rhesus macaques, African green mon-
keys) and New World Monkeys (squirrel monkeys,
common marmosets); SIV (SIVmac) infection is blocked
in the squirrel monkeys. The unknown HIV-1 and SIV
inhibitors were named lentivirus susceptibility factor 1
(Lv1) [166,167]. Fv-1, Ref-1, and Lv-1 share remarkable
similarities in their viral inhibition. First, they all target
an early post-entry step. Both Ref-1 and Lv-1 act at steps
before or after reverse transcription, whereas Fv1 acts at
a step after reverse transcription but before integration.
Second, they all target viral CA proteins. The same
single CA 110 residue that differentiates between N- and
B-tropism in mice also determines MLV tropism in
human cells. Similarly, HIV-1 and SIVmac restriction in
some primate cell lines is determined by sequences
within the CA-p2 region of Gag [167-169]. Third, all
these restrictions can be released by a high multiplicity
of infection (m.o.i.), indicating that they are saturable. In
due course, the Lv1 restriction activity was first identi-
fied as the TRIM5α protein from rhesus monkey cells
and later as the TRIM-Cyp fusion from the owl monkey
cells [170,171]. Subsequently, Ref-1 was identified as the
human TRIM5α protein [172]. Thus, Ref-1 and Lv1 are
specifies-specific TRIM5α proteins that have different
activities against different retroviruses.

TRIM5 E3 ubiquitin ligase activity
The TRIM5 RING finger motif features a cysteine-rich
consensus that contains two interleaved Zinc-binding
231 295                                      493

SPRY/CypA
(Capsid interacting)

V1    V2   V3  V4 V1    V2   V3  V4 L2

ation
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dicate amino acid positions. The RING finger (R), B-box (B), coiled-coil
le regions in SPRY, the critical residue (R121) in the B domain that
t determines species-specific Gag binding are also indicated.
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sites. This motif may simultaneously bind ubiquitination
enzymes and their substrates, and hence exhibits an E3
ligase activity. For example, the RING-box-1 (Rbx1) is
an essential component of the Skp1-cullin1-F box (SCF)
complex, which is a multi-protein E3 ubiquitin ligase
that regulates cell cycle [173]. Human TRIM5 has a ββα
RING fold with a putative E2-binding region [174]. The
TRIM5 E3 ligase activity was first demonstrated in
TRIM5σ [175], and recent studies suggest that this acti-
vity may contribute to the restriction activity (see below)
[176,177].
TRIM5α triggers self-polyubiquitylation using UbcH5

as an E2-conjugating enzyme [178], but the role of this
self-polyubiquitylation is still not completely clear.
TRIM5α is relatively unstable in cells, with a protein
half-life only about 50 to 60 minutes; but current data
suggest that the proteasomal pathway is not responsible
for its rapid turnover [178] and that this rapid turnover
is not required for TRIM5α’s antiretroviral activity [179].
Nevertheless, the TRIM5α turnover is further enhanced
when cells are infected with restriction-sensitive viruses.
In this setting, the proteasomal pathway is responsible
for its enhanced degradation [180] and TRIM5α has
been found to be associated with proteasomal subunits
in cells [181]. Interestingly, the inhibition of the
proteasomal pathway does not significantly disrupt over-
all TRIM5α restriction, despite disrupting TRIM5α-
mediated inhibition of viral reverse transcription [182].
Accordingly, two independent inhibitory mechanisms
have been proposed. The first is accelerated viral uncoa-
ting by TRIM5α interaction with CA, which triggers
premature uncoating and proteasomal degradation of
the viral reverse transcription complex. The second is a
block to the nuclear translocation of the viral preinte-
gration complexes, which has also been described for
Fv1 [182].
In addition to a direct inhibition of viral replication,

TRIM5α can be a signaling molecule that activates the
NF-κB pathway [183]; this pathway is shared in several
receptor-signaling routes including those used by Toll-
like receptors (TLRs). Stimulation of TLRs induces
autophosphorylaton and activation of TGF-activated
kinase 1 (TAK1), and TAK1 in turn activates IκB kinase,
leading to the activation of NF-κB. TAK1 can be directly
activated by unanchored (free C-terminus) K63 polyubi-
quitin chains [184]. In fact, activated TRIM5α interacts
with UBC13 and UEV1A E2 enzymes and triggers the
production of unanchored K63-linked ubiquitin chain,
resulting in the activation of TAK1 [176], and this acti-
vity also extends to several other TRIM family members
[185]. In addition, TRIM5α was recently reported to
traffic through the nucleus [186], which may be related
to this activity. Thus, by interacting with viral cores,
TRIM5α induces TAK1 autophosphorylation and activates
the NF-κB pathway, which indirectly defends against
viral infection via signaling through the innate pattern-
recognition receptor-mediated immune responses.
The antiviral activity of TRIM5α can be disrupted by

treatment with As2O3 (arsenic trioxide), but the me-
chanism for this effect is still unclear [187,188]. Triva-
lent arsenic (AsIII) has very high affinity for free thiols,
which are present in the Cys residues in TRIM5α. AsIII

has very broad biological activities, which are largely
mediated by direct interaction with Cysteines in target
proteins [189]. When these Cys residues are located in
close proximity, this interaction results in their cross-
linking, which causes protein conformational changes
through S-As-S bond formation. AsIII-induced conform-
ational changes have different impacts on protein func-
tion. Notably, AsIII directly binds to the Cys residues in
the RING motif of TRIM19, which is also known as
promyelocytic leukemia (PML) protein, and this inter-
action makes PML more accessible to SUMOylation,
resulting in enhanced PML degradation [190]. It remains
to be determined whether AsIII disrupts TRIM5α’s anti-
viral activity by a similar mechanism.
TRIM5 oligomerization
Unlike the RING domain, the B-box 2, coiled-coil, and
SPRY domains are absolutely required for TRIM5α’s
antiretroviral activity [191,192]. TRIM proteins share a
common feature in supporting the structure of various
cytoplasmic and nuclear bodies through self-association
[160]. TRIM5α proteins are found in cytoplasmic bodies,
although these cytoplasmic structures do not directly
contribute to antiviral activity. TRIM5α oligomerizes at
two different levels, which are determined by the B-box
2 and coiled-coil domains. The coiled-coil domain
determines TRIM5α dimerization, which is a lower-
order oligomerization [193,194]; the B-box 2 domain,
particularly the residue R121, triggers a higher-order
oligomerization through association of these dimers
(Figure 4) [195]. Dimerization is essential for higher-
order oligomerization, and the RING domain and linker
2 region are also involved in the oligomerization process
[196]. HIV-1 has a cone-shaped viral core, which is sup-
ported by CA proteins that form pentagonal and he-
xagonal lattices, where the CA N-terminal domain
(NTD) forms either hexameric or pentameric rings, and
the C-terminal domain (CTD) forms symmetric homodi-
mers that connect the rings into lattices [197]. TRIM5
proteins spontaneously assemble into hexagonal lattices,
which match the symmetry of CA lattices, and this
assembly can be enhanced by recombinant CA proteins
that have already preformed the conical structure
[198,199]. Thus, the higher-order TRIM5α structure
increases its binding for the viral CA protein.
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As introduced earlier, TRIM5α accelerates viral uncoa-
ting to block viral replication. Uncoating occurs within
several hours after viral entry, which releases the viral gen-
ome from the viral core by removing capsid and envelope
[200]. After HIV-1 entry, the CA proteins are detectable
in the cytosolic fraction as both pelletable and soluble
forms. The pelletable form could be derived from the
intact cores that have not been uncoated, and the soluble
form could be derived from uncoated cores. TRIM5α
accelerates the conversion of the viral CA proteins from
pelletable to soluble forms [201]. Moreover, incubation of
the preassembled CA recombinant proteins with TRIM5α
resulted in the disruption of the CA conical structure,
likely by weakening the CA CTD-CTD interfaces between
hexamers [202]. Thus, it is suggested that TRIM5α could
form the hexagonal structures on top of the capsid lattices,
which disrupts the core and then further destruction of
viral proteins could occur via the proteasomal machinery.
In this model, a linkage exists between TRIM5α degrad-
ation by the proteasome and accelerated viral uncoating
by TRIM5α. Since TRIM5α is associated with the protea-
somal machinery [181] and its contribution to uncoating
is blocked by proteasomal inhibitors, proteasomes should
be engaged in TRIM5α enhancement of core disassembly.

TRIM5 cross-species activity
Unlike other restriction factors, TRIM5α normally does
not inhibit retroviruses isolated from the same host
species. For example, human TRIM5α (hsTRIM5α) has a
very weak activity for HIV-1, but it strongly inhibits
EIAV and N-MLV; TRIM5α from rhesus monkeys
(rhTRIM5α) does not inhibit the SIVmac strains, but
it strongly inhibits HIV-1 and some other SIV strains
[171]. However, a single residue exchange in the
hsTRIM5α SPRY domain (R332) with the corresponding
rhTRIM5α residue (P334) is sufficient to lead to HIV-1
restriction by the altered hsTRIM5α [203,204]. This resi-
due is among a cluster of residues, which are located in
the first variable region (V1) and have been found to be
under strong positive selection (Figure 4) [205]. Analysis
of TRIM5α sequences from different species identified
four variable regions (V1, V2, V3, V4) in the SPRY
domain [203,206], and three of them (V1, V2, V3) con-
tribute to TRIM5α specificity of retrovirus restriction
[191]. The rhesus macaque TRIM5 gene is particularly
polymorphic in the SPRY region. A three-residue re-
placement with another residue in the V1 region results
in TFP/Q polymorphisms, and in some cases, the entire
SPRY region is replaced with the CypA gene to produce
a new TRIM-CypA protein. Accordingly, the TRIM5
gene is classified into three allelic groups based on the
SPRY domain in the various species: TRIM5CypA,
TRIM5TFP, and TRIM5Q [207]. These polymorphisms
have significant impact on SIV cross-species infection
[207-209]. Consistent with host specificity, a large popu-
lation study has found that common human variants of
TRIM5α has little to no effect on HIV-1 disease progres-
sion [210], suggesting that the role of this protein in the
human genome is not to mitigate HIV-1 infection and
instead serves a not yet understood function.
Although the SPRY domain is not required for he-

xagonal array formation, compelling evidence suggests
that this domain is directly engaged in the interaction
with CA proteins; and this interaction specifies cross-
species restriction activity [188,201]. Detection of direct
TRIM5α-CA interaction has been difficult, because
TRIM5α does not bind to monomeric or soluble CA
proteins [211]. This interaction only becomes detectable
in a SPRY-dependent manner when TRIM5α is directly
incubated with purified viral cores or pre-assembled re-
combinant CA proteins [188,201]. These results suggest
that TRIM5α recognizes CA proteins in a conformation-
dependent manner, which is consistent with a previous
finding that only stable and mature cores could
neutralize the TRIM5α antiviral activity [212]. A struc-
tural analysis confirmed the direct interaction between
the SPRV domain and CA protein, and that the variable
regions, particularly the V1 region, are responsible for
this interaction [213]. This study also uncovered that a
single-site SPRY-CA binding is weak, and that optimal
interaction involves multiple CA epitopes, which may
explain why multivalent binding within the spacing of
CA lattice is required for viral restriction.

Tetherin
Tetherin was originally identified (and termed HM1.24,
BST-2, or CD317) as a specific cell surface marker of
terminally differentiated B-cells, through screening of
mouse monoclonal antibodies raised against the human
plasma cells [214]. The gene encoding this protein was
independently cloned from the human rheumatoid
arthritis-derived synovial cells and termed BST-2 [215].
The protein was proposed to potentially serve as a target
antigen for the immunotherapy of multiple myeloma
since its mouse and humanized monoclonal antibodies
showed anti-tumor activity with antibody-dependent cel-
lular cytotoxicity both in vitro and in vivo [216,217]. The
protein, re-designated as CD317, was then found to be
highly expressed in B cells at all differentiation stages,
and in bone-marrow CD34+ cells, and in T cells [218].
Tetherin is an interferon (IFN)-inducible type II

membrane protein, consisting of a short amino-terminal
cytoplasmic tail (CT) followed by an α-helical trans-
membrane (TM) domain, a coiled-coil extracellular (EC)
domain, and a carboxy-terminal glycophosphatidylinosi-
tol (GPI) component that acts as a second membrane
anchor [219] (Figure 5A and 5B). This double-anchored
form determined by the TM and the GPI anchor is
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Figure 5 Configuration models of human tetherin. (A) Schematic illustrations of tetherin and Vpu. Numbers indicate amino acid positions.
Critical residues of each protein are indicated. (B) Structure of tetherin. Tetherin comprises a short amino-terminal cytoplasmic tail (CT), followed
by an α-helical transmembrane (TM) domain and a coiled-coil extracellular (EC) domain that is linked back to the plasma membrane by a
carboxy-terminal glycophosphatidylinositol (GPI) anchor. The EC domain contains N-glycosylation sites and cysteine residues involved in disulfide-
bond formation. (C-F) Configuration models of tetherin. (C) The EC self-interaction model. Individual tetherin monomers are anchored at both
ends to the same membrane, with interaction between the ECs of cell-bound and virion-bound monomers. (D) Anti-parallel membrane-spanning
model. Monomers are anchored in both membranes with opposing orientations. (E) Parallel membrane-spanning model. Monomers are
anchored in both membranes with the same orientation. (F) HIV-1 Vpu and tetherin interact through their TM domains. Key amino acids involved
in the interaction are depicted in the TM helices. Interaction of Vpu’s CT with the E3 ubiquitin (Ub) ligase via the βTrCP subunit is required for
Vpu-induced tetherin down-regulation.
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unusual and only shared with a minor isoform of the
prion protein [220]. Three cysteine residues located at
the EC domain form intermolecular disulfide bonds
[221], resulting in homodimerization of the protein
[222]. At the cell surface, tetherin is located in
cholesterol-rich lipid microdomains, also termed lipid
rafts, through the GPI anchor. The TM domain resides
outside the lipid rafts [219], placing the CT in a suitable
position to indirectly interact with the actin cytoskeleton
[223]. Tetherin is physiologically endocytosed from lipid
rafts in a clathrin-dependent manner through interaction
with α-adaptin of the AP-2 complex [224].
Discovery of tetherin’s antiviral activity
Early studies on HIV-1 replication showed that the
accessory viral protein U (Vpu) was required for efficient
viral particle release in a cell-type dependent manner
[225,226]. This led to the hypothesis that the requirement
was due to either the existence of unknown restriction fac-
tor(s) or the lack of cofactor(s) in non-permissive cells.
Some years later, experiments generating heterokaryons
between permissive and non-permissive cells provided the
answer [227]; the latter cells likely express restriction fac-
tor(s) that could be counteracted by Vpu [228], exactly like
Vif-responsive cells express A3G that is counteracted by
Vif. It was then shown that Vpu-deleted HIV-1 particles
captured at the cell surface were detached by treatment
with subtilisin protease, implying that the endogenously
expressed host restriction factor is a membrane-associated
cell-surface protein [229]. Soon afterwards, this endoge-
nous factor was found to be IFN α-inducible and indeed
its activity could be overcome by Vpu [230]; cDNA micro-
array analyses of messenger RNAs in IFN-α-treated and
untreated cells finally identified HM1.24/BST-2/CD317 as
the restriction factor, which was re-termed “tetherin”
because of its direct tethering function at the cell-surface
[231]. Subsequently, it was demonstrated that Vpu-
induced down-regulation of tetherin from the cell surface
explains its counteraction of the antiviral activity of
tetherin [232]. The growing list of enveloped viruses
restricted by tetherin includes filoviruses, arenaviruses,
paramyxoviruses, gamma-herpesviruses, rhabdoviruses,
and a wide array of retroviruses from several mammal
host species [233-239]. These restrictions occur not only
in vitro but also in natural target cells in vivo [234,240].
Antiviral mechanisms of tetherin
Tetherin efficiently blocks the release of Vpu-defective
HIV-1 virions by directly tethering them to the surface
membranes of virus producer cells. Captured virions are
internalized by endocytosis, and subsequently accumu-
late into CD63-positive endosomes, and probably are
degraded in the lysosomes [230,231]. Structurally, the
protein’s two membrane anchors formed by the
N-terminal TM domain and the C-terminal GPI anchor,
together with the conformational flexibility provided by
the homodimerized EC domain, are key for the direct
tethering mechanism required for the above process. In
fact, a totally artificial tetherin-like protein consisting of
structurally similar domains from three unrelated hete-
rologous proteins (the CT/TM, EC, and GPI anchor
from different proteins) reproduced tetherin's antiviral
activity by inhibiting the release of Vpu-deleted HIV-1
and Ebola virus-like-particles, despite their lack of se-
quence homology with native tetherin [241], suggesting
that the configuration of tetherin at the cell surface, but
not its primary sequence, is important for the antiviral
activity. Lipid raft localization of tetherin, which is deter-
mined by the GPI anchor, is in accordance with the pre-
ferential site for budding of enveloped viruses [242,243].
Indeed, tetherin has been reported to be enriched at the
virological synapse [244], but its role in cell-to-cell trans-
fer of viruses remains controversial [245-249]. As an-
other function, it has very recently been shown that
tetherin acts as a viral sensor for the presence of viral in-
fection, inducing NFκB-dependent proinflammatory
gene expression [250], an activity that described for
TRIM5α [176].
With regard to the configuration of tetherin, several

models have been proposed: (1) The EC self-interaction
model (Figure 5C) — individual monomers of tetherin
are anchored at both ends (TM and GPI anchor) to the
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same cellular or viral membrane, and the EC domains of
cell-associated and virion-associated monomers are
bound through disulfide bonds; (2) The membrane-
spanning model (Figure 5D and E), both ends are
anchored into the opposite side of the membranes
(cellular and viral); and theoretically, the dimerized
monomers of tetherin in this model can be formed in
either an anti-parallel or parallel configuration. The EC
self-interaction and anti-parallel membrane-spanning
models are supported by the experiment in which the
cleavage of the GPI anchor by enzymatic treatment with
Pi–PLC did not relieve the restricted virions at the cell
surface, suggesting that each GPI-anchorless monomer
that is dimerized still anchors at the different sides of
the plasma membrane trough the TM domain [251]. On
the other hand, electron microscopy studies have
revealed that the actual distance of the gap between viral
and cellular membranes is larger than the estimated size
of that in the EC self-interaction model [241,252,253].
This evidence strongly supports the (anti-parallel or par-
allel) membrane-spanning model. Most importantly,
combined analyses of high-resolution crystallography
and small-angle X-ray scattering-based modeling finally
demonstrated that the structure of tetherin’s coiled
coil EC domain is indeed a parallel homodimer
[252,254-256]. Taken altogether, it is likely that the
parallel membrane-spanning configuration model may
correspond to the configuration of the antiviral state of
tetherin at the cell surface (Figure 5E).

Action of HIV-1 Vpu
Vpu, which is encoded in the genomes of HIV-1 and a
few SIV strains, is an 81-amino acid type I transmem-
brane protein. It comprises an amino-terminal single
TM α-helix domain that also acts as an uncleaved signal
peptide, and a carboxy-terminal CT domain in which
two cytosolic α-helices are separated by a short flexible
connector loop. Vpu mediates proteasomal degradation
of CD4 by interacting with newly synthesized CD4 mole-
cules in the endoplasmic reticulum, together with the
β-transducin repeat-containing protein (βTrCP) 1 and 2
subunits through its phosphoserine residues in the CT
domain [257,258] (Figure 5A and 5F). This βTrCP
dependency of Vpu is only partially common to the anti-
tetherin activity since βTrCP-binding-defective mutant
viruses still retain half of the wild-type activity [259].
Thus, it seems likely that some unknown cellular
co-factors other than βTrCP proteins might be required
for Vpu to inhibit the antiviral activity of the restriction
factor [232,260].
The models of intracellular sites of Vpu’s action in

tetherin down-regulation have been controversial. First,
it was proposed that Vpu interferes with the membrane
transport of newly synthesized tetherin by sequestering
the restriction factor in the trans-Golgi network (TGN)
[261-263]. Second, Vpu might be able to block the recyc-
ling of tetherin by sequestering the latter protein in the
recycling endosomes after its internalization from the
cell surface [261,263,264]. Third, it was suggested that
Vpu might directly internalize tetherin from the cell sur-
face leading to lysosomes [259,265,266], possibly in a
cell-type-dependent manner [267]. These three models
may not be mutually exclusive, but rather it is likely that
each antagonistic model of Vpu is operative to counter-
act tetherin to varying degrees in different cellular
contexts.
In terms of the intracellular fate of tetherin, Vpu-

induced down-regulation of the restriction factor might
be mediated in part through proteasomal degradation
[268-270]. This possibility is based on experiments in
which the treatment by proteasomal inhibitors resulted
in increased levels of tetherin and loss of Vpu-mediated
viral release enhancement. However, prolonged incuba-
tion with the inhibitors leads to the depletion of the free
ubiquitin pool, affecting both proteasomal and lysosomal
degradation [271]. Indeed, the latter degradation path-
way has been suggested by evidence that the treatment
with inhibitors of the lysosomal pathway blocks the
Vpu-mediated tetherin degradation [259,264,266], resul-
ting in a clear colocalization of these two proteins to
lysosomal compartments [259,265,267]. In accordance
with this, it has been reported that tetherin is constitu-
tively degraded in lysosomes by HRS, a key component
of the ESCRT-0 complex that sorts ubiquitinated mem-
brane proteins to lysosomes, and this is accelerated by
interaction with Vpu [266]. As another explanation,
without inducing any degradation, Vpu simply might
sequester either de novo or recycled tetherin in the TGN
and/or the recycling endosomes plus the TGN, respec-
tively [262,263,272,273], as described above.
The ability of Vpu to bind tetherin through TM-TM

interaction is crucial for viral antagonism of this restric-
tion factor [259,268,274,275]. This interaction is highly
specific at the amino acid level requiring residues I34,
L37, and L41 of tetherin [276] and A14, A18 and W22
of Vpu [277] (Figure 5A and 5F) on the hydrophobic
faces of the helices that contribute an interactive sur-
faces. Recent NMR spectroscopy analysis showed that
V30 of tetherin and A10 of Vpu (Figure 5A and 5F)
together with the aforementioned residues contribute to
form an anti-parallel, lipid-embedded helix-helix inter-
face [278]. Importantly, species specificity of tetherin
antagonism by primate Vpu proteins is determined by
their TM-TM interaction. Indeed, non-human primate
tetherin proteins are mostly insensitive to Vpu antagonism
[269,279-281], due to the difference of the amino acid
positions 30–45 of the TM sequence [268,279,282] that
correspond to the interaction surface as described above.
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Action of SIV Nef
Non-human primate lentiviruses, which lack Vpu, use
Nef protein to counteract tetherin’s antiviral function
[279,280,283]. The primate ancestors of HIV-1, SIVcpz
and SIVgor from chimpanzees and gorillas, which
encode Vpu, also use Nef to antagonize their tetherin
[283,284]. Interestingly, a very recent report demon-
strated that even chimpanzee-adapted HIV-1 molecular
clones regained Nef-mediated anti-tetherin activity
[285]. While HIV-1 Vpu antagonizes human and chim-
panzee, but not other primate tetherin proteins
[269,274], SIV Nef counteracts primate but not human
tetherin [279,280,283]. This specificity is determined by
the CT of non-human primate tetherin, which contains
an insertion of five amino acids at positions 14–18 (e.g.
DDIWK in chimpanzee) that is responsive to SIV Nef,
but is missing in the human counterpart [283,284,286].
Antagonism of non-human primate tetherin is abrogated
by SIV Nef mutations that lack the ability to downregu-
late CD4, implying that its anti-tetherin activity might
share some mechanistic properties with CD4 down-
regulation [279]. Interestingly, both Vpu and Nef
proteins from nonpandemic HIV-1 group O and P
viruses lack the activity against human tetherin, while
the Nef proteins from these viruses retain the activity
against primate tetherins [287].

SAMHD1
The SAMHD1 gene was first identified in mice by Lafuse
et al. They treated mouse peritoneal macrophages by
IFN-γ and isolated two genes (Mg11, Mg21) from a
SAMHD1
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Figure 6 Schematic illustration of Vpx protein from SIVmac and hum
Numbers indicate amino acid positions. The three α-helices of Vpx and the
indicated. Other critical residues and motifs include nuclear localization sig
(Q76), four critical residues in SAMHD1 NLS (11KPPR14), and four residues in
cDNA library enriched for IFN-γ induced genes. The
Mg21 gene, which encodes an IFN-γ induced GTPase
(TGTP), was reported [288]; the Mg11 gene, which
encodes SAMHD1, was directly deposited into Gene-
bank (accession number U15635) (Lafuse, personal
communication). Later, the human homologue of Mg11
was identified from monocyte-derived dendritic cells
and was named dendritic cell-derived IFN-γ induced
protein (DCIP) [289]. The presence of a sterile alpha
motif (SAM) and a histidine-aspartic (HD) domain in
DCIP was first noticed when it was found that the
expression of this protein was up-regulated in human
lung fibroblasts by tumor necrosis factor (TNF)-α [290].
The function of SAMHD1 was not clear, until it was
found that this gene mutation caused Aicardi-Goutieres
syndrome (AGS) [291]. AGS is an autoimmune disease,
which is characterized by elevated type-I interferon pro-
duction and causes early-onset encephalopathy. These
earlier observations suggested that SAMHD1 could play
a role in innate immune response to viral infection.
Human SAMHD1 has 626 amino acids, which are trans-

lated from 16 exons (Figure 6). Two other splicing variants
are also produced, which lack exons 8–9 or 14, respec-
tively; but they are much less stable [292]. SAMHD1 com-
prises an N-terminal nuclear localization domain, which
has a nuclear localization sequence (NLS) 11KRPR14

[293,294], a SAM domain (residues 45–110), a HD
domain (residues 167–311), and a C-terminal variable
domain (Figure 6). The SAM domain is one of the most
common protein-protein interaction module of ~70
amino acids, which is found in a variety of signaling
elix 2elix 2 Helix 3Helix 3
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an SAMHD1 protein. SAMHD1 splicing variants are shown on the top.
SAM, HD, and the C-terminal variable region of SAMHD1 are

nal (NLS), a critical residue that determines Vpx interaction with DCAF1
the HD domain (H167, H206, D207, D311) are all indicated.
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molecules including Tyr and Ser/Thr kinases, lipid
kinases, scaffolding proteins, RNA binding proteins, tran-
scription factors, and GTPases [295]. The HD domain is
found in a variety of enzymes including nucleotidyltrans-
ferase, helicase, and dGTPase, indicating that it plays a
role in nucleic acid metabolism [296]. SAMHD1 oligo-
merizes through the HD domain [297], and it binds to nu-
cleic acids through the HD domain [297,298]. SAMHD1
does not have any nuclease activity, but it is a dimeric
dGTPase triphosphohydrolase that selectively hydrolyses
deoxynucleoside triphosphates (dNTPs), but not ribonu-
cleoside triphosphates (rNTPs) [299,300]. In addition,
SAMHD1 is a nuclear protein with its localization deter-
mined by the N-terminal NLS. Although SAMHD1 was
discovered from dendritic cells, its expression is not lim-
ited to myeloid cells, and it is also expressed in lymphoid
cells including T and B cells [289,301,302].
Discovery of SAMHD1 antiretroviral activity
The viral accessory gene vpr is only encoded in HIV-1,
HIV-2, and SIV, while some SIV strains and HIV-2 add-
itionally express vpx, which is duplicated from vpr
[303,304]. HIV-1 Vpr induces G2 arrest and enhances
viral replication in monocyte-derived macrophages
(MDMs) [305,306]. Vpx only enhances viral replication
in MDMs and monocyte-derived dendritic cells
(MDDCs) [307]. Notably, it enhances HIV-1 and MLV
replication in trans in non-dividing myeloid cells
[308,309]. Although both Vpr and Vpx enhance viral
replication in MDMs, different mechanisms are
involved. While Vpr only enhances viral replication by
2- to 5-fold [310], the activity of Vpx reaches about 100-
fold [309,311,312]. In fact, Vpx promotes viral replica-
tion at the step of reverse transcription by counteracting
a dominant inhibitor [308,309].
Vpr binds to the DDB1-Cul4A-associated-factor-1

(DCAF1) protein, which is a substrate of the Cul4A E3
ligase consisting of Cul4A, RING H2 finger protein
homolog (RBX1), and DNA damage-binding protein 1
(DDB1) [313]. This interaction allows Vpr to activate the
host DNA-damage-response (DDR) pathway through
ATR and initiate G2 arrest. Vpx also interacts with
DCAF1, but this interaction is required for Vpx promo-
tion of viral replication [309,312]. It was hypothesized
that Vpx triggers proteasomal degradation of an un-
known restriction factor via the Cul4A E3 ligase and
rescues viral replication at the reverse transcription step
in myeloid cells and/or that Vpx promotes viral escape
from a proteasomal pathway that is detrimental to viral
replication in monocytes-derived dendritic cells [314].
Using an affinity purification procedure followed by
mass spectrometry, this unknown restriction factor was
identified as SAMHD1 [315-317].
Action of SAMHD1: depletion of intracellular dNTP pool
The cellular dNTPs can be synthesized either from
rNTPs after reduction by the ribonucleoside diphosphate
reductase (RNR), or from deoxynucleosides salvaged
from degraded DNA after phosphorylation by deoxynu-
cleoside kinases. Because dNTPs are mainly consumed
for DNA synthesis, their biosynthesis is S-phase
dependent [318]. Thus, non-dividing cells such as
MDMs, MDDCs, and resting CD4+ T cells have lower
intracellular dNTPs, and their levels are greatly elevated
in dividing cells such as activated CD4+ T cells. Indeed,
activated human primary CD4+ T cells contain 130 to
250-fold more dNTPs than MDMs [319]. However,
HIV-1 is still able to establish a low-level infection in
macrophages, because HIV-1 reverse transcriptase
(RTase) has ~100-fold higher affinity for dNTPs than
MLV RTase, and this allows HIV-1 to synthesize viral
DNA even at low dNTP concentrations [320]. Neverthe-
less, HIV-1 replication is still dependent on intracellular
dNTP levels. It was demonstrated a long time ago that
increasing dNTP levels in resting peripheral blood
lymphocytes (PBLs) could significantly enhance HIV-1
replication [321], and the depletion of cellular dNTP
pool by RNR inhibitor hydroxyurea could block HIV-1
replication [322]. SAMHD1 restricts HIV-1 replication
in dendritic cells, monocytes, macrophages, and resting
CD4+ T cells by decreasing the intracellular dNTP levels,
resulting in an early post-entry restriction at the level of
reverse transcription [301,302,323,324].
The SAMHD1 antiviral activity has been demonstrated

by different approaches [325]. The early experiments
showed that delivery of Vpx by virus-like particles
(VLPs) or directly by virions overcame the HIV-1 re-
striction in these myeloid cells [309,312,326]. The Vpx
proteins were able to specifically trigger SAMHD1
degradation by the proteasomal pathway in these cells
[315-317], and a similar observation was also made in
resting CD4+ T cells [301,302]. The Vpx mutants T17A
that did not rescue viral infection and the Q76A mutant
that did not bind to DCAF1 were all unable to
destabilize SAMHD1. Specific silencing SAMHD1
expression in non-dividing cells by short-hairpin RNAs
(shRNAs) increased HIV-1 efficiency; ectopic expression
of SAMHD1 in U937-derived macrophages, which is a
myeloid cell line and does not express SAMHD1,
strongly blocked HIV-1 replication [317,323]. In
addition, the depletion of SAMHD1 in these cells
resulted in increased intracellular dNTP levels and viral
DNA synthesis [301,323,327]. Moreover, monocytes and
resting CD4+ T cells from AGS patients that do not
express functional SAMHD1 proteins were more suscep-
tible to HIV-1 infection [301,302,315]. Furthermore, the
antiviral activity of SAMHD1 is not only limited to
HIV-1 and SIV, but also extends to other retroviruses
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including HIV-2, feline immunodeficiency virus (FIV),
bovine immunodeficiency virus (BIV), EIAV, and MLV
[297]. Collectively, these results demonstrated that
SAMHD1 is a Vpx target that strongly blocks viral repli-
cation in non-dividing cells by depleting the intracellular
dNTP pool. SAMHD1 is a nuclear protein, but its
nuclear localization is not required for its enzymatic
activity and/or antiviral activity [293,294]. Because cellu-
lar dNTPs are not compartmentalized, SMAHD1 should
be able to degrade dNTPs in both the cytoplasm and the
nucleus (Figure 1). Although SAMHD1 imposes an
important block to HIV-1 infection, disruption of this
block cannot restore HIV-1 replication in resting CD4+

T cells, indicating that there are additional blocks in
these cells [301,302]. In addition, another type I IFN-
inducible unknown restriction factor in dendritic cells,
which also blocks HIV-1 replication at an early step and
is counteracted by Vpx, needs to be identified [328].
An important feature of SAMHD1’s antiviral activity is

that it requires cells to stay in a resting or non-dividing
state. The SAMHD1 activity is only detectable in the
myeloid cell lines THP1 and U937 after they are fully
differentiated into macrophages by treatment with phor-
bol myristate acetate (PMA) [323]; although activated
primary CD4+ T cells still express SAMHD1, this expres-
sion neither reduces intracellular dNTP levels, nor does
it inhibit HIV-1 replication [302,323]. In addition,
ectopic expression of SAMHD1 in a human T cell line
did not show these restrictive activities, either [317,323].
Because dividing cells maintain high levels of dNTPs,
SAMHD1 may not sufficiently reduce dNTPs to restrict
viral replication. Thus, SAMHD1-mediated dNTP
hydrolysis and inhibition of viral reverse transcription
stand as a very attractive model for SAMHD1 antiviral
mechanism in non-dividing cells. Alternatively, the
SAMHD1 antiviral activity may not be completely
dependent on the dNTP triphosphohydrolase activity.
Because SAMHD1 has nucleic acid binding activity, it
may interact with viral reverse transcription complex
and inhibit production of full-length viral DNA, and this
activity may require other cellular factor that is only
expressed in non-dividing cells. Thus, the regulation of
SAMHD1 antiviral activity remains an important area of
future study.

Action of Vpx
As introduced earlier, Vpx tightly associates with
DCAF1, which is a substrate receptor subunit of the
Cul4A E3 ubiquitin ligase complex, and this interaction
is linked to Vpx activity to relieve SAMHD1 restriction
in non-dividing cells [307]. Like Vpr, the Vpx protein has
three central α-helices connected by two flexible loops
and unstructured amino and carboxy termini (Figure 6)
[329,330]. Like SAMHD1, Vpx is also a nuclear protein,
which is determined by a C-terminal proline-repeat and
a NLS motif crossing the end of second loop and the
beginning of the α-helix 3 region [329]. Vpx binds
DCAF1 through the α-helix 3 region where the
Q76 residue is located [312], and it binds to SAMHD1
through the N-terminal unstructured region, where
the T17 residue is located [331,332]. Vpx recognizes the
C-terminal 31 amino acid residues of SAMHD1, loads
this protein onto the Cul4A-DCAF1 complex, and trig-
gers SAMHD1 proteasomal degradation [331,333].
Indeed, the SAMHD1 C-terminal tail is highly divergent
among vertebrate species; so the neutralization of
SAMHD1 by Vpx is highly species-specific. For example,
Vpx from SIVmac239 can effectively neutralize human
but not mouse and zebrafish SAMHD1 [331]. In
addition, this domain is the target for strong positive
selection during primate evolution, which contains a
cluster of five positively selected sites. Among these, the
last M626 residue critically determines human and
primate SAMHD1 sensitivity to Vpx [333]. Several other
positively selected residues are also found in the
N-terminal region, and among these, the G46 and R69
also contribute to this species-specific interaction [334].
Notably, although SAMHD1 still retains antiviral activity
when it is relocated to cytoplasm, the cytoplasmic
SAMHD1 becomes resistant to Vpx-induced degrad-
ation [293,294]. Because Cul4A and DCAF1 are also nu-
clear proteins, which can induce polyubiquitylation of
proteins associated with chromatin [335], it is possible
that Vpx loads SAMHD1 onto the Cul4A/DCAF1 E3
ligase complex in the nucleus. However, it is still incon-
clusive whether SAMHD1 is degraded in the nucleus
[294], or it is re-targeted to the cytoplasm for degra-
dation [293,333].
HIV-1 does not have the capability to neutralize

SAMHD1, because its Vpr does not degrade SAMHD1
and it does not encode a Vpx protein. However, an evo-
lutionary study has uncovered that the ancestral Vpr
gene had the ability to antagonize SAMHD1 before it
gave rise to the Vpx gene [334]. Accordingly, Vpr pro-
teins from several SIV strains isolated from different old
world monkey species are still able to degrade SAMHD1
[294,334]. SAMHD1 may have exhibited evolutionary
pressure to differentiate Vpr and Vpx, so that the two
proteins have divergent functions. HIV-1 is originally
from SIVcpz, whose Vpr does not have SAMHD1-
degrading ability [334]. This and other factors may
explain why HIV-1 replicates in macrophages at very
low levels, and why it cannot infect efficiently dendritic
cells [336]. In fact, by not infecting dendritic cells,
HIV-1 could avoid activating a cryptic sensor, which
induces type I IFNs and thus activates an antiviral
response [337]. By evading detection by this sensor,
HIV-1 is able to replicate in macrophages at a low level
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that is sufficient to transmit the virus to activated CD4+

T cells. This covert replication strategy may help HIV-1
to establish a persistent infection in humans. In addition,
although HIV-1 Vpr does not overcome SAMHD1, it
may target another unknown restriction factor in human
CD4+ T cells, and this mechanism needs to be clarified
[338-340].

MOV10
The Moloney Leukemia Virus 10 inactivated gene
MOV10 was first discovered from the Moloney murine
leukemia virus (M-MLV)-carrying mouse strains (Mov
mice), which have a single copy of M-MLV provirus at
different loci after germline infection [341]. These MOV
mice show three different levels of viral replication
during development: viremic, conditional viremic, and
non-viremic. The MOV10 mouse is non-viremic,
because the provirus has mutations in the gag-pol region
and does not produce infectious particles [342]. The
provirus is integrated into a gene locus on chromosome
3, which encodes a 110-kDa protein. Since this protein
contains three consensus elements for GTP-binding pro-
teins, it was named gb110 [343]. Later, it was found that
this protein has seven conserved helicase motifs, which
classified it as a SF-1 helicase [344]. Helicases have
purine nucleoside triphosphate phosphatase (ATPase or
GTPase) activity, which catalyzes the separation of DNA
and/or RNA duplex into single strands in an ATP-
dependent reaction [345]. They may have up to seven
helicase motifs (I, Ia, II, III, IV, V, and VI) and are classi-
fied into three super families (SF-1, SF-2, SF-3) and two
small families (F-4, F-5) [346]. Motif I has a GxxxxGKT/S
consensus and binds to phosphates; and motif II has a
DExx consensus and binds to magnesium (Figure 7).
CHCH

1 93

MOV10

Gag binding

305

Figure 7 Schematic illustration of human MOV10 protein. Numbers in
domain, and seven helicase motifs (I, Ia, II, III, IV, V, VI) are indicated. The am
are aligned. Dots indicate identical residues, and critical residues in each m
These two motifs catalyze the hydrolysis of purine
nucleoside triphosphate, providing energy for helicase ac-
tivity. The other five motifs are more diverse, and they
could contribute to RNA or DNA binding [346]. All heli-
cases have motifs I and II, but only SF-1 and SF-2 heli-
cases have all seven motifs [347]. MOV10 has all seven
motifs, and its motif II has a DEAG fingerprint, which
qualifies it as a SF-1 helicase [344]. The physiological
function of MOV10 was not clear until its ortholog in
Arabidopsis, the silencing defective gene 3 (SDE3), was
found to be required for the RNA silencing pathway [348].
This activity was confirmed by another ortholog in Dros-
ophila, the Armitage (Armi) gene, which is also required
for the RNA silencing pathway [349,350]. In addition,
MOV10 interacts with the RNA interference machinery
through the Argonaute 2 (Ago2) protein in mammalian
cells, which further highlights its important role in the
regulation of gene expression [351,352].

Discovery of MOV10 antiretroviral activity
Because the RNA interference (RNAi) pathway defends
viral infection in plants, invertebrate, and vetebrate
animals [353-355], several components of the mamma-
lian RNAi machinery have been tested for anti-HIV
activity [356-360]. Among these proteins, MOV10 was
consistently found to have very potent and direct anti-
HIV-1 activity when it was ectopically expressed
[356,358,360,361]. MOV10 additionally inhibits SIV
[360], MLV [360], EIAV [358], hepatitis C virus (HCV)
[362], and vesicular stomatitis virus (VSV) [363]. Thus,
MOV10 has very broad antiretroviral activity, and this
activity may extend to several RNA viruses.
MOV10 has a mammalian paralog, which is called

MOV10-like-1 (MOV10L1). MOV10L1 shares 45% amino
524                                 911 1003Helicase

I Ia II III IV V VI

dicate amino acid positions. The Cys-His-rich (CH) domain, helicase
ino acid sequences of these motifs from MOV10 and MOV10L proteins
otif are in orange color.
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acid identity with MOV10 in the C-terminal helicase
region (Figure 7), and it is specifically expressed in the
mouse germ cells [364]. Knockout studies demonstrate
that MOV10L1 is required for spermatogenesis by serving
as one critical component of the Piwi-interacting RNA
(piRNA) pathway, which specifically inhibits retrotrans-
poson activity [365,366]. ~41% of the human genome is
constituted from retrotransposons [367], including en-
dogenous retroviruses (ERVs), long-interspersed-element
1 (LINE1), short-interspersed-elements (SINEs)/Alu, and
SINE-VNTR-Alu (SVA) [368]. Like retroviruses, the ERVs
have two long terminal repeats (LTRs), so they are also
called LTR-retrotransposons, and the others are called
non-LTR retrotranspnosons (LINE1, SINE-Alu, SINE-
SVA). The LTR and LINE1 retrotransposons are strongly
activated in the primary spermatocytes of MOV10L1
knockout mice, followed by death of these cells, indicating
that MOV10L1 plays a critical role in genome integrity in
germ cells. Indeed, MOV10 exhibits similar anti-
retrotransposon activity in vitro, which inhibits both LTR
and non-LTR retrotransposons [361,369,370]. Thus, like
A3 proteins, the MOV10 antiviral activity also applies to
endogenous retroviral elements. Notably, although both
exogenously and endogenously expressed MOV10 pro-
teins inhibit retrotransposon replication [361,369], the
endogenous MOV10 was found unable to inhibit HIV-1
replication [361]. This puzzle needs to be solved.

Action of MOV10
The human MOV10 has 1,003 amino acids, which are
translated from 20 or 21 exons in chromosome 1 (Figure 7).
Its seven helicase motifs are located in the C-terminal re-
gion from residues 524–911. Notably, its N-terminal
region from residues 93–305 contains a structurally
exposed Cys-His-rich (CH) domain [371], which has been
recently recognized as a novel class of protein-protein
interaction module [372]. MOV10 decreases both the
quantity and quality of the HIV-1 infectious particles in
viral producer cells. MOV10 reduces HIV-1 production,
possibly by decreasing Gag expression and processing, but
this mechanism is still unclear [356]. In addition, MOV10
is packaged into virions and inhibits HIV-1 replication
from the 2nd cycle by interfering with viral reverse tran-
scription (Figure 1) [356,358,360]. The MOV10 packaging
involves a specific interaction with Gag. MOV10 interacts
with Gag in the NC region, probably via the basic linker
domain [371]. On the other hand, Gag binds to the
MOV10 CH domain via a region from amino acid
261–305 [371]. However, the CH-domain is not sufficient
for packaging of the full-length MOV10 protein, and its
packaging also requires the C-terminal helicase motifs
[371]. Because these helicase motifs have high-affinity for
RNA, unknown cellular RNAs are required for MOV10
packaging. In fact, MOV10 is packaged inside the core
[360], which allows MOV10 to directly interact with viral
RNA and block viral reverse transcription in the target
cells. Compared to its reduction of viral production, the
reduction of viral infectivity by MOV10 is more significant,
leading to over 100-fold inhibition of viral replication.
MOV10 also associates with retrotransposon ribonucleo-
protein particles (RNPs) and inhibits their replication in a
similar manner [369,370]. LINE1 produces two proteins: a
40-kDa RNA-binding protein ORF1p, and a 150-kDa
ORF2p protein that has endonuclease and reverse tran-
scriptase activities. MOV10 tightly interacts with ORF1p,
which mediates its strong anti-LINE1 activity [369].
Because all these inhibitory activities require its helicase
domain, MOV10 likely recognizes a common RNA
secondary structure to exhibit its inhibitory effect. Unlike
other restriction factors, MOV10 has not been subjected to
positive selection, indicating that it may not participate into
the co-evolutionary arms race with exogenous pathogens.
However, its strong sequence conservation across species
suggests that MOV10 may play an important role
in vivo [369].

MicroRNAs
While the primary aim of this review is to survey protein
restriction factors, one should be mindful that non-coding
RNAs and RNAi activities have also been found to play
increasingly significant regulatory and effector roles in
eukaryotic biology. Indeed, RNAi activity is ubiquitously
involved in normal and diseased physiology including can-
cers, metabolic disorders, and infectious diseases
[373-375]. In the realm of host-virus interaction, it was
originally thought that RNAi only serves host defense
against viral infection in plants and invetebrate animals
[376,377]; however, emerging evidence suggests that this
defense also functions in mammals [353,378]. Significant
findings supportive of this notion arise from evidence that
the virulence of viral infection in mammals is exacerbated
by a reduction in host RNAi function [348,355,379-381].
MicroRNAs (miRNAs) represent a major class of small

non-coding RNAs in the human genome. Humans
encode for more than 1,600 characterized miRNAs
(miRbase.org). Relevant to HIV-1, many human miRNAs
have been found to directly target HIV-1 sequences and
to attenuate virus replication in cells. These include
miR-28, miR-29a, miR, miR-125b, miR-150, miR-223,
miR-382, miR-133b, miR-138, miR-149, and miR-326
[382-388]. Other cellular miRNAs have also been shown
to indirectly target factors such as PCAF and cyclin T1
that are needed by HIV-1 to replicate [355,389,390]. In
this manner, these miRNAs can indirectly repress HIV-1
replication in cells [391]. MiRNA-repression of the intra-
cellular replication of mammalian viruses appears to be
a common theme; indeed, an increasingly large number
of published reports document the suppression by
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various human miRNAs of Epstein Barr Virus (EBV)
[392,393], Kaposi’s sarcoma Herpes virus (KSHV) [394],
hepatitis B virus [395,396], coxsackie virus [397], human
papilloma virus [398], amongst others. This list of exam-
ples promises to grow longer over time.
In view of the above, how do viruses counter the host

cell’s RNAi restriction? In principle, there are several
means that viruses can employ, including the shielding
of viral genomes from access by RNAi, the mutation of
viral sequences to evade RNAi, the encoding of viral
RNAi suppressor moieties, and changing the miRNA
expression profile of the infected cells [399]. For HIV-1,
several published reports have shown that the virus can
explicitly alter the cellular profile of miRNA expression
[400,401], presumably to benefit viral replication. Other
reports have implicated that the HIV-1 Tat protein
[402-407] and the viral TAR RNA [408] serve RNAi-
suppressing activities. Tat, like the HTLV-1 Rex protein,
likely suppresses RNAi through sequestration of RNA
via its basic amino acids [409]. Nevertheless, the RNAi-
suppressing activity of Tat appears to be modest and has
been difficult to measure in some assays [410].
Several HIV-1 encoded small non-coding RNAs

(ncRNAs) have also been identified in infected cells
using next generation pyrosequencing; and the over
expression of these ncRNAs represses viral replication
[411-413]. HIV-1, like HTLV-1 [414,415], also expresses
antisense non-coding RNAs [416,417]. Currently, we do
not fully understand the roles of these non-coding HIV-
1 RNAs. The clarification of their biological functions in
virus replication represents an important future chal-
lenge for investigators.
Conclusions
Over the past decade much progress has been made in
generating insights into HIV-1 virus-host interactions. In
this respect, several hundred host dependency factors
have been identified that act positively to regulate HIV-1
replication in human cells [418-423]. As a counterweight
to the study of positive host factors, it is also instructive
and important to appreciate the role that restriction fac-
tors play in moderating HIV-1 replication. Our survey
here of several examples of HIV-1 restriction factors is
not intended to be complete or fully comprehensive. We
hope the review provides a platform that introduces this
topic to those readers interested in further studies of
viral restriction factors.
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