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Abstract

Elite controllers or suppressors (ES) are HIV-1 infected patients who maintain viral loads of < 50 copies/ml without
antiretroviral therapy. CD8+ T cells are thought to play a key role in the control of viral replication and exert selec-
tive pressure on gag and nef in HLA-B*57 positive ES. We previously showed evolution in the gag gene of ES
which surprisingly was mostly due to synonymous mutations rather than non-synonymous mutation in targeted
CTL epitopes. This finding could be the result of structural constraints on Gag, and we therefore examined the less
conserved nef gene. We found slow evolution of nef in plasma virus in some ES. This evolution is mostly due to
synonymous mutations and occurs at a rate similar to that seen in the gag gene in the same patients. The results
provide further evidence of ongoing viral replication in ES and suggest that the nef and gag genes in these
patients respond similarly to selective pressure from the host.

Findings
The mechanisms responsible for the control of the HIV-
1 replication in elite suppressors are not fully under-
stood [1-3]. Replication competent virus has been
isolated from some ES [4-6] and genotypic [4], phenoty-
pic [4], and epidemiologic [7] analyses have suggested
that these isolates are generally fully pathogenic. Thus it
appears that in many cases, host factors rather than
infection with defective virus are responsible for the
elite control of viral replication. The HLA-B*57 allele is
overrepresented in ES [8-14] which suggests an impor-
tant role of CD8+ T cells. These cells have been shown
to exert selective pressure on HLA-B*57 restricted epi-
topes in ES [15-17] and LTNPs [18], and we have pre-
viously documented evidence of evolution in the gag
gene in plasma virus of HLA-B*57 positive ES over a
5 year period [19]. However, some studies have sug-
gested that Gag is preferentially targeted by CD8+
T cells in patients who control viremia [12,20] and it is
therefore possible that viral evolution in ES is limited to
this gene. To test this hypothesis, we analyzed proviral
and plasma nef sequences in ES over a 6 year period
and compared the rate of evolution in these two

compartments to the rate of evolution of observed for
the gag gene.
Four previously described HLA-B*57 ES patients were

studied [16,21]. Viral RNA was isolated from plasma, and
genomic DNA was purified from resting CD4+ T cells as
described previously [16]. To limit PCR resampling, nef
genes were amplified from provirus in genomic DNA and
from plasma-derived RNA by limiting dilution “digital”
nested PCR using previously described primers and con-
ditions [21]. PCR products were directly sequenced using
an ABI PRISM 3700 DNA analyzer (Applied Biosystems).
Chromatograms were manually examined for the pre-
sence of double peaks indicative of two templates per
sequencing reaction. Such sequences were discarded.
Sequences were assembled using CodonCode Aligner,
version 1.3.1, aligned using ClustalX, and the alignments
were manually adjusted in Bioedit. Sequences were trans-
lated in Bioedit, and the mean number of amino acid dif-
ferences between all provirus nef and all plasma virus nef
sequences from each patient was calculated.

Phylogenetic analysis and statistics
All independent clonal sequences obtained were
included in the phylogenetic analysis, with the exception
of sequences showing APOBEC3G/F-mediated hyper-
mutation, which were removed. Sequences [GenBank:
FJ430356 to FJ430471 and HQ448774 to HQ448852]
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subsequently were handled as previously described [19].
Classical, maximum-likelihood, and Bayesian phyloge-
netic reconstruction for each patient was performed as
previously described [19]. Non-synonymous and synon-
ymous p-distance calculations and the number of differ-
ences were based on the Nei-Gojobori method [22] and
were calculated by comparing grouped sequences from
the early time points in each patient to sequences from
the later time points using MEGA 4.0 software [23].
We performed a longitudinal analysis of viral

sequences in 4 ES HLA-B*57+ patients in order to
determine whether viral evolution occurred in nef.
A median of 12 independent nef clones (range 3 to 17)
were amplified from plasma virus of each of the four
ES. In three patients, we also amplified a median of 9
nef sequences from proviral DNA in resting CD4+
T cells (range 6 to 16). These new sequences were com-
pared to sequences obtained from the patients 5 to
6 years earlier.
A marked discordance between plasma and proviral

sequences was seen at the HLA-B*57 restricted epitope
KF9 (Nef 82-90) in ES3 and ES8 (Figure 1). In both
patients, the majority of the plasma clones were differ-
ent at 2 or 3 amino acids from the majority of the pro-
viral clones. There was no evidence of discordance in
this epitope in ES7 and ES9 or at the other 2 HLA-B*57
restricted epitopes in any patient, but we continued to
see a previously described escape mutation (Q107R) in
an undefined epitope in plasma clones in ES3 (KG15,
Nef 105-119) [21]. This mutation was not seen in pro-
viral clones. While there was discordance between
plasma and proviral clones at both early and late time
points, there did not appear to be significant evolution
in any of the epitopes in either compartment over a 6
year period.
In order to determine whether evolution was occur-

ring in other regions of the gene, phylogenetic analyses
were performed. As shown in Figure 2, there was a
striking segregation of plasma and proviral nef
sequences for all 4 patients. Proviral sequences from all
time points were clustered together and were clearly
ancestral to plasma clones from all time points. Further-
more, in ES9 and to a lesser extent ES8, some or all of
the plasma clones obtained in 2004 or 2005 (year 0 and
1 respectively) were ancestral to those obtained in 2007
(year 3) and 2010 (year 6). A clear pattern was not seen
for ES3 and ES7, possibly due to the lower number of
clones available from these patients. The fact that pro-
viral clones were generally ancestral to plasma clones is
consistent with the model that proviral clones represent
archived HIV-1 in latent reservoirs. As with gag [19],
there is little re-seeding of the latent reservoir by plasma
nef clones in ES.

In order to further elucidate the observed evolution seen
in plasma clones in some ES, we used the Nei-Gojobori
method to compare the p-distances of non-synonymous
and synonymous mutations between early and late plasma
and proviral sequences (Figure 3). This parameter nor-
malizes the frequency of substitutions to the number of
possible synonymous or non-synonymous sites, permitting
comparisons between the two. Figure 3A shows that
synonymous mutations were a more significant factor in
the divergence of plasma virus than were non-synonymous
mutations in all 4 patients. The same finding was seen
with proviral sequences (Figure 3B). We also calculated
the number of differences between early and late plasma
and proviral sequences in these patients (Figure 3C and
3D). Very few changes were seen in proviral sequences
and there were comparable levels of synonymous and
non-synonymous mutations. In some cases this may have
been partially due to a low level of plasma virus entering
the latent reservoir. In contrast, there were more changes
seen in plasma virus and these were mostly synonymous
mutations. Taken together, these data illustrate that over-
all there is significantly more synonymous mutation than
non-synonymous mutation and that mutations are more
frequent in the plasma virus than in the provirus.
We have previously characterized CD8+ T cell

responses to Gag [16] and Nef [21] for all 4ES. A median
of only 1.5 epitopes in Nef were recognized, the majority
of which were HLA-B*57 restricted. A similar pattern
was seen in Gag with a median of 3.5 epitopes recognized
in this protein, most of which were also HLA-B*57
restricted. To determine whether selective pressure
exerted by these T cell responses on these epitopes
resulted in comparable levels of evolution, we compared
the p-distances for nef to those we previously calculated
for gag (Figure 4). The same pattern of a predominance
of synonymous mutations was seen in the two genes with
a much higher degree of evolution seen in plasma clones
(Figure 4A) than proviral clones (Figure 4B). Further-
more, the p-distances were similar in the gag and nef
genes for all 4ES, suggesting that comparable degrees of
evolution have occurred in the two genes.
There is substantial evidence that HIV-specific CD8+

T cells that are ES are functionally superior to those
found in patients with progressive disease [13,24-28].
Some studies suggest that Gag is preferentially targeted
in patients who control HIV-1 viremia [12,20] and
others have shown that Gag-specific CD8+ T cells are
better at inhibiting viral replication than T cells that tar-
get Nef [27]. Gag has structural constraints that limit
the rate of virologic escape. Also, mutations in some
Gag HLA-B*57-restricted epitopes occur at a substantial
fitness cost [29,30], leading to reversion to wild type
sequence when mutants are transmitted to HLA-B*57
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Figure 1 Relevant sequence regions from clonal, nef amplified from plasma or from resting CD4+T cells. The date of sample acquisition
and number of clones that are identical to the displayed sequences are noted. The HLA-B*57-restricted epitope YT9 (Nef 120-128) and the
undefined epitope KG15 (nef 105-119) in ES3 are denoted by empty boxes outlined in blue and yellow respectively. The HLA-B*57-restricted
epitopes KF9 (Nef 82-90), and HW9 (Nef 116-124), are denoted by boxes shaded in green and pink respectively. Sequences from 2004 and 2005
for ES3, ES7, ES8, and ES9 have been previously reported and are shown for comparative purposes only.
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Figure 2 Phylogenetic analysis of nef in the 4 elite suppressor patients. Phylogenies were estimated by using a “classical” approach,
functioning under maximum-likeluhood (ML) optimality criterion. All sequences are clonal, and APOBEC-mediated hypermutated sequences were
removed from analysis. Colors indicate time, with the scale below in years. Triangles represent clonal plasma sequences, circles represent proviral
sequences from CD4+ resting T cells.

Salgado et al. Retrovirology 2010, 7:94
http://www.retrovirology.com/content/7/1/94

Page 4 of 7



Figure 3 Analysis of synonymous and non-synonymous mutation in the plasma virus and proviral compartments. Shown are p-distance
values for plasma (A) and proviral (B) sequences as determined by comparing early and late samples for each patient utilizing the Nei-Gojobori
method. The numbers of differences also were calculated for plasma (C) and proviral (D) sequences using the Nei-Gojobori method.

Figure 4 Comparison of synonymous and non-synonymous mutations in nef and gag for plasma (top panel) and proviral (bottom
panel) clones. P-distance values were calculated for each patient utilizing the Nei-Gojobori method.
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negative individuals [31,32]. In contrast, Nef is less con-
strained and there is not as much evidence for dimin-
ished fitness of escape variants. In fact, in one study,
mutations in the Nef KF9 epitope did not revert to wild
type following transmission to HLA-B*57 negative
patients [33].
We have previously shown that CD8+ T cells exert

selective pressure on both Gag [16] and Nef [21] in
plasma virus. We also recently documented evolution in
the gag gene in plasma virus in ES [19]. This evolution
was mostly seen in regions outside of epitopes and was
due to synonymous mutations. We hypothesized that
the lack of non-synonymous mutations was a result of
the structural constraints on Gag. One would thus
expect to see a higher rate of non-synonymous muta-
tions in Nef. However, in all four patients, we saw very
few non-synonymous mutations and a comparable fre-
quency of synonymous mutations in both genes. This
analysis is technically challenging because it involves the
amplification of multiple clonal sequences from plasma
and resting CD4+ T cells of patients who often maintain
viral loads of < 1 copy/ml [13,34-36]. The results sug-
gest that in both Gag and Nef, after early virologic
escape occurs, there is little continuing evolution in epi-
topes as a balance between immune evasion and viral
fitness is achieved. However, non-synonymous muta-
tions accumulate in both genes in plasma virus as a
result of low level ongoing replication. This finding may
have implications for the design of HIV-1 vaccines.
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