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Abstract
The pathogenesis of HIV infection, and in particular the development of immunodeficiency, remains incompletely 
understood. Whichever intricate molecular mechanisms are at play between HIV and the host, it is evident that the 
organism is incapable of restricting and eradicating the invading pathogen. Both innate and adaptive immune 
responses are raised, but they appear to be insufficient or too late to eliminate the virus. Moreover, the picture is 
complicated by the fact that the very same cells and responses aimed at eliminating the virus seem to play deleterious 
roles by driving ongoing immune activation and progressive immunodeficiency. Whereas much knowledge exists on 
the role of adaptive immunity during HIV infection, it has only recently been appreciated that the innate immune 
response also plays an important part in HIV pathogenesis. In this review, we present current knowledge on innate 
immune recognition and activation during HIV infection based on studies in cell culture, non-human primates, and 
HIV-infected individuals, and discuss the implications for the understanding of HIV immunopathogenesis.

Introduction and key questions in HIV 
pathogenesis
The natural history of HIV infection is characterized by
an acute phase with very high circulating levels of virus
and a rapid decline in CD4+ T cells [1,2]. Despite a strong
immune response resulting in decreasing viral load and
increasing numbers of circulating virus-specific CD4+ T
cells following the acute phase, the host is not capable of
clearing the infection [3,4]. This allows HIV to establish
life-long latency and chronic infection with progressive
fatal immunodeficiency if left untreated. In a paradoxical
manner, HIV-induced immunodeficiency is not domi-
nated by paresis and inactivity of the immune system, but
rather by chronic immune activation and high cell turn-
over, apoptosis, and activation-induced cell death [4-6].
Although it is widely accepted in the field that persistent
immune activation plays a central part in driving immu-
nopathogenesis and progression to AIDS, the fundamen-
tal determinants of progressive cell loss and functional
immune deficiency in HIV infection remain unexplained.
How does acute HIV infection lead to depletion of cells in
gut associated lymphoid tissue (GALT) and irreversible
damage to the host immune system? Which molecular

mechanisms may underlie the chronic immune activation
eventually causing progressive immune exhaustion and
profound immunodeficiency? These are central questions
in the understanding of the pathogenesis of HIV infec-
tion, which remain unanswered despite intense research
in this area since the discovery of HIV more than 25 years
ago [7,8]. HIV targets central players of the immune sys-
tem, including cells of the mononuclear lineage, such as T
cells, monocytes, and macrophages, but whereas the role
of the adaptive immune response has been extensively
studied [4], much less knowledge exists regarding the role
of innate immune recognition and inflammation during
HIV infection.

Immunopathogenesis
Acute HIV infection
Acute or primary HIV infection is defined as the first
period of infection from the detection of HIV RNA until
the formation of HIV-specific antibodies 3-4 weeks after
infection [1]. Following sexual transmission of HIV, the
virus first replicates locally in the vaginal or rectal
mucosa, and this early stage before detectable viral RNA
in plasma is termed the eclipse phase. Molecular analyses
of subjects with acute HIV infection have indicated that
productive infection arises from a single infectious virus
[9,10], and other studies suggest that the first cells to be
infected in the mucosa are resident memory T cells
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expressing CD4 and CCR5 [11,12]. Already at this early
point of infection, innate immune activation may contrib-
ute by recruiting granulocytes, macrophages, and lym-
phocytes, the latter two of which are cellular targets of
the virus. Virus or virus-infected cells then reach the
draining lymph nodes, where activated CD4+CCR5+ T
cells are encountered and represent targets for further
infection. In this process, virus particles are bound by
dendritic cells (DC)s through the C-type lectin receptor
(CLR) DC-SIGN, and also by B lymphocytes through the
complement receptor CD21, thereby augmenting viral
spread by carrying virus to activated T cells [13,14]. This
allows the virus to replicate and disseminate to secondary
lymphoid tissue throughout the organism, with a particu-
lar predilection for GALT, where activated CD4+CCR5+
effector memory T cells are present at high levels [15].

Studies in SIV models and HIV-infected individuals
have documented that acute SIV/HIV infection is accom-
panied by a massive depletion of CD4+ memory T cells,
primarily in mucosal tissue, which may be explained by
the high expression of the viral co-receptor CCR5 and the
relatively activated state of mucosal CD4+ T cells [15-19].
In later studies, it has been demonstrated that as much as
60% of CD4+ memory T cells throughout the organism,
including blood, lymph nodes and GALT are infected by
SIV, and that the majority of these cells disappear within
few days [20]. Importantly, the depletion of CD4+ mem-
ory T cells is not restricted to T cells of mucosal origin,
although quantitatively most cells are lost from the
mucosa, because the greatest number of T cells is resi-
dent in this location [20]. As to the cellular mechanism
underlying this massive CD4+ T cell depletion, another
study in SIV-infected rhesus macaques found that SIV
exploits a large resident population of CD4+ memory T
cells to produce high levels of virus that both directly,
through lytic infection, and indirectly, through Fas-medi-
ated apoptosis of infected and uninfected cells, deplete
the majority of CD4+ T cells in GALT within the first 3
weeks of infection [21]. However, acute infection does
not efficiently target naïve and resting central memory T
cells, which do not express CCR5, leaving the regenera-
tive potential of these T cell populations relatively intact
at this stage [4].

Plasma viraemia increases to reach a peak after 21-28
days of infection together with depressed peripheral
CD4+ T cell numbers. Whereas the amount of circulating
T cells subsequently return close to normal, CD4+ T cell
numbers in the GALT remain severely reduced [18,22].
Thus, acute HIV infection is accompanied by a selective
and dramatic depletion of CD4+CCR5+ memory T cells
predominantly from mucosal surfaces. This loss is largely
irreversible and has profound immunological conse-
quences, eventually manifesting as failure of the host

immune defences and progression to AIDS later during
infection [23].

At the time of peak viraemia, patients may develop
symptoms of the acute retroviral syndrome, including
influenza-like illness with fever, sore throat, lymphade-
nopathy, and exanthema [24]. However, viral reservoirs
have already been established in cells with slower rate of
decay than T cells, implying that the virus cannot be
eliminated by highly active antiretroviral treatment
(HAART) within the life time of the patient [25]. Eventu-
ally, the viral load decreases over 12-20 weeks to reach a
stable viral set point [26], and this initiates a more
chronic phase of the infection. In primate models of SIV
infection, it has been demonstrated that in the absence of
CD8+ T cells, virus levels do not decline from peak virae-
mia for a prolonged period, implicating that CD8+ T cells
play a crucial role in suppressing SIV replication [27,28].
This is supported by studies in HIV-infected individuals
demonstrating major oligoclonal expansions of CD8+ T
cells during acute HIV infection as well as associations
between virus-specific CD8+ T cell activity and control
of viraemia [29,30]. Therefore, it has been anticipated
that CD8+ T cell-mediated control of viraemia is medi-
ated by cytotoxic killing of productively infected cells
[27,30]. However, more recent reports have challenged
this assumption by demonstrating that CD8+ T cell sup-
pression is not mediated by cytotoxic clearance of
infected cells, and that the life span of infected cells is not
decreased, indicating that the role of CD8+ T cells may be
much more complex [27,31-33]. The central immunolog-
ical parameters in the natural history of HIV infection is
depicted in Figure 1, which also illustrates how the innate
immune system plays a part in early restriction of the
virus and shaping of the adaptive immune response, but
at the same time participates in the establishment and
spread of infection. This is discussed in details later in
this review.

Chronic HIV infection
Despite the return of circulating CD4+ T cells to near
normal levels and the infection being largely asymptom-
atic for extended time periods in the majority of patients,
it is now well established that massive immune activation
and an accelerated cell turnover takes place during
chronic HIV infection [34,35] (Figure 1). This apparent
state of basal immune hyper-activation in the infected
host is evidenced by increased expression of activation
markers, such as CD38, HLA-DR and Ki67, of which
CD38 is considered the most reliable surrogate marker
for immune activation, disease progression to AIDS, and
death [36]. In the gut, naïve and central memory T cells
are supplied, but these cells are short-lived and only par-
tially substitute for the CD4+ effector memory T cells
depleted during the acute phase of infection [4,37]. In
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contrast, by stimulating this tremendous naïve and cen-
tral memory CD4+ T cell repertoire that is programmed
to generate additional CCR5 expressing targets, the virus
creates new sources of infection and avoids the conse-
quences of target cell depletion [23].

The profound immunological damage to the gastroin-
testinal tract leads to breaks in the mucosal barrier allow-
ing translocation of microbial products, including
bacterial lipopolysaccharide (LPS), into the circulation. A
seminal study by Brenchley and colleagues demonstrated
bacterial translocation during HIV infection and corre-
lated plasma LPS levels with immune activation [38].
Bacterial translocation may therefore represent a crucial
event in persistent immune activation, although it is
probably not the only source of the microbial burden
responsible for chronic immune activation (Figure 1).
Intriguingly, HIV itself may also be a central player in the
process due to viral constituents, such as glycoprotein

(gp)120 and nef, or viral nucleic acids produced during
viral replication, subsequently resulting in activation of
proinflammatory cytokines and type I interferon (IFN),
including IFN-α and IFN-β [1,4,39]. These aspects are
discussed in further detail below. The ultimate conse-
quence of immune activation is depletion of CD4+ T cells
by different mechanisms, including a decrease in CD4+
and CD8+ T cell half-life, abnormal T cell trafficking,
clonal exhaustion of T cells, and drainage of memory T
cell pools [40-42]. Intriguingly, during chronic HIV infec-
tion only a minority of activated T cells are HIV-infected
or HIV specific [23,42]. Nevertheless, CD4+ T cells are
profoundly depleted and replaced by short-lived T cells
with a more limited regenerative potential [4]. Another
important factor is the accelerated viral evolution at this
stage, provided by an excessively high viral mutation rate
and alteration in cellular tropism, resulting in progression
from a pool of CCR5-trophic to dual trophic or domi-

Figure 1 Potential roles of the innate immune system during HIV infection. (1) Following exposure at mucosal surfaces, HIV is transmitted with 
very low transmission efficiency, indicating that innate antiviral mechanisms are operative to prevent establishment of infection. (2) The early inflam-
matory response leads to recruitment and activation of various leukocytes, some of which serve as target cells for de novo HIV infection. (3) After acute 
infection, circulating viral load is generally decreased to a low level. This is mediated by the adaptive immune response, which is activated through 
processes driven by the innate immune response. Moreover, direct innate antiviral mechanisms contribute to control of virus replication during the 
chronic phase. (4) Persistent immune activation during chronic HIV infection involves activities stimulated by HIV-derived or opportunistic PAMPs 
through PRRs.
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nantly CXCR4 trophic strains with increased virulence
and broader target cell trophism [4]. In addition, damage
to lymphoid tissue results in thymic dysfunction, trans-
forming growth factor-β-dependent fibrosis and altera-
tions in lymphoid follicle architecture [41,43]. HIV
infection also profoundly affects blood and tissue B cells
by inducing early class switching in polyclonal B cells,
massive B cell apoptosis, and loss of germinal centers in
lymphoid tissue [44,45]. Although the profound damage
to the adaptive immune system dominates, it has been
increasingly appreciated that most other parts of the
immune system, particularly innate immune defences,
are also significantly dysregulated [1].

Finally, important questions regarding the immunop-
athogenesis of HIV infection may be learned from the
study of infection in natural hosts, or potentially from
HIV-infected humanized mouse models [46]. Intrigu-
ingly, simian immunodeficiency virus (SIV) infection in
sooty mangabeys that represent natural hosts of SIV leads
to high viral load but only very modest immune activa-
tion [47]. In contrast, SIV infection in rhesus macaques,
which are not natural hosts and therefore mount a strong
immune response, resemble human HIV infection with
production of inflammatory mediators at the expense of
the development of immunodeficiency [47,48]. Such find-
ings support the idea that immune activation is primarily
disadvantageous to the host and a major driving force for
immune exhaustion during human HIV infection. This is
in part due to enhanced activation of CD4+ T cells result-
ing in increased targets for HIV infection, but also a
result of the undesirable effects of generalized immune
activation more globally within the immune system.
These observations therefore raise the question, whether
HIV infection might be less detrimental for the immune
system, had the immune response to the virus been less
powerful.

Innate immunity and pattern recognition receptors
Since one of the fundamental characteristics of HIV
pathogenesis is the failure of the immune system to rec-
ognize, control, and eliminate the virus, much focus has
been on early events following viral infection. The innate
immune system constitutes the first line of defence
against invading pathogens and is based on epithelial bar-
riers, the complement system, and cells with phagocy-
totic and antigen presenting properties, such as
granulocytes, macrophages, and DCs respectively [49,50].

Pattern recognition receptors (PRR)s have been
assigned a central role in innate immune defences due to
their ability to recognize evolutionarily conserved struc-
tures on pathogens, termed pathogen-associated molecu-
lar patterns (PAMP)s. A limited number of germ-line
encoded receptors are responsible for triggering an
innate immune response following the encounter with

PAMPs, which are characterized by being invariant
among entire classes of pathogens, essential for survival
of the pathogen, and distinguishable from self [51].
Among PRRs, the family of Toll-like receptors (TLR)s
have been studied most extensively. TLRs are membrane-
bound receptors with 10 different TLRs identified in
humans. TLR1, 2, 4, 5, 6, and 10 are expressed at the cell
surface and mainly recognize hydrophobic molecules
unique to microbes and not produced by the host. In con-
trast, TLR3, 7, 8, and 9 are located almost exclusively in
endosomal compartments and are specialized in recogni-
tion of nucleic acids. Hence, non-self discrimination is
provided primarily by the exclusive localization of the
ligands rather than solely based on a unique molecular
structure different from that of the host [50]. For exam-
ple, TLR2 recognizes lipoteichoic acids of gram-positive
bacteria, whereas TLR4 is activated by LPS of gram-nega-
tive bacteria, and additionally, TLR2 and TLR4 are
involved in the response to certain viral surface glycopro-
teins [52-54]. However, viral recognition is primarily
mediated by TLR9 recognizing DNA, as well as by TLRs
7/8, and 3 sensing single-stranded (ss) RNA and double-
stranded (ds) RNA, respectively [55-59]. In addition,
CLRs, such as DC-SIGN, Dectin-1, and mannose recep-
tor, have emerged as cell surface PRRs that play impor-
tant roles in induction of immune responses against
various pathogens [60]. DC-SIGN in particular, has been
attributed essential roles as an adhesion receptor, in
mediating interactions between DCs and T cells, and as a
PRR inducing specific immune responses [13,61].

Since microbial material is not exclusively present
extracellularly or within endosomes, alternative cytosolic
PRRs exist. The retinoid acid-inducible gene (RIG)-like
receptors (RLR)s, RIG-I and MDA5, are RNA helicases
that play a pivotal role in sensing of cytoplasmic RNA
[62,63]. Studies have suggested differential roles of these
helicases, with RIG-I being responsible for recognizing
short dsRNA and 5'triphosphorylated panhandle RNA,
whereas MDA5 responds to long dsRNA and higher
order RNA structures [64-68]. Finally, cytosolic DNA
receptors have been identified more recently and are the
subject of much research interest in the field. The DNA
receptors AIM2 and DAI respond to most types of
dsDNA, in contrast to polymerase III-dependent
responses that are restricted to AT-rich dsDNA [51,69-
71]. Furthermore, a receptor for ssDNA may exist but has
not presently been identified [72]. Figure 2 illustrates dif-
ferent classes of viral PAMPs and related PRRs on the cell
surface and in the intracellular environment.

Overall, ligand engagement of PRRs leads to activation
of a proinflammatory and antimicrobial response by trig-
gering signal transduction pathways involving the tran-
scription factors nuclear factor (NF)-κB and IFN
regulatory factors (IRF) 3/7 as well as mitogen-activated
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protein kinase (MAPK) pathways, ultimately resulting in
the production of cytokines, chemokines, cell adhesion
molecules and antiviral type I IFN. This is depicted in
Figure 3. Some degree of specificity and selectivity is con-
ferred by complex differences in the response depending
on cell type, timing and localization. For instance, only a
subset of TLRs, including TLRs 3, 7/8, 9, and to a lesser
extent TLR4, can induce IFN due to their selective activa-
tion of IRFs [50,73]. CLR-induced intracellular pathways,
which involve activation of the kinase Raf-1, essentially
modulate the responses of other PRRs but also exert
functions independently from other PRRs [60]. Impor-
tantly, innate immune activation is required for the sub-
sequent activation and shaping of adaptive immunity, for
instance by enhancing antigen presentation, by promot-
ing DC recruitment and maturation, and finally by pro-
viding signals involved in DC-mediated CD4+ T cell
polarization and priming [74].

Candidate PAMPs generated during the HIV life 
cycle
When considering how HIV may possibly be recognized
by the innate immune system, it seems logical to contem-

plate the possible PAMPs that are part of the HIV particle
or generated during different phases of the viral life cycle.
Being a member of the retroviridae family (lentivirus sub-
family), HIV is a spherical enveloped RNA virus with a
diameter of roughly 100 nm. The envelope contains viral
glycoproteins and encloses a cone-shaped capsid contain-
ing two identical copies of the positive ssRNA genome of
10 kilobases together with several copies of reverse tran-
scriptase (RT), integrase, additional viral proteins and
two cellular tRNAs [75]. The viral genome contains three
major structural genes, including gag, pol, and env, as
well as six regulatory genes, namely vif, vpr, tat, rev, vpu,
and nef. At each end of the genome are long-terminal
repeat (LTR) sequences that contain promoters, enhanc-
ers, and other gene sequences required for binding of dif-
ferent cellular (or viral) transcription factors, such as NF-
κB, Nuclear factor of activated T-cells, and activator pro-
tein (AP)-1, involved in viral replication [75] (Figure 3).
Similar to cellular mRNA, the viral genome has a 5' cap
and is poly-adenylated at the 3' end.

As illustrated in Figure 4, the viral life cycle is initiated
by binding of viral gp120 to the cellular CD4 surface mol-
ecule [76]. Such glycoproteins of the viral envelope may

Figure 2 Viral PAMPs and related cellular PRRs. Viral glycoproteins may be recognized by TLR2/4 or CLRs on the cell surface. In the intracellular 
environment, various viral RNA and DNA structures are recognized by nucleotide sensors localized in endosomes or in the cytoplasm. It remains un-
known whether nuclear PRRs exist able to recognize viral PAMPs in the nucleus.
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be recognized by surface TLRs and CLRs as described for
other viruses, such as cytomegalovirus [52-54]. Further-
more, interaction between viral gp41 and the chemokine
receptors CXCR4 or CCR5 is required for fusion of the
viral envelope with the cellular plasma membrane and
release of the viral capsid into the cytoplasm [77-79]. The
process of reverse transcription takes place in the cyto-
plasm, possibly with most viral structures shielded from
cellular recognition due to localization in the viral capsid
[75]. Intracellularly, ssRNA is recognized by TLR7/8, but
given that these receptors are located in the luminal
aspect of the endosomal membrane, the viral genome
needs to be transported to this compartment, either via
viral endocytosis or by autophagy of viral material in the
cytoplasm [80]. The two strands of RNA are entwined
within the core as a ribonuclear complex with viral pro-
teins forming a dimeric RNA complex [81]. Thus, higher
order dsRNA structures represent potential PAMPs for
endosomally located TLR3 or cytosolic RLRs, particularly
MDA5. Triggering of RIG-I may be prevented by 5'cap-
ping of viral genomic RNA, making it similar to mRNA of
host origin, and precluding its recognition as foreign [75].

RT is an RNA-dependent DNA polymerase, which uses
the viral positive ssRNA genome as template and the
virion tRNA as primer for the synthesis of a negative-

strand DNA copy [75], thus forming an RNA:DNA
hybrid, which may also be recognized by an as yet
unidentified receptor. Subsequently, the viral ribonu-
clease H activity of RT degrades the viral genomic RNA
template, except for two resistant purine rich sequences,
which then serve as primers for the formation of a com-
plementary DNA plus-strand [75]. Following formation
of linear dsDNA, a pre-integration complex consisting of
viral DNA and several viral proteins is formed and trans-
located into the nucleus [82]. This essential step in the
HIV replication cycle is mediated by the virion-carried
integrase, and once a linear copy of the viral genome has
been inserted in the host cellular genome, the integration
is for the lifetime of the cell. However, unintegrated circu-
lar DNA may persist in the nucleus and be transcribed,
particularly in quiescent cells [83]. Therefore, it appears
that dsDNA or ssDNA first in the cytoplasm and subse-
quently in the nucleus may be possible targets for cellular
DNA receptors, including TLR9 in endosomes or cytoso-
lic DNA receptors. Indeed, there is recent evidence of cel-
lular mechanisms for recognition and degradation of
ssDNA of retroviral origin [72]. Based on data that cyto-
solic DNA detection activates a potent antiviral response,
the IFN-stimulatory DNA response [84], Medzhitov and
associates identified an exonuclease named Trex that
metabolizes reverse transcribed DNA [72]. In Trex-defi-
cient cells ssDNA derived from endogenous retro-ele-
ments accumulates, and mutations in the human Trex
gene cause autoimmune manifestations [72]. It is a very
intriguing idea, that HIV DNA may be recognized by a
host DNA receptor, which however remains to be identi-
fied.

Synthesis of new progeny virus is accomplished in a
highly regulated manner utilizing host cell enzymes and
dependent on cellular or microbial inflammatory or
mitotic signals, including the HIV transactivator Tat [75].
Integrated viral DNA is transcribed by host RNA poly-
merase to produce full-length RNA, which is either inte-
grated into new virions as genomic ssRNA or further
processed to produce different mRNAs containing gag,
gag-pol, and env sequences. These mRNAs undergo
translation, processing, and maturation in the endoplas-
mic reticulum and Golgi. Gag and gag-pol proteins bind
to the plasma membrane containing envelope glycopro-
tein, and the association of two copies of genomic ssRNA
and cellular tRNA molecules finally promote cellular
budding and virion release [75]. Genomic RNA, mRNA
and various viral structural and regulatory proteins pres-
ent at this time also represent potential ligands for appro-
priate cytosolic PRRs. Only after release from the cell, the
viral protease mediates cleavage of gag and gag-pol poly-
proteins to finally accomplish maturation of the viral core
and release of RT, thus completing the life cycle of the
virus. The hypothetical possibilities described above for

Figure 3 Principles in PRR signalling and transcription of cellular 
genes and HIV provirus. Sensing of microbial PAMPs by PRRs stimu-
lates intracellular signalling pathways, leading to activation of tran-
scription factors, notably NF-κB, IRF-1, and AP-1. These transcription 
factors bind to specific sequences present in gene promoter regions 
and activate transcription of antiviral and inflammatory genes. Impor-
tantly, NF-κB and AP-1 also activate transcription of the HIV provirus 
through binding to the corresponding elements in the HIV LTR to in-
duce viral replication. TBK, TANK-binding kinase. IKK, IκB kinase.
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interactions between HIV-derived PAMPs and PRRs are
illustrated in Figure 4. Given the fact that PAMPs must be
conserved and foreign from self or present in aberrant
localizations [51], future research on cellular HIV recog-
nizing PRRs should be focused on the cytoplasm or
maybe even the nucleus; and HIV nucleic acids represent
good candidates for viral PAMPs.

Innate immune recognition of HIV
HIV PAMPs recognized by TLR7/8
Based on the observation that initiation of HAART leads
to an almost immediate decline in immune activation,
which can be correlated to significant reduction in HIV
viraemia, a direct contribution of HIV itself to immune
activation has been proposed [85-87]. The first direct link

between HIV and innate PRRs was reported in 2004 in a
study demonstrating that guanine-uridine-rich ssRNA
derived from HIV is recognized by TLR7/8 and stimu-
lates DCs and macrophages to secrete IFN-α and proin-
flammatory cytokines [56]. A role for TLR7/8 activation
in HIV immune activation was supported by studies
demonstrating MyD88-dependent activation of plasma-
cytoid DCs (pDC)s and monocytes by uridine-rich
ssRNA sequences from the HIV LTR (ssRNA40) [86].
Moreover, ssRNA40-mediated activation of natural killer
(NK) cells has been described, and the activation appears
to be critically dependent upon cellular cross-talk
between NK cells and CD14+ monocytes [88]. In a study
focusing on the requirements for pDC activation, Bei-
gnon et al. found that endocytosis followed by viral

Figure 4 Theoretical possibilities for innate immune recognition during the life cycle of HIV. The HIV life cycle generates a number of potential 
PAMPs (e.g. dsRNA structures, DNA:RNA hybrids, and dsDNA) as well as aberrant localization of molecular structures shared between virus and host 
(RNA and DNA in endosomes). Some of these are recognized by PRRs and activate expression of antiviral and inflammatory gene products. Recogni-
tion of uridine-rich HIV LTR-derived ssRNA and gp120 by TLR7/8 and DC-SIGN, respectively, remain the only experimentally confirmed HIV PAMPs to 
date.
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nucleic acid in the endocytic compartment is required for
pDC activation and IFN-α secretion. Although the exper-
imental set-up did not allow for a precise identification of
the receptor involved, the data strongly pointed to TLR7,
with a possible role for TLR9 [89]. An important strength
of this study, however, was the utilization of live virus
rather than the less physiological approach involving
transfection of synthetic HIV-derived uridine-rich
ssRNA. Recently, evidence was presented suggesting that
productive infection of DCs requires two distinct HIV-
dependent innate signal transduction pathways [90]. It
was demonstrated that whereas genomic HIV ssRNA
activates TLR8 signalling to NF-κB and initiation of tran-
scription from integrated HIV provirus, interaction
between HIV gp120 and DC-SIGN induces Raf-depen-
dent phosphorylation of the NF-κB subunit p65, which is
required for elongation of viral transcripts and hence for
synthesis of complete viral transcripts and productive
infection [90].

Further support for a role of TLR7/8 in HIV immune
activation was provided by findings of HIV RNA render-
ing human lymphoid tissue of tonsillar origin or periph-
eral blood mononuclear cells (PBMC)s less permissive to
HIV replication [91]. In another study, the same authors
were able to demonstrate that TLR7/8 stimulation
induces changes in the microenvironment unfavourable
to HIV, with NK and CD8+ T cells playing an essential
role, although no specific soluble factor responsible for
these effects was identified [92]. Finally, convincing evi-
dence for the involvement of TLR7/8 triggering in
immune activation was provided by histopathological
studies in mice, which showed disruption of the lymphoid
system, including lymphopenia, abolished antibody pro-
duction, and alterations in lymphoid microarchitecture
resembling HIV-mediated pathology following sustained
TLR7 activation [93]. Likewise, repeated CpG DNA
administration in mice, activating pDCs through TLR9,
resulted in lymphoid pathology, including lymph node
hyperplasia, disruption of follicle microarchitecture, and
subsequently decreases in numbers of CD4+ and CD8+ T
cells, all of which was dependent on type I IFN signalling
[94]. As described above, TLR7/8-mediated sensing of
uridine-rich HIV RNA, as well as recognition of gp120 by
DC-SIGN, represent the only direct evidence of HIV rec-
ognition by the innate immune system. This may seem
surprising in comparison with other pathogens, which
are often recognized by various overlapping families of
PRRs. Finally, a recent report of lentivirus vector-induced
activation of TLRs suggests that TLR3 may also be
involved in sensing of dsRNA structures during HIV
infection [95].

PAMPs from opportunistic pathogens activating TLRs
Activation of innate immune receptors during HIV infec-
tion does not only involve PAMPs derived from HIV but

also applies to PAMPs originating from opportunistic
pathogens and translocated bacteria [38,96]. Considering
the wide range of pathogenic microbes that may be pres-
ent during the course of HIV infection, several TLRs may
be involved in microbial recognition and immune activa-
tion. Indeed, a study addressing this issue demonstrated
that almost all human TLRs can induce CD4+ and CD8+
T cell activation and death, which may contribute to the
pathogenesis of immunodeficiency during chronic HIV
infection [97].

Almost ten years ago, it was reported that bacterial LPS
activates the HIV LTR through TLR4 [98]. This is medi-
ated by NF-κB activation, which induces viral replication
due to the presence of NF-κB elements in the HIV LTR
[99] (shown in Figure 3 and described in more detail
later). Subsequent data on massive bacterial translocation
through the damaged GALT during HIV infection sug-
gest that such LPS may trigger TLR4 during chronic
immune activation [38]. In a recent clinical study involv-
ing HIV-infected patients, it was confirmed that signifi-
cantly increased LPS levels were associated with chronic
HIV infection, and the observed LPS tolerance was
diminished in individuals with HIV infection, leading the
authors to suggest that HIV infection dysregulates natu-
ral TLR responses to subclinical endotoxaemia [100].
Supporting these findings, another study in HIV-infected
patients in Guinea Bissau, revealed associations between
microbial translocation, measured as plasma LPS con-
centration, and severity of both HIV-1 and HIV-2 infec-
tion [101].

A correlation between bacterial DNA as a measure of
bacterial translocation and immune activation in HIV-
infected individuals has been demonstrated, and such
bacterial DNA may also stimulate innate immune activa-
tion through TLR9 or cytosolic DNA receptors [102].
However, despite some authorities arguing for HIV infec-
tion to be considered a disease of the gastrointestinal
tract [103], several studies question the dominant role
assigned to the gastrointestinal mucosa and microbial
translocation. For instance, the finding of severe deple-
tion of the GALT in natural hosts of SIV (sooty mang-
abeys) in the absence of immune activation and
immunopathology, may indicate that microbial transloca-
tion does not necessarily lead to immune activation
[104,105], or at least does not represent an exclusive
explanation. At present, it is not clear, whether endotox-
aemia directly causes immune activation and CD4+ T cell
depletion, or whether it merely reflects a loss of CD4+ T
cell host protection and mucosal damage induced by
existing immune activation [106].

Regulation of TLR responsiveness and cell type 
differences
One important aspect necessary to address when
describing interactions between HIV and the innate
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immune system, is the extensive difference observed
between various cell types. Such differences add further
complexity to the overall picture, since HIV targets sev-
eral different cell types, including T cell subsets, mono-
cytes, macrophages, and DCs. Therefore, entirely
different recognition mechanisms and immune strategies
may exist depending on the cell and tissue involved.
Whereas there is solid evidence for TLR7-mediated acti-
vation of pDCs, resulting in type I IFN production [86],
other cell types appear to be much less sensitive to HIV
PAMPs. In primary human macrophages, HIV induces
activation independently of TLRs, although infection
increases responsiveness to other TLR ligands [107]. This
is in agreement with clinical studies, in which TLR
expression and responsiveness are increased in viraemic
HIV infection [108]. PBMCs from these infected individ-
uals exhibit augmented mRNA expression of TLR2, 3, 4,
6, 7, and 8 as well as increased proinflammatory respon-
siveness to TLR ligands, suggesting TLR sensitization in
chronic HIV infection [108]. It may have major implica-
tions that macrophages, which play important roles in
transmission and as reservoirs of actively replicating
virus, are unable to directly mount an antiviral response
towards HIV, but instead become primed to respond to
different microbial challenges contributing to immune
activation. In this manner macrophages play a key role in
inducing and maintaining immune activation in HIV
infection [109,110].

Despite TLRs being mainly expressed on cells of the
innate immune system, mRNAs encoding TLR 1, 2, 3, 4,
5, 7, and 9 have also been detected in human primary
CD4+ T cells, and engagement of specific TLRs trigger
secretion of Th1 and Th17 cytokine profiles, suggesting
that a subset of TLR ligands can activate resting CD4+ T
cells [111-113]. Interestingly, TLR5 stimulation was
reported to trigger reactivation of latent HIV provirus
from T cells and to activate viral gene expression in cen-
tral memory T cells [114]. These novel findings under-
score the profound cell type differences in HIV-host
interactions and also indicate that innate and adaptive
immunity should not be regarded as two separate arms
but rather as tightly connected and mutually dependent
systems.

Dual role of innate immune activation in HIV 
infection
Activation of NF-κB and inflammation
The elegant mechanism, by which HIV is capable of
exploiting NF-κB to its own advantage to promote viral
replication, is a clear example of the ingenuity of HIV.
Early studies unravelled that NF-κB perpetuates HIV
enhancer activity in infected monocytes, and that κB sites
in the HIV LTR are responsible for this phenomenon

[99,115]. Moreover, Tat-mediated amplification of HIV
transcription in CD4+ T cells was demonstrated to be
critically dependent on κB-responsive elements [116].
These findings paved the way for the idea that HIV repli-
cation is induced either by the virus itself [117], or alter-
natively by various opportunistic or translocated
pathogens, most of which trigger different classes of
immune receptors to activate NF-κB [38]. This is illus-
trated in Figure 5. The close relationship between
immune activation and viral replication is also evidenced
by TNF-α-induced NF-κB activation promoting
enhanced replication of HIV clade C as compared to
other HIV subtypes, which may be explained by the pres-
ence of an extra NF-κB element in the HIV clade C LTR
promoter [118]. As described above, several lines of evi-
dence strongly suggest that HIV-derived molecules and
viral replication are major forces in driving acute and
chronic immune activation. This is clearly demonstrated
in the reversion of immune activation shortly following
initiation of HAART in HIV-infected patients, even
before the CD4 count has returned to normal [85]. How-
ever, it should be noted, that certain clinical studies
examining immunological parameters in elite controllers
have revealed some degree of immune activation despite
very low or undetectable viral load [119], arguing for non-
HIV-derived microbial stimuli as a source of immune
activation. In this context, it must be taken into consider-
ation, that circulating levels of virus only poorly reflects
the situation in lymphoid or mucosal tissue, in which
some degree of viral replication is likely to occur despite
undetectable virus in blood.

Innate immune recognition may play a central role in
ongoing immune activation through PRR activation,
hence resulting in the production of a range of cytokines
and chemokines [1,120]. Furthermore, the inflam-
masome, which is responsible for maturation of pro-IL-1
and -18 to bioactive molecules [121], may also be acti-
vated during chronic HIV infection by HIV ligands or
danger molecules liberated from damaged tissue, since
IL-1 has been linked to HIV-associated dementia, and IL-
18 has been suggested to play an important role in the
development of progressive immunodeficiency and AIDS
[122]. Proinflammatory mediators in turn recruit and
activate more immune cells, some of which become
infected. In cells with established infection, cytokines,
mitogens, and PRR ligands activate further HIV replica-
tion via NF-κB, AP-1, and other transcription factors
(Figure 3). In this manner, increased viral load may con-
tinuously provide new PRR ligands. As illustrated in Fig-
ure 5, this may create a scenario, in which a self-
perpetuating circle could theoretically drive chronic
immune activation. The conceptual problem however
remains, that chronic immune activation and CD4+ T
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cell depletion may amplify each other, therefore making it
difficult, if not impossible, to establish which process
underlies and drives the other.

Antiviral and pathological effects of type I IFN
Even prior to the identification of HIV as a human retro-
virus causing AIDS, the study of human retroviruses was
tightly linked to IFN research [123,124]. One of the hall-
marks of a viral infection is the production of type I IFN
with antiviral activities [73], including increased degrada-
tion of RNA, arrested cell cycle progression, increased
antigen presentation, and induction of apoptosis of virus-
infected cells [73]. However, IFNs may also exert undesir-
able effects upon the host, most notably induction of
chronic immune activation [125,126] (Figure 5). There-
fore, much interest has focused on the role of IFN in HIV
pathogenesis [126]. Such IFN may be induced through
PRRs either by HIV-derived ligands or PAMPs from
opportunistic pathogens.

A pertinent question is whether IFN has any antiviral
activities during HIV infection. Several studies have dem-
onstrated that type I IFN does inhibit the replication of
HIV in vitro [127-129]. In addition, the recently identified
type III IFN (IFN-λ), which exerts antiviral activity
mainly at mucosal surfaces [130], has been reported to
impair HIV-1 replication in macrophages [131]. The anti-

viral potency of IFN may however be sensitive to the
milieu, as exemplified by a study demonstrating
decreased sensitivity of HIV to IFN during conditions of
efficient cell-to-cell spread of the virus [132]. Further-
more, type I IFN produced in lymphoid tissue of SIV-
infected macaques could not be demonstrated to inhibit
viral replication [133]. Studies in natural host of SIV
infection have provided further interesting results, since
divergent TLR7 and TLR9 signalling and differential type
I IFN production was found to distinguish pathogenic
and non-pathogenic HIV infections. In sooty mangabeys,
which are natural hosts of HIV, only modest immune
activation and immunopathology was observed despite
high levels of viraemia [47,134]. This has lead to the
hypothesis that an attenuated IFN response in sooty
mangabeys may enable them to avoid generalized
immune activation and therefore may also be desirable in
humans during HIV infection [134,135]. In support of
this idea, SIV infection triggers a rapid and strong IFN-α
response in vivo in both African green monkeys (natural
host which do not develop AIDS) and rhesus macaques,
but only in African green monkeys is this response effi-
ciently controlled, preventing immune activation and
immunodeficiency [48,136]. The view on type I IFN pro-
duction in natural hosts has recently been broadened,
since global genomic analysis and in vivo studies have

Figure 5 HIV and innate immune activation - impact on viral control and immunopathology. HIV infection results in constitutive activation of 
the innate immune system due to PAMPs derived from HIV, translocated bacteria, or opportunistic pathogens. This stimulates antiviral activities, but 
also potentially contributes to chronic immune activation. For a more detailed discussion, see text.
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revealed that acute SIV infection of sooty mangabeys
appears to be initially associated with a potent innate
immune response, including broad upregulation of IFN-
stimulated genes [137], but this immune activation is rap-
idly resolved [137,138]. These important findings
strongly suggest that the modest level of immune activa-
tion characteristic of chronic SIV infection is the result of
active negative regulatory mechanisms, rather than an
intrinsically attenuated innate immune response due to
an inability of pDCs to respond to SIV.

In humans, early studies reported a depletion of circu-
lating type I IFN-producing cells in HIV-infected AIDS
patients [139] and reduced IFN production from pDCs
and PBMCs [140]. However, more recent studies provid-
ing evidence of increased pDC frequencies and elevated
levels of IFN-α in T cell-rich areas of tonsils from acutely
infected and progressing patients, suggest that the
observed decrease in circulating pDCs in HIV-infected
patients may reflect pDC relocation to lymphoid tissue
rather than numerical depletion, supporting a role for
IFN in the pathogenesis [125].

Recently, some of the molecular mechanisms, by which
IFN-α may cause undesirable immune activation and
contribute to disease progression have been delineated.
For example, one study demonstrated IFN-α-mediated
upregulation of CCR5 on T cell progenitor cells, paradox-
ically expanding the tropism of CCR5 trophic HIV and
potentially accelerating disease progression [141]. Type I
IFN has also been demonstrated to suppress the Th17 cell
population [142], a phenomenon that has recently been
appreciated to play a role in HIV-induced immune dys-
regulation [143]. Moreover, TLR7-induced IFN-α has
been demonstrated to transform pDCs into killer pDCs,
resulting in CD4+ T cell apoptosis via the TRAIL path-
way [144,145]. A model has been proposed, in which type
I IFN-stimulated mechanisms induce death in both HIV-
infected and uninfected CD4+ T cells, the latter of which
bind HIV without becoming productively infected [126].
In this scenario, type I IFN is beneficial when it kills HIV-
infected cells but detrimental when it mediates immu-
nopathogenic apoptosis in uninfected T helper cells. The
programmed death (PD)-1 receptor and its ligand (PDL-
1) represent another target of IFN-mediated immunop-
athogenesis. Upregulation of PD-1 expression on HIV-
specific T cells is associated with T cell exhaustion and
disease progression [146,147], and upregulation of the
corresponding ligand PDL-1 has been reported in pDCs
upon stimulation with TLR agonists or type I IFN [148].

A more complex picture of the effects of IFN may rec-
oncile the contrasting results in the field. In particular it
is important to consider the effects of IFN in the context
of infection, including cell type, host, and stage of infec-
tion. With increasing insight into the interplay between
HIV and IFN, it has become evident that TLR7/8 activa-

tion and IFN production may exert opposing effects
depending on the stage of infection. Whereas antiviral
and antiproliferative effects may be beneficial during
acute infection at the expense of a certain degree of
immune activation, innate immune activation may be
deleterious later during chronic infection. The central
question here seems to be, whether the net effect of IFN
production is beneficial or harmful to the host, i.e
whether positive antiviral effects outweighs the negative
consequences of IFN-induced inflammation. In this
respect, IFN seems to be a double-edged sword for the
organism. Many questions remain to be answered before
the full picture of the role of IFN during HIV infection
has been clarified.

Role of DCs, Th17 cells, and regulatory T cells during HIV 
infection
DCs are of pivotal importance, not only because they are
among the earliest targets of HIV, but also due to their
ability to capture antigens and initiate T cell responses
[149]. Based on differences in function and expression of
surface markers, DCs can be divided into several sub-
types, among which myeloid DCs (mDC)s are profes-
sional antigen presenting cells present in blood, skin and
mucosal tissues, whereas pDCs are located in blood and
secondary lymphoid organs and play important roles in
innate immune responses to viruses through the produc-
tion of type I IFN [74]. Although mDCs have been
reported to play a role in stimulation of HIV-activated
adaptive immune responses, it is well documented that
mDCs from HIV-infected individuals have reduced
capacity to present antigens and stimulate T cells
[150,151]. An important discovery concerning the inter-
play between HIV and DCs was recently reported by
Piquet and associates, who described a mechanism by
which the HIV envelope protein activates mTOR and S6K
signalling, thereby negatively regulating autophagy in
DCs and increasing cell-associated HIV and HIV transfer
to CD4+ T cells [152]. HIV transmission may also be
influenced by TLR signalling. For instance, triggering of
TLR2 on DCs increases HIV transmission towards CD4+
T cells, whereas activation of TLR4 reduces virus trans-
mission due to secretion of type I IFNs [153]. Interest-
ingly, opposing roles for mDCs and pDCs in HIV
infection have been described [154]. Whereas mDCs
enhance HIV infection through capture and subsequent
transmission of the virus, pDCs in contrast inhibit HIV
replication in T cells through the antiviral activities of
IFN-α [154]. In addition, follicular DCs trap and maintain
large quantities of HIV during acute HIV infection, thus
establishing a viral reservoir in close proximity to suscep-
tible CD4+ T cells in lymphoid tissue [155].

Since pDCs are the major producers of type I IFN, it has
been suggested that abnormal migration and localization
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patterns of this important cell type may be a key in under-
standing the interplay between HIV and type IFN
[126,156]. Besides representing the origin of antiviral
type I IFN, pDCs are also one of the main sources of the
enzyme indoleamine (2,3)-dioxygenase (IDO), which is
involved in tryptophan catabolism and recently described
as an important mediator of negative regulation of T cell
responses due to tryptophan depletion and accumulation
of toxic metabolites. In HIV-infected patients, the rate of
tryptophan catabolism is increased and IDO expression
is elevated in lymphoid tissues, thereby potentially medi-
ating immunopathology [157].

Within the T cell compartment, much interest has been
focused on an altered balance between proinflammatory
Th17 cells and regulatory T cells (Treg)s in HIV infection.
Th17 cells are CD4+ cells that produce IL-17 and play a
central role in immune responses to extracellular bacteria
[158]. Initial studies in SIV-infected macaques revealed a
reduction in Th17 cells within a few weeks from infection
and a negative correlation between plasma virus levels
and frequency of Th17 cells [143]. This was followed by
Brenchley et al., who provided evidence that HIV is capa-
ble of infecting Th17 cells in vivo and also demonstrated
a significant loss of Th17 cells in the gastrointestinal tract
of HIV-infected patients [159]. These findings were con-
firmed in another study involving natural hosts to SIV, in
which pathogenic SIV infection was characterized by
selective depletion of Th17 cells and loss of the balance
between Th17 cells and Tregs [160]. Studying PBMCs
from HIV-infected and -uninfected individuals, it has
subsequently been demonstrated that HIV-infected
patients display a profound loss of Th17 cells as well as a
gradual decline in Tregs during disease progression [161].
These findings were extended by another study reporting
on complex perturbations of Th17 subsets during the
course of HIV disease [162]. Interestingly, the dysregu-
lated Th17 response during HIV infection may be
explained by the reported ability of type I IFN to nega-
tively regulate Th17 development [142]. Thus, sustained
expression of type I IFN induced either directly by the
virus via TLR7/8 or indirectly by opportunistic viral
infections is likely to suppress the Th17 response and
hence impair mucosal antibacterial defences and contrib-
ute to the chronic enteropathy in HIV infection.

Tregs is a small subpopulation of T cells involved in
preventing or inhibiting autoimmune and inflammatory
disorders [163], but much controversy exists regarding
the role of Tregs in HIV pathogenesis. One study demon-
strated expansion of Tregs during HIV infection posi-
tively correlating with CD4+ T cell activation and rapid
disease progression, indicating a detrimental role of Tregs
in the immune control of HIV infection [164]. At the
mechanistic level this may be explained by Tregs being
major producers of transforming growth factor-β, which

promotes tissue fibrosis and limits immune reconstitu-
tion [43]. In direct contrast however, several previous
studies have reported decreased levels of Tregs in HIV-
infected individuals [165], and in one study, depletion of
Tregs in HIV infection was found to be associated with
immune activation [166]. Collectively, relatively little is
known about the precise role of Th17 cells and Tregs in
HIV pathogenesis and future studies should shed light on
this important issue.

Innate immune evasion strategies employed by HIV
HIV recognition by PRRs seems to be rather limited,
which may indicate that HIV is particularly successful in
preventing intimate encounter with the innate immune
system. Accumulating evidence suggest that this virus
actively avoids recognition by PRRs in order to prevent
activation of a proinflammatory and antiviral responses.
On a theoretical basis, it can be hypothesized that HIV is
in possession of specific strategies to shield or modify its
PAMPs within infected cells, for instance by hiding its
RNA/DNA in the viral capsid throughout most of the
viral life cycle, or by altering its nucleic acids in order not
to appear foreign to the host. Below, some of the strate-
gies, by which HIV evades innate immune activation, are
described.

Despite the importance of NF-κB for transcription of
the viral genome, it may be advantageous for HIV to pre-
vent NF-κB activation in certain situations. In a study
addressing the mechanisms of cellular innate immune
responses, HIV infection of primary monocyte-derived
macrophages did not activate NF-κB [167], indicating
that in certain cell types, and in macrophages in particu-
lar, HIV inhibits innate immune activation [109]. One
report has suggested that TLR4 signalling pathways may
be altered during chronic HIV infection, since TLR4-
driven NF-κB activation failed to stimulate virus replica-
tion, implying that NF-κB alone is insufficient to activate
the viral LTR [168]. The mechanism may involve Nef-
mediated activation of MAPK phosphatese 1, which neg-
atively regulates TLR4-dependent signalling [169]. In
addition, HIV infection of a human myeloid cell line has
been found to impair MAPK activation and NF-κB bind-
ing to the IL-12 promoter [170]. Likewise exposure of
monocyte-derived DCs to recombinant gp120 abrogates
LPS-induced IL-12 production [171]. Finally, studies in
transgenic Drosophila models have contributed with data
showing that vpu inhibits TLR-induced degradation of
the IκB homologue Cactus required for NF-κB activation
[172], and that Nef interferes with activation of the NF-
κB homologue Relish [173].

Evidence is also accumulating with regards to HIV
interference with the IFN system. First, direct interaction
of HIV gp120 with pDCs inhibits TLR9-mediated
responses, including pDC activation, IFN-α secretion,
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and cytolytic activity of NK cells [174]. Within infected
cells, HIV is able to interfere with signal transduction
pathways as demonstrated by Doehle et al. who observed
depletion of IRF3 in HIV-infected CD4+ T cells [175].
IRF3-depletion was dependent on a productive HIV rep-
lication cycle and caused disruption of IRF3-mediated
signalling pathways, including TLRs and RLRs, in this
manner promoting host cell permissiveness for infection
with both HIV and opportunistic infections [175]. As to
the possible mechanism, HIV accessory proteins Vpr and
Vif have been demonstrated to induce IRF-3 degradation
[175]. Intriguingly, by specifically targeting IRF3 rather
than a TLR signalling molecule located further upstream,
HIV is capable of attenuating IRF-dependent immunity
while preserving pathways leading to NF-κB activation.
The idea that HIV actively suppresses innate immune
responses is further supported by studies in primary
macrophages, in which HIV infection resulted in a strik-
ing absence of IRF3 or IFN gene expression, although the
mechanism remains to be determined, since the phenom-
enon was found to be independent on viral entry, HIV
accessory proteins, and reverse transcription [167].

In addition to interfering with the production of IFN,
HIV also counteracts the action of IFNs or IFN-inducible
proteins. Mammalian cells harbour intrinsic cell-autono-
mous activities, which can act to suppress viral replica-
tion and collectively are referred to as host restriction
factors. These host restriction factors are naturally con-
nected to the innate immune response by virtue of their
IFN inducibility [176]. Interestingly, HIV accessory pro-
teins are intimately counteracting these antiviral activities
to allow viral replication and release [176]. At present,
major classes of host restriction factors comprise the
APOBEC proteins, TRIM5α, and tetherin, but new pro-
teins with as yet unknown functions are being identified
[176]. APOBEC proteins, and in particular APOBEC3G/
F, are cytidine deaminases, identified in non-permissive
cells, that induce cytidine to uridine editing of negative-
sense reverse transcripts resulting in guanosine to ade-
nosine hypermutations in plus-strand cDNA [176-178].
The result of APOBEC function is hypermutation, repli-
cation defects, diminished reverse transcription, and ulti-
mately inhibition of viral replication. However, these
antiviral mechanisms are counteracted by the viral pro-
tein vif, which inhibits APOBEC function by preventing
APOBEC packaging in progeny virions by targeting
APOBEC3G for proteasomal degradation [179].

TRIM5α belongs to a large family of proteins, several of
which are involved in control of viral infections [176].
The action of TRIM5α appears to be dependent upon
interaction with cellular cyclophilin A [180]. Subse-
quently, TRIM5α binds to incoming retroviruses and rap-
idly recruits them to the proteasome for degradation
before significant viral DNA synthesis can occur [181].

TRIM5α mediates early restriction in non-human pri-
mates but does not have a significant impact on HIV rep-
lication in humans [182]. Presently, it is not known
whether HIV counteracts the activity of TRIM5α.

More recently, an IFN-induced restriction factor that
prevents retrovirus release from the plasma membrane
was identified and named tetherin [183,184]. Tetherin is a
glycosylated membrane protein, which results in accu-
mulation of virion particles at the membrane and failure
of these particles to be released. The protein exerts antivi-
ral activity by retaining nascent virions on the plasma
membrane hence preventing budding of progeny virus
particles [183,184]. Tetherin function is counteracted by
the HIV membrane protein vpu, thereby securing release
of viral progeny [183]. It is not yet clear, exactly how teth-
erin prevents virus release, but it has been hypothesized
that it may form connections between lipid rafts on
plasma and viral membranes, thereby physically prevent-
ing virus egress [176].

Genetic polymorphisms influencing HIV infection
An alternative way to gain understanding of the role of
innate immune components in the antiviral response and
immune activation during HIV infection is through epi-
demiological studies of genetic polymorphisms in human
populations. One of the first studies addressing this ques-
tion was the description of almost complete protection
from HIV infection conferred by homozygosity of a 32
base deletion in CCR5 [185]. Moreover, certain HLA
alleles are associated with control of virus replication and
slower progression to AIDS, although the underlying
mechanism has not been elucidated [186]. Likewise, the
mechanism behind the recently demonstrated associa-
tion between polymorphisms in the inflammasome com-
ponent NLRP3 and susceptibility to HIV infection
remain unexplained but adds to other studies linking
inflammasome activation and IL-1/IL-18 production
with HIV pathogenesis [122,187].

In the case of TLRs, somewhat more insight into poly-
morphisms and HIV-induced inflammation exists. One
study focused on HAART naïve HIV positive patients
from the Swiss HIV cohort, in which Bochud and co-
workers reported an association between two single
nucleotide polymorphisms (SNP)s in TLR9 and rapid
HIV progression as measured by CD4+ T cell decline
[188], although the investigators did not evaluate the pre-
cise effect of these SNPs on TLR9 signalling. In contrast,
a different TLR9 polymorphism has been linked to slow
disease progression and found less frequently among
individuals with high viral set point [189]. In addition, a
frequent functional TLR7 polymorphism resulting in sig-
nificantly less IFN-α production has been associated with
accelerated disease progression and may also be associ-
ated with increased HIV susceptibility, since this muta-
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tion was present more frequently in patients than in
controls [190]. The importance of TLR7 signalling was
further supported by a recent article demonstrating sex
differences in the TLR7-mediated response of pDCs to
HIV [191]. Interestingly, the authors demonstrated that
pDCs from women produce markedly more IFN-α in
response to HIV-derived TLR7/8 ligands than pDCs from
men, resulting in a higher degree of immune activation in
women for a given viral load. At the genetic level, this
may be explained by the fact that TLR7 is X-linked and
therefore women may have higher expression of this
receptor due to unbalanced X-inactivation. Clinically, the
more robust IFN-α response in women is translated into
women exhibiting lower viral loads early in infection but
progressing faster to AIDS for any given viral load [192].
Taken together, these studies support the idea of type I
IFN having dual functions, including antiviral activities
and immune activation.

Concluding remarks and perspectives
The interactions between HIV and the innate immune
system have only recently caught the attention of HIV
researchers, and as a consequence remain poorly
described. The present picture is that, unlike most other
pathogens, innate immune recognition of this virus may
not be very elaborate. However, it is still not very well
understood, how HIV evades innate immune recognition.
This interesting issue points back to the central questions
in HIV pathogenesis, as to why the host is unable to rec-
ognize and respond adequately to acute HIV infection to
prevent the virus from establishing latent viral reservoirs
and thereby lifelong chronic infection. Recent insight into
this subject indicates that some of the answers should
indeed be sought in the interactions between HIV and
the innate immune system [193]. The failing early recog-
nition and control of infection by the innate immune sys-
tem is likely to be of major importance in the
pathogenesis of acute HIV infection, allowing establish-
ment of infection and profound damage to innate as well
as adaptive immune activities, not least in the GALT.
Moreover, the central role played by chronic immune
activation is being increasingly appreciated, and innate
immune activation may play a pivotal role at this stage of
infection. It seems reasonable to assume that PRR-trig-
gered inflammation and type I IFN production induced
by HIV or opportunistic pathogens represent ample pos-
sibility for initiating and perpetuating this disadvanta-
geous pathological immune activation leading to
progressive immunodeficiency. It may be hypothesized
that HIV evades innate immune recognition at early
stages to establish chronic infection but allows some
degree of innate PRR activation at later stages, where
immune activation plays a detrimental role for the host.
Thus, the mechanisms of innate immune activation may

be different in acute versus chronic infection, and eluci-
dating either one may prove to be highly relevant.

As described is this review, surprisingly few innate
immune receptors have been implicated in HIV recogni-
tion. Eventually, this may be explained by the fact that
HIV PAMPs and their respective PRRs still await identifi-
cation. Alternatively, understanding the mechanisms by
which HIV avoids immune recognition by PRRs may pro-
vide insight into pivotal aspects of HIV virology and pos-
sibly identify molecular targets for therapeutical
interference with the viral life cycle. Clearly, the search
for innate immune receptors for HIV is still at an early
stage, and this interesting subject is likely to lead to
answers to central questions in HIV immunopathogene-
sis. Therefore, an integration of knowledge on the inter-
actions between HIV and both innate and adaptive
immunity is a prerequisite for gaining a more profound
understanding of HIV immunopathogenesis, and ulti-
mately for applying this knowledge into the development
of novel treatment and vaccination strategies to clinical
benefit for patients.
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