# Retrovirology



Poster presentation

**Open Access** 

## P19-55 LB. Effective control of a pathogenic SIVmac239 challenge by a novel heterologous mucosal prime and intramuscular boost vaccine strategy

Z Chen\*1, C Sun2, Y Du1, L Chen2 and L Zhang3

Address: <sup>1</sup>AIDS Institute, The University of Hong Kong LKS Faculty of Medicine, Hong Kong, PR China, <sup>2</sup>Guangzhou Institute of Biomedicine and Health, Chinese Academy of Scie, Guanzhou, Guangdong, PR China and <sup>3</sup>Comprehensive AIDS Research Center, Tsinghua University; AIDS Research, Beijing, PR China

\* Corresponding author

from AIDS Vaccine 2009 Paris, France. 19-22 October 2009

Published: 22 October 2009

Retrovirology 2009, 6(Suppl 3):P419 doi:10.1186/1742-4690-6-S3-P419

This abstract is available from: http://www.retrovirology.com/content/6/S3/P419

© 2009 Chen et al: licensee BioMed Central Ltd.

### **Background**

The failure of a recombinant adenovirus serotype 5 (rAd5) vector-based vaccine for HIV-1 in a phase 2b efficacy study in humans calls for efforts to develop novel vaccination strategies.

### **Methods**

In this study, we developed a recombinant replication-competent modified vaccinia Tiantan (MVTT), namely rMVTT<sub>SIVgpe</sub>, as a mucosal vaccine expressing SIVmac Gag, Pol and Env. The immunogenicity and efficacy of rMVTT<sub>SIVgpe</sub> was studied in combination with an rAd5-based vaccine rAd5<sub>SIVgpe</sub> in Chinese macaques (Macaca mulatta) without the protective MHC class I allele Mamu-A\*01. rMVTT<sub>SIVgpe</sub> was given through intranasal and oral inoculations whereas rAd5<sub>SIVgpe</sub> was given through intramuscular injection. Four macaques in each of the four study groups received the following prime and boost vaccinations: rMVTT<sub>SIVgpe</sub>/rAd5<sub>SIVgpe</sub>; rMVTT<sub>SIVgpe</sub>/rAd5<sub>SIVgpe</sub>; twice; rAd5<sub>SIVgpe</sub>/rAd5<sub>SIVgpe</sub>; and placebo controls, respectively.

#### Results

We found that the heterologous rMVIT<sub>SIVgpe</sub>/rAd5<sub>SIVgpe</sub> regimen elicited cellular immune responses with enhanced magnitude, breadth, sustainability, and polyfunctionality when compared with the homologous rAd5<sub>SIVgpe</sub> regimen. Higher levels of neutralizing antibody (Nab) responses were also induced by the rMVIT<sub>SIVgpe</sub>/

rAd5<sub>SIVgpe</sub> regimen. These Nab responses, however, neutralized SIVmac1A11 but not SIVmac239. The additional round of rMVTT<sub>SIVgpe</sub>/rAd5<sub>SIVgpe</sub> vaccinations did not enhance the immune responses further. After intrarectal challenge with a pathogenic and Chinese macaqueadapted SIVmac239 (5 × 10<sup>5</sup> TCID<sub>50</sub> per animal), one of four monkeys vaccinated with the rMVTT<sub>SIVgpe</sub>/rAd5<sub>SIVgpe</sub> regimen was fully protected whereas the rest showed an average of 1.96 log and 2.22 log reduction of peak and setpoint (6 weeks post challenge) viral loads as compared with control animals.

### **Conclusion**

These data demonstrate that the rMVIT<sub>SIVgpe</sub>/rAd5<sub>SIVgpe</sub> regimen induced durable partial immune control of a pathogenic, neutralization-resistant SIVmac239 challenge. Our findings have critical implications for further optimization of vaccination strategies against HIV-1 by engaging the mucosal immune system.