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Abstract
Retroviruses and LTR-retrotransposons are widespread in all living organisms and, in some
instances such as for HIV, can be a serious threat to the human health. The retroviral nucleocapsid
is the inner structure of the virus where several hundred nucleocapsid protein (NC) molecules
coat the dimeric, genomic RNA. During the past twenty years, NC was found to play multiple roles
in the viral life cycle (Fig. 1), notably during the copying of the genomic RNA into the proviral DNA
by viral reverse transcriptase and integrase, and is therefore considered to be a prime target for
anti-HIV therapy. The 6th NC symposium was held in the beautiful city of Amsterdam, the
Netherlands, on the 20th and 21st of September 2007. All aspects of NC biology, from structure to
function and to anti-HIV vaccination, were covered during this meeting.

Overview
In 1998, Larry O. Arthur and Louis E. Henderson of NCI-
Frederick decided that the field of nucleocapsid (NC)
research was at a stage in which an NC symposium would
be very useful. There was a general realization that NC was
central to many processes in retrovirus replication and the
highly conserved NC Zn2+-fingers were necessary for
genome packaging and early infection processes (Fig. 1).
Drs Arthur and Henderson hosted the first symposium at
NCI-Frederick, MD, USA, (June 1998) and termed it Inter-
national Retroviral Nucleocapsid Symposium (IRNCS) to
be sure to include all the significant work being conducted
on NC throughout the world. A series of meetings have
been held since the inception of the initial symposium,
namely the 2nd IRNCS in September 1999 (J-L Darlix, ENS

Lyon, France), 3rd IRNCS in October 2001 (L. O. Arthur,
Loews Annapolis, MD, USA), 4th IRNCS in September
2003 (Y. Mély, Faculté de Pharmacie, Strasbourg, France),
and 5th IRNCS in September 2005 (L. Kleiman, McGill
University, Montreal, Quebec, Canada). The 6th IRNCS
was held in Amsterdam to discuss the most recent
advances on the functions of the NC protein in the synthe-
sis, maintenance and integration of the proviral DNA, and
in virus particle assembly. All these topics have been cov-
ered at the meeting to gain a better understanding of the
multifunctional nature of NC (Fig. 1). Moreover, recent
findings on other viral and cellular proteins playing a role
in the viral life cycle that are either associated with NC, or
resemble it in structure or function, such as the antiviral
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APOBEC3G protein, have been discussed at the confer-
ence.

NC structure and its relationship to function
This first session on NC structure-function relationships
discussed the basis of NC recognition of the genomic RNA
and its potent nucleic acid chaperoning activities, discov-
ered in the late 80's [1-6] (for reviews see [7-9]). Using sin-
gle DNA molecules that are stretched and melted by force,
M. Williams (Northeastern University, Boston, MA, USA)
and collaborators examined the influence of HIV and
HTLV-1 NC on double stranded DNA destabilization and
reannealing. It was found that HIV NC behaved as a pure
chaperone while HTLV-1 NC was more akin a single
stranded DNA binding protein [10-12] in agreement with
the recent findings of K. Musier-Forsyth (OSU, Columbus,

OH, USA; see below). Based on standard assays to moni-
tor the NC nucleic acid binding, aggregation and anneal-
ing activities, K. Musier-Forsyth and collaborators showed
that the N-terminal 35 residues of HIV-1 NC were neces-
sary and sufficient for chaperone function in vitro. Inter-
estingly, the HIV-1 Gag polyprotein was also shown to be
a nucleic acid chaperone protein, a property that is likely
to facilitate genome dimerization and tRNA primer
annealing during virion assembly. Results on different ret-
roviral NC proteins showed that they exhibit significant
differences in their overall chaperone activity, decreasing
in the order HIV-1 ~RSV > MLV >> HTLV-1. Both K Mus-
ier-Forsyth and M Williams found that HTLV-1 NC's poor
chaperone activity was caused by its acidic C-terminal
domain. Using fluorescence-based techniques and the
HIV-1 TAR stem-loop (SL) structure, Y Mély and his col-

NC protein is required for many replication stepsFigure 1
NC protein is required for many replication steps. Mature NC molecules coat the genomic RNA, in a dimeric form, in 
the viral particle and thus exert an essential function in virion structure. As illustrated in this cartoon – courtesy of Dr. Lou 
Henderson (NCI-Frederick, MD, USA) – NC protein chaperones conversion of the genomic RNA into the viral DNA by the 
RT enzyme. NC is also involved in the maintenance of the newly made viral DNA and in its integration into the host genome to 
form the provirus. In the course of virus assembly, the NC domain of Gag pilots genomic RNA selection which in turn acts as a 
scaffold for Gag oligomerization and assembly. As highlighted in the top circle, the CCHC zinc finger is central to all the NC-
mediated functions. Thus, the retroviral zinc finger motif is viewed as a major target in anti-HIV drug development.
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leagues (Faculté de Pharmacie, Strasbourg, France)
showed that the HIV-1 NC structural determinants,
formed by the hydrophobic plateau at the top of the two
zinc fingers and the flanking basic residues, are essential
for its chaperoning function [13-15]. Similar structural
determinants were also found to be essential for the chap-
eroning function of MoMLV NC that contains a unique
zinc finger that is also flanked by basic residues [16].

Retroviral RNA structures and functions, and 
RNA-NC interactions
Several retroviral RNA structures, such as the 5' untrans-
lated region (5'UTR) or leader, are the subject of intense
interest because they are involved in the early and late
phases of virus replication via multiple RNA-protein inter-
actions, notably with NC. During retrovirus assembly NC,
as the C-terminal domain of Gag, plays an essential role
in specifically recruiting two copies of the full length
genomic RNA and causing its dimerization. Deciphering
the 3D structure of the Psi RNA packaging signal in the the
5' UTR is key to our understanding of NC-genomic RNA
interactions. To that end the group of M. Summers
(UMBC, Baltimore, MD, USA) is investing much effort to
establish the first high resolution model of the 100 nucle-
otide core encapsidation signal (ΨCES) of MoMuLV, which
comprises stem loops (SL) B-D. Through a combination
of nucleotide specific, segmental labeling, and sub-frag-
ment analysis, they have obtained high quality and high
resolution NMR (nuclear magnetic resonance) spectra
indicative of dimer formation. In particular A289 and
A293, which are part of the hairpin loop in SLB, give rise
to signature peaks and nuclear Overhauser effect (NOE)
patterns upon RNA dimer formation. Residues A330 and
A364, which are part of SLC and SLD, respectively, give
rise to downfield peaks diagnostic of kissing interactions
between SLC and SLD. Additionally, using a novel trans-
verse relaxation-optimized spectroscopy (TROSY) based
heteronuclear single quantum correlation (HSQC) pulse
sequence, residual dipolar couplings have been measured
for isolated B-duplexes and this method is currently being
applied to the 198-nucleotide dimeric (ΨCES) site. This
work will lead to the first high resolution model of the
dimeric ΨCES site. This group has also analysed interac-
tions between the NC proteins and RNA packaging signals
of other retroviruses, including MoMLV and Rous Sar-
coma Virus (RSV). It was found that the native MoMLV Ψ
allowed an average of 15 NCs to bind while mutant-Ψ,
which can not form dimer, allowed only an average of two
NC molecules to bind. These results show that exposure of
NC binding sites by Ψ dimerization occurs in the entire Ψ-
site, by which NC recognizes, selectively dimerizes, and
packages its genomic RNA into the virion [17-19]. RSV is
unusual in that its genome can be efficiently packaged by
a relatively short, 82-nucleotide segment of the 5'-UTR
called muPsi. Upon NC binding, muPsi adopts a stable

secondary structure that consists of three stem loops (SL-
A, SL-B and SL-C) and an 8-base pair stem (O3), (see Fig-
ure 2) [20].

In the forefront of developing new technologies for high-
throughput and accurate RNA secondary structure analy-
sis, K Weeks (UNC Chapel Hill, NC, USA) reported the
first generation of these technologies which involves
Selective 2'-Hydroxyl Acylation analyzed by Primer Exten-
sion (called SHAPE) [21-24]. Because SHAPE makes it
possible to obtain RNA secondary and tertiary structure
information for hundreds or thousands of nucleotides
over a few days or weeks, it is now becoming possible to
tackle several ambitious problems involving the role of
RNA structure in retroviral biology. Because of its com-
pleteness, high-throughput SHAPE analysis provides
information sufficient to discriminate between otherwise
contradictory models for HIV-1 genome structure. SHAPE
analysis, performed in virio, allowed a series of previously
unrecognized specific NC binding sites to be identified. In
virio analysis also facilitated detailed characterizations of
both the specific RNA binding and the contrasting duplex

Structure of RSV NCp12 bound to the muPsi packaging signalFigure 2
Structure of RSV NCp12 bound to the muPsi packag-
ing signal. Structure of the Rous sarcoma virus nucleocapsid 
protein NCp12 bound to the cognate muPsi RNA packaging 
signal. The backbone of NC is shown as a ribbon (slate) and 
the zinc, cysteine and histidine groups are colored silver, yel-
low and blue, respectively. Coloring of secondary structural 
elements of the muPsi RNA are: SLA, purple; SLB, green; 
SLC, brown; O3, red; linker segments, orange (20).
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destabilizing activity of NC protein. Further application of
high-throughput SHAPE has significant potential to help
establish the underlying connections between RNA struc-
ture and transcriptional and translational regulation and
with other RNA-based processes in retroviral infectivity.

K. Purzycka and colleagues (Polish Academy of Sciences,
Poznan, Poland) pursued their structural and dynamics
analyses of the HIV-2 5' UTR RNA. They presented a new
structure model for the DIS (dimer initiation site) of HIV-
2 based on the high-throughput prediction of 3D RNA
structures at low resolution [25,26] and molecular
dynamic simulations [27].

Using functional assays A Das, M. Vrolijk and colleagues
(B Berkhout, Amsterdam, the Netherlands) reinvestigated
the role of the highly conserved TAR SL structure in HIV-1
replication [28]. They concluded that TAR has no essential
function in HIV-1 biology other than to accommodate
Tat-mediated activation of transcription [29]. But non-
basepaired nucleotides at the 5' end of the 5' UTR can
have adverse effects on its structure and functions in RNA
dimerization and packaging mediated by the packaging
signal (Psi or Ψ). They concluded that HIV-1 requires a
stable SL structure at the start of the viral transcripts to
avoid misfolding of the leader RNA so that it can fulfill all
its functions.

A. Lever and colleagues (University of Cambridge, UK)
have long since been interested in the mechanism of HIV-
1 genomic RNA selection and packaging during Gag
assembly, that relies on the 5' Ψ packaging signal formed
of SL structures [30]. The tip of SL1 is a dimer linkage site
that has a purine-rich bulge proximal to it. This and a
proximal bulge in SL3 appear to be metastable, probably
facilitating RNA unwinding when Gag protein binds. They
have identified another purine rich bulge in the SL1 stem
loop which binds to the regulatory Rev protein. Disrupt-
ing Rev binding impairs virus replication. Some of the var-
iant models in the structure of the Ψ RNA reflect the fact
that the RNA undergoes significant conformational
changes during its trafficking through the cell to the viral
particle [31].

Role of NC in reverse transcription and 
recombination
NC is an obligatory constituent of the viral replication
machinery whereby the genomic RNA is converted into
the full-length double-stranded viral DNA by RT. This
appears to be mediated by tight interactions between NC
molecules, the genomic RNA that is in a dimeric form and
RT. In a long standing effort to understand the role of NC
in viral DNA synthesis, R Gorelick et al. (NCI-Frederick,
MD, USA) [4] discussed their investigation of two HIV NC
zinc-finger mutants, H23C and H44C, which exhibit

severe replication defects [32]. Analyses of early infection
revealed that these mutations cause major defects in inte-
gration, but not reverse transcription: curiously, the rate of
initiation and partial completion of reverse transcription
was faster than wild-type [33]. Examination of virus parti-
cles prior to infection revealed that both mutant virions
contain significantly more viral DNA than wild-type par-
ticles. Thus these NC mutations cause premature reverse
transcription, and this may provide a partial explanation
for their replication defects.

J. Mak and colleagues (Macfarlane Burnet Centre, Victoria,
Australia) investigated the rate of HIV-1 recombination in
cell cultures by monitoring sequence-tag redistribution in
the gag and pol genes. They found that rates of recombina-
tion were high, corresponding to about 6–7 per cycle in T
cells and up to 12–14 in monocyte-derived macrophages.

In addition to the genomic RNA, HIV-1 virions can pack-
age a substantial amount of spliced viral RNAs, but this
seems to be independent of the NC zinc fingers, as
reported by M. Mougel et al. (CNRS, Montpellier, France).
Reverse transcription of these spliced RNAs takes place as
efficiently as that of the genomic RNA, but poorly
responds to the chain terminator antiviral drug AZT. Thus,
AZT treatment might well increase the representativeness
of spliced HIV-1 DNAs [34,35].

All viral RNA, the full length and the spliced forms, con-
tain the TAR sequence at the 5' and 3' ends. NC can induce
TAR dimerization as reported by E. Andersen et al (Uni-
versity of Aarhus, Denmark) [36]. According to these
authors, TAR dimerization is important for the obligatory
first strand transfer during cDNA synthesis and this TAR
dimer has a parallel orientation depending, at least in
part, on the dimerization initiation site (DIS). Comple-
tion of viral DNA synthesis necessitates the second strand
transfer which takes place at the level of the PBS sequence.
N Morellet et al (CNRS Paris, France) investigated this
strand transfer in HIV-1 by means of NMR and fluores-
cence studies. They found that NC, notably the zinc fin-
gers, chaperones this reaction by modifying the
conformation of the loops of both PBS (+) and (-)
sequences, promoting the formation of a kissing complex
and the subsequent annealing of the PBS (+) and (-)
sequences.

Gag assembly and the role of NC
The genomic RNA codes for the Gag and Gag-Pol polypro-
tein precursors which are synthesized by the host transla-
tion machinery. Several characteristics of the HIV-1 5'
UTR, such as the 5' terminal TAR hairpin, its length and
overall secondary structure, are likely to interfere with
ribosomal scanning and suggest that translation is initi-
ated by internal entry of ribosomes (IRES) [37,38]. To
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gain further insight in the mechanism of translation initi-
ation on the HIV-1 5'UTR, T. Abbink, K. Arts and B.
Berkhout (Amsterdam, the Netherlands) introduced
upstream AUGs (uAUG) at different positions in the
5'UTR and determined the effect on the expression of a
downstream reporter gene under control of the gag AUG.
If ribosomal scanning initiates upstream of the uAUG,
translation will start on the uAUG, thereby inhibiting the
expression of the downstream reporter gene. This allowed
determination of the window of ribosomal scanning on
the HIV-1 5' UTR. Their studies show that the inserted
uAUG inhibited reporter gene expression at every position
in the 5'UTR, thus indicating that the entire 5' UTR is
scanned. In addition, they show that reinitiation of trans-
lation on the HIV-1 5'UTR is quite efficient if the upstream
open reading frame is short (less than 20 bases). This find-
ing is in agreement with previous findings [39] but differ-
ent from others showing that HIV Gag translation
operates by an IRES mechanism [40].

HIV-1 Gag polyprotein contains all of the molecular
determinants required for its intracellular trafficking, and
its assembly and budding in the form of virus-like parti-
cles (VLPs). The role of NC in Gag assembly has been
studied for almost twenty years [1-5]. A. Rein and his col-
leagues (NCI-Frederick, MD, USA) have characterized the
assembly properties of chimeric proteins in which the NC
(and p1 and p6) domain of HIV-1 Gag is replaced by
dimerizing or trimerizing leucine- or isoleucine-zipper
motifs, respectively. These proteins assemble in mamma-
lian cells into virus-like particles (VLPs) with morphology
nearly, but not quite, identical to those formed by wild-
type Gag. These VLPs contain at least 10-fold less RNA
than wild-type VLPs. Their buoyant density is somewhat
lower than that of wild-type VLPs; this difference is con-
sistent with the hypothesis that the packing of the chi-
meric proteins in these VLPs is the same as that of wild-
type Gag. The chimeric proteins co-assemble efficiently
with wild-type Gag; thus the function of RNA in normal
VLP assembly is not to act as a "string" upon which Gag
protein molecules are aligned. The chimeric proteins were
expressed in bacteria. They did not assemble spontane-
ously, but could be induced to assemble into VLPs by
addition of either RNA or inositol hexakisphosphate.

D. Muriaux, J.L. Darlix and collaborators (INSERM Lyon,
France) have been studying the trafficking and the assem-
bly of HIV-1 in human cells. Viral and cellular factors are
involved in these processes, in particular the NC domain
of Gag, the genomic RNA, and cellular proteins of the
endocytic pathways, and membrane microdomains [41].
They found that HIV-1 can bud into intracellular vesicles
in addition to the plasma membrane of T cells [42]. The
NC zinc fingers of HIV-1 Gag were found to be critical
determinants of Gag assembly and localisation in endo-

somes [43]. Furthermore, they reported the involvement
of a tetraspanin web in T-lymphoblastic cells that serves as
a platform for HIV-1 assembly (Grigorov B., V. Attuil-
Audenis, F. Perugi, M. Nedelec, S. Watson, J.-L. Darlix, C.
Pique, H. Conjeaud & D. Muriaux: IMPLICATIONS OF
TETRASPANINS IN HIV-1 FORMATION in infected T-
lymphoblastic cells., submitted).

NC protein can exist in different forms in newly made
mature HIV-1 virions, namely NCp15 (NC-SP2-p6),
NCp9 (NCp7-SP2) and fully processed NCp7. J.A. Tho-
mas (NCI-Frederick, MD, USA) presented work of collab-
orators where they investigated the requirement for
proteolytic maturation of NC by mutating the protease
cleavage sites necessary for the production of mature
NCp9 (NCp7-SP2) or NCp7. Interestingly, viruses tai-
lored to make either NCp9 + p6 or NCp7 + SP2 + p6 were
fully infectious and could replicate in H9 cells. In contrast,
viruses that made either NCp15 or NCp7 + p1-p6 were
replication defective. Because the replication block was
principally manifested by a severe reduction in integra-
tion, it is likely that NCp9 has a role in the integration
process [44] and has also been shown to facilitate in vitro
concerted integration even better than NCp7 [45].

Cellular and viral proteins associated with NC
Human APOBEC3G (hA3G) has been identified as an
anti-HIV-1 host factor acting by deaminating the newly
made cDNA. S. Cen and collaborators (Lady Davis Inst.,
Montreal, Canada) reported that hA3G inhibits HIV-1
reverse transcription independently of its editing activity.
A reduction of 55% in early viral DNA synthesis by hA3G
is correlated with a similar decrease in the tRNALys3 prim-
ing, which requires a hA3G/NCp7 interaction. A greater
reduction of ~95% in late DNA synthesis results from the
hA3G-induced inhibition of DNA strand transfer, which
is correlated with its ability to prevent RNaseH degrada-
tion of the template RNA [46-48].

Y. Iwatani et al (NIH, Bethesda, MD, USA) have inde-
pendently investigated possible effects of hA3G on RT and
NC function in vitro. NC-mediated annealing and RNase
H cleavage were not affected, but A3G inhibited all RT-cat-
alyzed elongation reactions, independent of hA3G's cata-
lytic activity. These data taken together with
complementary biophysical analyses led to the conclu-
sion that deaminase-independent inhibition of reverse
transcription is determined by critical differences in the
nucleic acid binding properties of NC, A3G, and RT
[49,51].

In an attempt to understand the possible interactions
between HIV-1 NC and hA3G, P Henry et al (NCI, Freder-
ick, MD, USA) expressed hA3G in insect cells and purified
it using metal affinity, ion exchange and size exclusion
Page 5 of 9
(page number not for citation purposes)



Retrovirology 2008, 5:21 http://www.retrovirology.com/content/5/1/21
chromatography. Immunoprecipitation of purified NC
with purified A3G bound to magnetic beads in the pres-
ence and absence of RNA revealed that A3G pulls down
NC more efficiently in the presence of RNA, with decreas-
ing efficiency as excess RNA was added to dilute simulta-
neous binding. The effect of NC on A3G enzymatic
activity was examined by adding purified NC to their scin-
tillation proximity assay mixture at a ratio of 1 NC mole-
cule per 2, 4 or 8 nucleotides of substrate DNA, either
before or with the addition of A3G [50]. In all cases, NC
was unable to reduce cytidine deamination of the sub-
strate DNA. These data indicate that interactions between
NC and A3G are indirect and mediated by an RNA bridge.
In addition, the results suggest that concentrations of NC
that are likely to be present in the reverse transcription
complex do not interfere with A3G's cytidine deaminase
activity.

J.C. Paillart (CNRS, Strasbourg, France) reported data on
a putative new role of the viral factor Vif. Vif is a small
basic protein essential to viral fitness and pathogenicity.
Marquet, Paillart and coworkers recently showed that Vif
preferentially binds to the 5' UTR of the HIV-1 genomic
RNA [52] and to corresponding DNA sequences [53].
Now they report that Vif stimulates the early steps of
reverse transcription (tRNALys3 annealing, strong-stop
DNA synthesis, first strand transfer) and the formation of
loose RNA dimers, suggesting that Vif is an RNA chaper-
one [54] However, Vif is able to inhibit NC-induced reac-
tions such as hybridization of tRNALys3 and formation of
tight RNA dimers while it collaborates with NC to increase
RT processivity. Thus, Vif might negatively regulate NC-
assisted maturation of the RNA dimer and early steps of
reverse transcription during assembly, but these inhibi-
tory effects would be relieved after viral budding, due to
the preferential exclusion of Vif from virions.

Antivirals and NC vaccines
In this session new anti-viral drugs targeting HIV-1 pro-
tease and NC were described. To combat the widespread
development of HIV-1 protease resistance in AIDS
patients, novel protease inhibitors (PI) with high potency
against the known PI-resistant mutants have been devel-
oped. M. Nijhuis and collaborators (University of Utrecht,
the Netherlands) investigated whether HIV-1 could yet
again find a way to become less susceptible to these novel
drugs [55]. Ex vivo selection experiments have shown that
HIV-1 indeed can use an alternative mechanism by the
selection of mutations in the NC/SP2 cleavage site instead
of the viral protease. These changes cause resistance to all
protease inhibitors by enhancing the processing efficiency
of the altered substrate by wild type protease. Modulation
of the cleavage efficiency of this site impacts both PI sus-
ceptibility and viral replication capacity. Further studies
are required to determine to what extent NC/P2 cleavage

site mutations may explain virological failure during PI
therapy.

Y. Mély (ULP, Strasbourg, France) in collaboration with
J.L. Darlix (INSERM Lyon, France) and M. Gottikh (Mos-
cow, Russia) developed a screening assay based on the
ability of HIV-1 NCp7 to destabilize SL structures such as
TAR (Fig. 3). Several lead molecules were identified that
inhibit NC destabilization activity in the low μM range.
These molecules bind to the NC zinc fingers but do not
eject zinc. Small Trp-rich hexapeptides selected from
phage display libraries can also inhibit the NCp7 destabi-
lizing activity in the low μM range through competition
with its target sequences [56-58]. Finally, peptide and oli-
gonucleotide-based compounds targeting NCp7 with low
nM activities have been found and they are currently
being characterized in vitro and in cell culture assays.

P. Mahy from H-PHAR (Gosselies, Belgium) reported new
results on HPH116, which is a zinc finger ejector targeting
NCp7 protein. HPH116 is a modified synthetic form of
azodicarbonamide produced under good manufacturing
practices (GMP) conditions developed by H-PHAR. In a
TZM-bl cell infection model, HPH116-treated viral parti-
cles were found to have lost their infectivity, with up to
100% inhibition at 1 μM HPH116. Viral inhibition was
enhanced when the viral particles were pre-incubated
with HPH116 at 0.25 μM and 0.1 μM Tenofovir (vs 5 μM
Tenofovir alone), 0.3 μM AZT (vs 30 μM AZT alone), or

Principle of the NC inhibitor screening assayFigure 3
Principle of the NC inhibitor screening assay. This 
assay is based on the use of a HIV-1 TAR DNA (cTAR) 
sequence labeled at its 5' and 3' ends, by a fluorophore (D) 
and a quencher (Q), respectively. In the absence of NC, Q is 
close to D, leading to a small residual fluorescence of D. Due 
to its nucleic acid destabilizing properties, NC melts the 
cTAR structure up to the middle of the stem, leading Q to 
move away from D, thus causing a large fluorescence 
increase. A positive hit is detected through the restoration of 
the initial low fluorescence level.
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with 0.125 μM T20. Thus, when HPH116 is combined
with other known antiretroviral drugs, it can induce a dra-
matic increase in virus inhibition.

S-acyl-2-mercaptobenzamide thioester lead compounds
[59] were investigated as topical microbicides by Miller-
Jenkins et al. Initial studies with C. Cheng-Mayer (Aaron
Diamond AIDS Research Center, New York, USA) have
shown that a lead compound protects macaques from
SHIV infection in a dual-infection model of vaginal trans-
mission. Three sites in NCp7 were found to be important
for reactivity and specificity: position x+1 (where x is
Cys36), x+2, and x+9 [60,61]. Furthermore, a secondary
intramolecular S to N acyl transfer, which occurs after the
primary intermolecular acyl transfer from the thioester to
Cys36, was demonstrated. This secondary transfer is irre-
versible and leads to loss of NCp7 structure and, most
probably, its function.

An update on work involving covalent modification of
free S-H groups on internal viral proteins by electrophilic
reagents to generate whole inactivated retroviral virions
with functional envelope glycoproteins was presented by
J. Lifson (NCI-Frederick, MD, USA). Studies with 4-vinyl
pyridine showed that covalent modification of NC, with-
out appreciable modification of other virion proteins is
sufficient for inactivation. Inactivated viruses are being
used for electron tomographic ultrastructural studies of
whole virions and envelope glycoprotein spikes [62]. In
additions tomographic studies were presented showing
the interaction of Env with receptors on T cells [63]. In
vitro, inactivated virions effectively primed both HIV-1
specific responses by MHC-I restricted responses by naïve
CD8+ T cells and MHC-II restricted responses by naïve
CD4+ T cells. Progress on the use of such particles as a vac-
cine immunogen was also presented.
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