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Abstract
Background: CCR5-restricted (R5) human immunodeficiency virus type 1 (HIV-1) variants cause
CD4+ T-cell loss in the majority of individuals who progress to AIDS, but mechanisms underlying
the pathogenicity of R5 strains are poorly understood. To better understand envelope glycoprotein
(Env) determinants contributing to pathogenicity of R5 viruses, we characterized 37 full-length R5
Envs from cross-sectional and longitudinal R5 viruses isolated from blood of patients with
asymptomatic infection or AIDS, referred to as pre-AIDS (PA) and AIDS (A) R5 Envs, respectively.

Results: Compared to PA-R5 Envs, A-R5 Envs had enhanced fusogenicity in quantitative cell-cell
fusion assays, and reduced sensitivity to inhibition by the fusion inhibitor T-20. Sequence analysis
identified the presence of Asn 362 (N362), a potential N-linked glycosylation site immediately N-
terminal to CD4-binding site (CD4bs) residues in the C3 region of gp120, more frequently in A-
R5 Envs than PA-R5 Envs. N362 was associated with enhanced fusogenicity, faster entry kinetics,
and increased sensitivity of Env-pseudotyped reporter viruses to neutralization by the CD4bs-
directed Env mAb IgG1b12. Mutagenesis studies showed N362 contributes to enhanced
fusogenicity of most A-R5 Envs. Molecular models indicate N362 is located adjacent to the CD4
binding loop of gp120, and suggest N362 may enhance fusogenicity by promoting greater exposure
of the CD4bs and/or stabilizing the CD4-bound Env structure.
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Conclusion: Enhanced fusogenicity is a phenotype of the A-R5 Envs studied, which was associated
with the presence of N362, enhanced HIV-1 entry kinetics and increased CD4bs exposure in
gp120. N362 contributes to fusogenicity of R5 Envs in a strain dependent manner. Our studies
suggest enhanced fusogenicity of A-R5 Envs may contribute to CD4+ T-cell loss in subjects who
progress to AIDS whilst harbouring R5 HIV-1 variants. N362 may contribute to this effect in some
individuals.

Background
The gp120 and gp41 envelope glycoprotein (Env) com-
plexes of human immunodeficiency virus type 1 (HIV-1)
mediate viral entry into cells (reviewed in [1-3]). The
gp120 subunits bind to CD4 which induces conforma-
tional changes that lead to exposure of a binding site for a
cellular coreceptor, either CCR5 or CXCR4. Coreceptor
binding induces further conformational changes in gp41
that lead to fusion between the viral and cellular mem-
branes and entry of the HIV-1 core into cells.

The coreceptor specificity of Env influences HIV-1 patho-
genesis. Progression of HIV-1 infection from early, asymp-
tomatic stages of disease to acquired immunodeficiency
syndrome (AIDS) is associated with a switch in viral core-
ceptor specificity from CCR5-using (R5) viral strains to
those able to use CXCR4 (X4) or both coreceptors (R5X4)
in 40–50% of infected adults [4-8] (reviewed in [9]).
However, X4 or R5X4 variants are absent in 50–60% of
HIV-1 infected individuals who progress to AIDS [10-14]
(reviewed in [15]). Therefore, the persistence of an exclu-
sive R5 viral population in vivo is sufficient to cause
immunodeficiency in the majority of HIV-1 infected indi-
viduals who progress to AIDS.

In addition to dictating HIV-1 coreceptor specificity, the
Env glycoproteins cause significant cytotoxicity both in
vitro and in vivo. Env mediates most of the acute cytopathic
effects of HIV-1 infection in cultured cells [16], and mem-
brane fusion appears to be an important factor contribut-
ing to HIV-1 cytopathicity in vitro [17]. Passage of
chimeric simian-HIV (SHIV) strains in macaques demon-
strated enhancement of pathogenicity that was associated
with mutations in Env [18-23]. These Env mutations often
resulted in increased Env-mediated membrane fusing
capacity [20,23-26], suggesting that fusogenicity contrib-
utes to viral pathogenicity in this animal model. The cyto-
pathic effects of Env-mediated HIV-1 fusogenicity are also
evident in humans. For example, the presence of multinu-
cleated giant cells (MNGC) in brain, formed by Env-medi-
ated fusion between infected and uninfected macrophage
lineage cells, is characteristic of HIV-1 encephalitis (HIVE)
and a neuropathological hallmark of HIV-associated
dementia (reviewed in [27]). Thus, Env-mediated
fusogenicity appears to be an important factor contribut-
ing to HIV-1 pathogenesis.

Whilst much effort has been directed towards understand-
ing the molecular basis of pathogenicity of late-emerging
X4 and R5X4 viruses [28-30] (reviewed in [9]), the molec-
ular mechanisms underlying the pathogenicity of R5 HIV-
1 strains are poorly understood [15]. R5 viruses are intrin-
sically cytopathic, but exert pathogenic effects that are dis-
tinct from those of X4 or R5X4 viruses [31-33]. R5 HIV-1
strains isolated from patients with AIDS (hereafter
referred to as AIDS R5 (A-R5) viruses) have enhanced
macrophage (M)-tropism [34-36] and cause increased lev-
els of CD4+ T-cell death [37] compared with R5 HIV-1
strains isolated from asymptomatic individuals (hereafter
referred to as pre-AIDS R5 (PA-R5) viruses). A-R5 viruses
were shown to have increased in vivo cytopathicity in HIV-
1-infected SCID-hu mice compared with PA-R5 viruses in
one study [38], although different conclusions were
reached by other in vivo and ex vivo studies [39,40]. A-R5
viruses have decreased sensitivity to inhibition by the β-
chemokine RANTES (Regulated on Activation, Normally
T-cell-expressed and -secreted) compared with PA-R5
viruses [10,13,14]. Recent evidence suggests that
decreased RANTES sensitivity is attributed to an increased
flexibility of the R5 Env that alters the mode and efficiency
of CCR5 usage [13]. In addition, A-R5 viruses have
decreased sensitivity to inhibition by the HIV-1 fusion
inhibitor T-20 and by the CCR5 antagonist TAK-779 com-
pared with PA-R5 viruses [36,41], but have increased sen-
sitivity to neutralization by the CD4 binding site (CD4bs)
directed Env monoclonal antibody (mAb) IgG1b12 [36].
Together, these findings provide evidence that A-R5
viruses have intrinsic properties distinguishing them from
PA-R5 viruses which may enhance their cytopathic effects,
and that these properties are likely to be linked to Env
conformations that enhance CD4 and/or CCR5 interac-
tions.

Genetic determinants of the Env underlying these A-R5
HIV-1 phenotypes, which may contribute to HIV-1 patho-
genesis in subjects who persistently harbor R5 HIV-1 var-
iants to late stages of HIV-1 infection are unknown. To
better understand Env determinants contributing to path-
ogenicity of R5 viruses, we characterized R5 Envs gener-
ated from cross-sectional and longitudinal panels of PA-
R5 and A-R5 viruses. Our results show that enhanced
fusogenicity is a phenotype of A-R5 Envs. We identified
the presence of Asn 362 (N362), a potential N-linked gly-
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cosylation site immediately N-terminal to CD4bs residues
in the C3 region of gp120, more frequently in A-R5 Envs
than PA-R5 Envs. N362 was associated with enhanced
fusogenicity, reduced sensitivity to the inhibitory effects
of T-20, faster entry kinetics, and increased sensitivity of
Env-pseudotyped reporter viruses to neutralization by the
CD4bs-directed Env mAb IgG1b12. Mutagenesis studies
showed that N362 contributes to fusogenicity of R5 Envs
in a strain dependent manner. Structural models indicate
that N362 is located adjacent to the CD4 binding loop of
gp120, and suggest N362 may contribute to enhanced
fusogenicity by promoting greater exposure of the CD4bs
and/or stabilizing the CD4-bound Env structure. This pre-
diction is consistent with the increased sensitivity of A-R5
Envs with N362 to neutralization by IgG1b12. Enhanced
fusogenicity of A-R5 Envs may contribute, at least in part,
to CD4+ T-cell loss in subjects who progress to AIDS
whilst harbouring R5 HIV-1 variants.

Results
Primary PA-R5 and A-R5 HIV-1 isolates
We characterized HIV-1 Envs cloned from a series of well
characterized primary PA-R5 and A-R5 viruses. These
included a cross sectional panel of four PA-R5 viruses
(NB23, NB24, NB25 and NB27) and four A-R5 HIV-1
viruses (NB2, NB6, NB7 and NB8) [34,36], as well as PA-
R5 and A-R5 viruses isolated sequentially from one sub-
ject (IK1) [13,42] (Table 1). All viruses are of R5 pheno-
type, but compared to the PA-R5 viruses the A-R5 viruses
have enhanced M-tropism, reduced CD4- and CCR5-
dependence, reduced sensitivity to inhibition by HIV-1
entry inhibitors and RANTES, and increased sensitivity to
neutralization by the Env mAb IgG1b12 [13,34,36,42].
Thus, the A-R5 HIV-1 isolates have unique biological
properties distinguishing them from the PA-R5 isolates
that serve to enhance Env-receptor interactions, and most
likely map to the env gene. However, it is important to
note that the PA-R5 virus from subject IK1 was isolated
just prior to the onset of CD4+ T-cell loss and progression
toward AIDS [13], whereas the PA-R5 viruses from the
cross sectional panel were isolated at earlier stages of HIV-
1 infection, including one virus isolated from an acute
seroconverter [34]. Therefore, although all the A-R5
viruses were isolated from patients with AIDS, there is
considerable heterogeneity among the PA-R5 viruses with
respect to the stage of asymptomatic HIV-1 infection from
which they were isolated.

Biological activities of HIV-1 Env clones
To identify viral determinants which underlie the unique
biological properties of A-R5 HIV-1 viruses and may con-
tribute to the pathogenesis of R5 HIV-1 variants, the env
gene was cloned into the pSVIII-HXB2 Env expression vec-
tor using KpnI and BamHI restriction sites. Three to four
independent and functional Envs cloned from each virus

were identified by single round entry assays in JC53 or
Cf2-CD4/CCR5/CXCR4 cells using Env-pseudotyped GFP
reporter virus, and by fusion assays (Table 1, and data not
shown). Western blot analysis of Env expression in trans-
fected 293T cells showed distinct gp160 and gp120 pro-
teins in 36/37 primary Envs, similar to the control R5
ADA, YU2, JRFL and JRCSF Envs (Fig. 1). To determine the
coreceptor specificity of the cloned Envs, Env-pseudo-
typed GFP reporter viruses were used in single round entry
assays with Cf2th cell lines stably expressing CD4/CCR5
or CD4/CXCR4 (Table 1). The X4 HXB2, R5 ADA, and
R5X4 89.6 Envs were used as positive controls. A non
functional Env, ∆KS Env, was used as a negative control to
determine background levels of GFP expression. As
expected, HXB2 Env used CXCR4, ADA Env used CCR5,
and 89.6 Env used both CXCR4 and CCR5 for HIV-1
entry. All 37 primary Envs used CCR5 for HIV-1 entry,
similar to the coreceptor specificity of the primary isolates
from which they were cloned. Thus, we established and
validated a bank of functional PA-R5 and A-R5 Envs
cloned from well characterized primary R5 HIV-1 isolates.

A-R5 Envs have enhanced fusogenicity compared to PA-R5 
Envs
Alterations in Env that augment fusogenicity contribute to
the pathogenesis of SHIV infection [20,23-26]. In addi-
tion, HIV-1 fusogenicity is evident as MNGCs in tissues
such as brain, which frequently harbors highly fusogenic
R5 HIV-1 strains that share a number of phenotypic char-
acteristics with blood-derived A-R5 viruses [43-46]. We
used a quantitative cell-cell fusion assay to determine
whether A-R5 Envs are more fusogenic than PA-R5 Envs.
In this assay, cells were sampled at 2-hourly intervals until
maximal fusion levels were reached at 12 hours post-mix-
ing of Env-expressing effector cells and CD4/CCR5-
expressing target cells. A-R5 Envs from the cross-sectional
panel caused greater levels of cell-cell fusion than the PA-
R5 Envs, which was particularly evident at 10 and 12 h
post-mixing (Fig. 2A). The differences in fusogenicity
between PA- and A-R5 Envs were not due to differences in
cell surface Env expression levels on effector cells (Fig.
2B). When maximal fusion levels attained by PA- and A-
R5 Envs were stratified across very low (+/-), low (+),
moderate (++) or high (+++) maximal levels, the majority
of A-R5 Envs had either moderate or high maximal fusion
levels, whereas the majority of PA-R5 Envs had either very
low or low maximal fusion levels (Fig. 2C). Thus, the A-
R5 Envs from the cross-sectional panel are more fusogenic
than the PA-R5 Envs.

We next tested whether A-R5 Envs from IK1 are more
fusogenic than PA-R5 Envs cloned from this subject. A-R5
Envs from IK1 caused greater levels of cell-cell fusion than
matched PA-R5 Envs, which was evident at 8, 10 and 12 h
post-mixing (Fig. 3A). The differences in fusogenicity
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Table 1: Characteristics of primary R5 viruses and Env clones

Virusa Descriptionb Env clonec Coreceptor usaged

CCR5 CXCR4

Cross-sectional viruses -
NB23 PA-R5 NB23-C1 +++ -

NB23-C2 +++ -
NB23-C3 +++ -

NB24 PA-R5 NB24-C1 ++ -
NB24-C2 + -
NB24-C3 + -
NB24-C4 + -

NB25 PA-R5 NB25-C1 + -
NB25-C2 + -
NB25-C3 +++ -

NB27 PA-R5 NB27-C1 + -
NB27-C2 ++ -
NB27-C3 +++ -

NB2 A-R5 NB2-C1 + -
NB2-C2 + -
NB2-C3 ++ -
NB2-C4 ++ -

NB6 A-R5 NB6-C1 +++ -
NB6-C2 +++ -
NB6-C3 +++ -
NB6-C4 +++ -

NB7 A-R5 NB7-C1 ++ -
NB7-C2 ++ -
NB7-C3 ++ -
NB7-C4 ++ -

NB8 A-R5 NB8-C1 +++ -
NB8-C2 +++ -
NB8-C3 +++ -
NB8-C4 +++ -

Longitudinal viruses
IK1-PA PA-R5 IK1-PA-C1 ++ -

IK1-PA-C2 + -
IK1-PA-C3 ++ -
IK1-PA-C4 + -

IK1-A A-R5 IK1-A-C1 ++ -
IK1-A-C2 +++ -
IK1-A-C3 ++ -
IK1-A-C4 ++ -

Controls
∆KS Env - -

HXB2 Env - +++
ADA Env +++ -
89.6 Env +++ +++

aThe phenotypes of the primary R5 HIV-1 isolates, and clinical characteristics of the subjects from whom they were isolated have been described in 
detail previously [11, 13, 34, 36, 42].
bPA-R5, pre-AIDS R5 HIV-1 isolate; A-R5, AIDS R5 HIV-1 isolate.
cFunctional Env clones were identified by infection of JC53 cells or Cf2-CD4/CCR5/CXCR4 cells with Env-pseudotyped GFP reporter viruses and 
by fusion assays, as described in the Methods (data not shown).
dCoreceptor usage of functional Envs was determined by infection of Cf2-CD4/CCR5 and Cf2-CD4/CXCR4 cell lines with Env-pseudotyped GFP-
reporter viruses, as described in the Methods. GFP positive cells were counted manually by fluorescence microscopy and scored as – (no GFP 
positive cells), +/- (1 to 5% GFP positive cells), + (5 to 10% GFP positive cells), ++ (10 to 30% GFP positive cells), or +++ (>30% GFP positive cells).
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between the PA-R5 and A-R5 Envs were not due to differ-
ences in cell surface Env expression levels on effector cells
(Fig. 3B). In fact, in these experiments PA-R5 Envs were
expressed to greater levels on effector cells than A-R5 Envs.
The extent of cell-cell fusion is directly related to the level
of Env expression on effector cells (J. Sterjovski and P.R.
Gorry, unpublished data). Thus, in subject IK1, A-R5 Envs
are more fusogenic than PA-R5 Envs, and the differences
shown in Figure 3A are likely to be conservative.

A-R5 Envs are less sensitive to inhibition by the HIV-1 
fusion inhibitor T-20 than PA-R5 Envs
Enhanced fusogenicity of A-R5 Envs suggests that these
Envs may be less sensitive to the antiviral effects of the
HIV-1 fusion inhibitor T-20 than PA-R5 Envs. Therefore,
we next determined the sensitivity of A-R5 and PA-R5
Envs from the cross sectional viruses to inhibition by T-
20. Quantitative cell-cell fusion assays were carried out in
the presence of 10-fold increasing concentrations of T-20
ranging from 0.001 to 10 µg per ml, and IC50 and IC80 val-
ues calculated by regression analysis of inhibition curves.
The results demonstrate a significant increase in the IC50
(Fig. 4A) and a non-significant trend toward an increase in

the IC80 (Fig. 4B) for T-20 against A-R5 Envs compared to
PA-R5 Envs. These differences were not due to differences
in cell surface Env expression levels on effector cells (Fig.
4C). Thus, highly fusogenic A-R5 Envs appear to be less
sensitive to the inhibitory effects of T-20 in cell-cell fusion
assays compared to less fusogenic PA-R5 Envs.

N362 adjacent to CD4bs residues in gp120 is conserved in 
A-R5 but not PA-R5 Envs
To identify amino acid variants associated with A-R5 Envs
that may contribute to enhanced fusogenicity, the gp120
region of the 37 Envs was sequenced and analyzed. Phyl-
ogenetic analysis of Envs demonstrated tight clustering of
nucleotide sequences according to virus isolate (data not
shown). Multiple sequence alignments verified that all
sequences were unique (data not shown). Together, these
data demonstrate that the Envs are independent clones
and not the result of sequence resampling.

A-R5 and PA-R5 Envs could not be segregated based on
the total number of potential N-linked glycosylation sites
(PNGS) in gp120 (range, 16 to 24 PNGS; median 19),
length of the V1V2 variable loops (range, 68 to 83 amino

Expression of functional Env clonesFigure 1
Expression of functional Env clones. 293T cells were cotransfected with 8 µg of pSVIII-Env plasmid expressing control R5 
Envs (A) or pSVIII-Env plasmid expressing functional Envs cloned from the cross sectional (PA-R5 viruses NB23, NB24, NB25, 
NB27 and A-R5 viruses NB2, NB6, NB7, NB8) (B) or longitudinal (PA- and A-R5 viruses from subject IK1) (C) primary R5 
HIV-1 isolates and 2 µg pSVL-Tat, as described in the Methods. Env expression at 72 h post-transfection was measured by 
Western blot analysis of cell lysates using rabbit anti-gp120 polyclonal antisera. Positions of gp160 and gp120 are shown on the 
right. C1, C2, C3 and C4 refer to independent Envs cloned from each virus.
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Fusogenicity of PA-R5 and A-R5 Envs cloned from the cross-sectional panel of primary R5 HIV-1 isolatesFigure 2
Fusogenicity of PA-R5 and A-R5 Envs cloned from the cross-sectional panel of primary R5 HIV-1 isolates. Fusion 
assays were performed using 293T effector cells expressing PA-R5 and A-R5 Envs shown in Fig. 1B and Cf2-Luc target cells 
expressing CD4 and CCR5, as described in the Methods. Cells were harvested at 2, 4, 6, 8, 10 and 12 h post-mixing and 
assayed for luciferase activity (A). 293T effector cells were stained for cell surface Env expression using pooled AIDS serum 
and analysed by flow cytometry, as described in the Methods (B). The data were stratified by different maximal levels of fusion 
scored as +/-, +, ++, and +++, which correspond to <10-fold (very low), 10- to 20-fold (low), 20- to 40-fold (moderate), and 
>40-fold (high) increases in luciferase activity above background levels, respectively (C). Box plots were constructed from 
mean values of duplicate experiments with each Env using Prism version 4.0c (GraphPad Software, San Diego, CA.). Boxes rep-
resent upper and lower quartiles and median scores, and whiskers represent minimum and maximum values. The data shown 
are representative of 3 independent experiments. P values were calculated using a nonparametric Mann-Whitney U test, and 
values <0.05 were considered statistically significant.
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Fusogenicity of PA-R5 and A-R5 Envs cloned from longitudinal primary R5 HIV-1 isolatesFigure 3
Fusogenicity of PA-R5 and A-R5 Envs cloned from longitudinal primary R5 HIV-1 isolates. Fusion assays were per-
formed using 293T effector cells expressing PA-R5 and A-R5 Envs cloned from longitudinal viruses isolated from subject IK1 
shown in Fig. 1C, and Cf2-Luc target cells expressing CD4 and CCR5 as described in the Methods. Cells were harvested at 2, 
4, 6, 8, 10 and 12 h post-mixing and assayed for luciferase activity (A). 293T effector cells expressing Envs were stained for cell 
surface Env expression using pooled AIDS serum and analysed by flow cytometry, as described in the Methods (B). Box plots 
were constructed from mean values of duplicate experiments with each Env using Prism version 4.0c (GraphPad Software). 
Boxes represent upper and lower quartiles and median scores, and whiskers represent minimum and maximum values. The 
data shown are representative of 3 independent experiments. P values were calculated using a nonparametric Mann-Whitney U 
test, and values < 0.05 were considered statistically significant.

Sensitivity of PA-R5 and A-R5 Envs to inhibition by T-20Figure 4
Sensitivity of PA-R5 and A-R5 Envs to inhibition by T-20. Fusion assays were performed using 293T effector cells 
expressing PA-R5 and A-R5 Envs from the cross sectional panel of primary R5 HIV-1 isolates shown in Fig. 1A, and Cf2-Luc 
target cells expressing CD4 and CCR5 in the presence of 10-fold increasing concentrations of T-20 ranging from 0.001 to 10 
µg per ml, as described in the Methods. IC50 (A) and IC80 (B) values were calculated by least squares analysis of inhibition 
curves. IC80 values were calculated instead of IC90 values, because 90% inhibition of fusion was not reached when these concen-
trations of T-20 were tested against some of the A-R5 Envs (data not shown). 293T effector cells were stained for cell surface 
Env expression using pooled AIDS serum and analysed by flow cytometry, as described in the Methods (C). Box plots were 
constructed from mean values of duplicate experiments with each Env using Prism version 4.0c (GraphPad Software). Boxes 
represent upper and lower quartiles and median scores, and whiskers represent minimum and maximum values. The data 
shown are representative of 3 independent experiments. P values were calculated using a nonparametric Mann-Whitney U test, 
and values < 0.05 were considered statistically significant.
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acids; median 72), net charge of the V1V2 (range, -3 to +4;
median +1) or V3 (range, +3 to +8, median +5) amino
acid sequence, or number of PNGS in the V4 (range, 3 to
6 PNGS, median 4) or V5 (range 0 to 2 PNGS, median 1)
sequence (data not shown), which are parameters shown
previously to affect the biological activity of HIV-1 Envs
[47-55]. Net charge of the V3 variable loop region did not
predict coreceptor usage, consistent with results of previ-
ous studies [44,46,56,57].

Signature pattern analysis of A-R5 and PA-R5 Envs from
the cross-sectional viruses identified an amino acid vari-
ant, N362, that was present more frequently in A-R5 Envs
(14/15 Envs; 93%) than PA-R5 Envs (6/13 Envs; 46%)
(Fig. 5). No additional Env changes that could potentially
distinguish A-R5 Envs from PA-R5 Envs were identified.
Consistent with these results, database analysis of pub-
lished Env sequences where sufficient clinical information
was present to confidently assign Envs as A-R5 or PA-R5
[34,38,58-65] demonstrated N362 is significantly more
frequent in A-R5 Envs (74%; n = 142) compared with PA-
R5 Envs (49%; n = 77) (p = 0.0004, Fisher's exact test).
N362 is located in the C3 Env region immediately N-ter-
minal to residues in the CD4bs [50], suggesting that N362
could potentially influence Env-CD4 binding. N362 is
also present in ADA and YU2 R5 Envs, which are highly
fusogenic, similar to the majority of A-R5 Envs (data not
shown). In contrast, threonine is present at this position
in JR-CSF Env, which is poorly fusogenic, similar to the
majority of PA-R5 Envs (data not shown). Thus, the pres-
ence of N362 is associated with A-R5 Envs from the cross-
sectional panel and other published Env sequences, and
may contribute to enhanced fusogenicity. However, since
N362 is present in a relatively high proportion of PA-R5
Envs from the cross sectional viruses (6/13) and other
published studies (49%), any effect N362 may have on
the biological activity of A-R5 Envs is likely to be strain-
specific and/or context dependent.

N362 is associated with enhanced fusogenicity and 
reduced sensitivity to inhibition by T-20
The preceding studies showed a predominance of A-R5
Envs containing N362, but Envs from two PA-R5 viruses,
NB23 and NB27, also contained N362. Furthermore,
although the fusogenicity of A-R5 Envs from the cross-sec-
tional panel was significantly greater than that of the PA-
R5 Envs, there was still considerable overlap. To better
understand the relationship between the presence of
N362, fusogenicity, and sensitivity to T-20, these data
were stratified based on the presence or absence of N362
(Fig. 6). R5 Envs containing N362 had significantly
greater maximal levels of cell-cell fusion than R5 Envs
lacking N362 (Fig. 6A). The differences in cell-cell fusion
between Envs containing or lacking N362 were not due to
differences in cell surface Env expression levels on effector

cells (Fig. 6B). Envs containing N362 had a significantly
higher IC80 and a trend toward a higher IC50 for T-20 than
Envs lacking N362 (Fig. 6C,D). Together, these data dem-
onstrate an association between the presence of N362 in
R5 Envs from the cross sectional panel and enhanced
fusogenicity, and an additional association between the
presence of N362 and sensitivity to the inhibitory effects
of T-20 in cell-cell fusion assays.

Molecular modeling of N362
Previous studies of brain-derived Envs identified the
N283 variant in the C2 region of gp120 within one of the
CD4 contact sites, which increases Env-CD4 affinity and
enhances M-tropism [43]. Since blood-derived A-R5
viruses have enhanced M-tropism compared to PA-R5
viruses [34,36], and N362 is located immediately N-ter-
minal to another CD4 contact site in the C3 gp120 region
[Fig. 5 and [50]], we hypothesized that N362 may poten-
tially affect Env structure and CD4 binding. N362, a
potential site for N-linked glycosylation, was modelled on
the unliganded crystal structure of SIV gp120 and CD4-
liganded crystal structure of HIV-1 JRFL gp120. The
CD4bs in the unliganded gp120 is located in the outer
domain and consists of a disordered loop flanked by the
β-14 and β-16 strands. N362 is positioned just distal to
the β-14 strand in the disordered loop region of the CD4
binding motif (Fig. 7A). Upon binding to CD4, conforma-
tional changes lead to interactions between the β-14, β-18
and β-24 strands to form an antiparallel sheet (Fig. 7B),
which is one of two major conformational changes that
occur in gp120 upon CD4 binding [66]. Analysis of inter-
atomic contacts within the antiparallel sheet region
showed that N362 has the potential to form hydrogen
bonds with one or more residues from within the β-14
strand and/or neighbouring strands of the β-sheet, includ-
ing V360, F361, H363, F468, and R469 (Fig. 7C). Mode-
ling glycosylated residues on the CD4-bound gp120
demonstrated N362 is in close proximity to N392,
another potentially glycosylated residue in the β-18 strand
(data not shown). Thus, N362 may be important in for-
mation of the CD4-bound structure of gp120, and may
contribute to the stability of the CD4-bound conforma-
tion of gp120 by forming intramolecular hydrogen bonds
with residues from neighbouring strands and/or interac-
tion with other glycosylated residues.

A-R5 Envs with N362 have faster entry kinetics than PA-R5 
Envs lacking N362
The structural models suggest N362 may influence CD4
binding and thus, the efficiency of HIV-1 entry. To better
understand how N362 may enhance the entry of A-R5
Envs, we produced single-round luciferase reporter viruses
pseudotyped with a subset of A-R5 Envs containing N362
(NB6-C2, NB6-C3, NB6-C4, NB7-C2, NB7-C4, NB8-C2
and NB8-C4) or with a subset of PA-R5 Envs lacking N362
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Amino acid sequences spanning the CD4bs in the C3 region of gp120Figure 5
Amino acid sequences spanning the CD4bs in the C3 region of gp120. Amino acid alignments of the C3 region of PA-
R5 and A-R5 Envs cloned from the cross sectional panel of primary HIV-1 isolates are compared to those from the highly 
fusogenic YU2 and ADA R5 Envs, the poorly fusogenic JR-CSF R5 Env, and the clade B consensus sequence. Dots indicate res-
idues identical to the clade B consensus sequence, and dashes indicate gaps. Residues forming the CD4bs and the amino acid 
present at position 362 (numbered relative to the HXB2 reference sequence) are highlighted.
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(NB24-C1, NB24-C2, NB24-C3, NB24-C4, NB25-C2, and
NB25-C4). Using time-of-addition studies with T-20, we
compared the kinetics of HIV-1 entry between reporter

viruses pseudotyped with A-R5 Envs containing N362 and
PA-R5 Envs lacking N362 (Fig. 8A). In this assay, the max-
imal delay time after addition of virus to cells when addi-

N362 is associated with enhanced fusogenicity and reduced sensitivity to T-20Figure 6
N362 is associated with enhanced fusogenicity and reduced sensitivity to T-20. For each of the Envs cloned from 
the cross sectional panel of primary R5 HIV-1 viruses, the maximal levels of fusion (determined at 12 h post-fusion) (A), cell 
surface Env expression on 293T effector cells (B), and IC50 (C) and IC80 (D) values for sensitivity to inhibition by T-20, were 
stratified based on the presence or absence of N362. Box plots were constructed from mean values of duplicate experiments 
with each Env using Prism version 4.0c (GraphPad Software). Boxes represent upper and lower quartiles and median scores, 
and whiskers represent minimum and maximum values. The data shown are representative of 3 independent experiments.
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tion of T-20 can still completely inhibit HIV-1 entry was
measured; shorter delay times indicate faster entry kinet-
ics, and longer delay times indicate slower entry kinetics.
Viruses pseudotyped with Envs containing N362 had sig-
nificantly shorter delay times than those pseudotyped

with Envs lacking N362. Thus, the presence of N362 in the
A-R5 Envs studied is associated with faster entry kinetics.

Structural modelling of N362Figure 7
Structural modelling of N362. Structures of the unliganded SIV gp120 (A) and CD4-bound JR-FL gp120 (B). The β-14 
(cyan), β-18 (pink) and β-24 strands (green) are highlighted. The CD4 binding loop is highlighted in purple. Asn362 (Thr378 in 
SIV) is labelled (cyan). Elements of the bridging sheet are highlighted in red. Potential hydrogen bond donors for N362 within 
the β-14, β-18 and β-24 strands are shown in (C) and are colored as in (A) and (B). CD4 residues contacting the CD4bs of 
gp120 are colored in yellow, and the molecular surface of Phe43 of CD4 is shown to illustrate the "Phe43 pocket" of the gp120 
binding site of CD4. N362 is labelled and highlighted in red. Putative hydrogen bond partners are labelled in grey. Hydrogen 
bonds are depicted as dotted green lines. For simplicity, only the N362 hydrogen bond with R465 is shown.
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A-R5 Envs with N362 have greater CD4bs exposure than 
PA-R5 Envs lacking N362
The prediction from structural models that N362 may
contribute to stabilizing the CD4-liganded gp120 struc-
ture, and the observed faster entry kinetics by Envs con-
taining N362 suggests that N362 may increase the
exposure of the CD4bs in gp120. To determine the rela-
tionship between the presence of N362 in A-R5 Envs and

CD4bs exposure in gp120, we compared the sensitivity of
reporter viruses pseudotyped with A-R5 Envs containing
N362 or PA-R5 Envs lacking N362 to neutralization by
Env mAbs or HIV-Ig. Viruses pseudotyped with Envs con-
taining N362 were more sensitive to neutralization by the
Env mAb IgG1b12 than viruses pseudotyped with Envs
lacking N362, as shown by significant differences in the
IC50 and IC90 for IgG1b12 (Fig. 8B). In fact, 7/7 of the A-

The relationship between N362, HIV-1 entry kinetics, and sensitivity to inhibition by neutralizing antibodiesFigure 8
The relationship between N362, HIV-1 entry kinetics, and sensitivity to inhibition by neutralizing antibodies. 
Luciferase reporter viruses pseudotyped with a subset of PA-R5 Envs lacking N362 (NB24-C1, NB24-C2, NB24-C3, NB24-C4, 
NB25-C2, and NB25-C4) or with a subset of A-R5 Envs containing N362 (NB6-C2, NB6-C3, NB6-C4, NB7-C2, NB7-C4, 
NB8-C2 and NB8-C4) were produced and quantified as described in the Methods. The kinetics of HIV-1 entry by Env-pseudo-
typed luciferase reporter viruses was determined by time-of-addition studies with T-20, as described in the Methods (A). The 
results are expressed in minutes as the maximum delay time after addition of virus to JC53 target cells when addition of 50 µg 
per ml of T-20 can still completely inhibit HIV-1 entry (Max. delay of entry), which was determined by least squares regression 
analysis of time-of-addition curves. The sensitivity of Env-pseudotyped luciferase reporter viruses to neutralization by Env 
monoclonal antibodies IgG1b12 (B) or 2G12 (C), or by the polyclonal antibody HIV-Ig (D) was determined by calculation of 
IC50 and IC90 values by least squares analysis of neutralization curves, as described in the Methods. For sensitivity to neutraliza-
tion by IgG1b12, four PA-R5 Envs (NB24-C1, NB24-C2, NB24-C3, NB24-C4) had IC50 and IC90 values > 50 µg per ml, indicat-
ing resistance. These Envs were assigned values of 50 µg per ml for the purpose of constructing panel (B). Box plots were 
constructed from mean values of duplicate experiments with each Env-pseudotyped luciferase reporter virus using Prism ver-
sion 4.0c (GraphPad Software). Boxes represent upper and lower quartiles and median scores, and whiskers represent mini-
mum and maximum values. The data shown are representative of 2 independent experiments. P values were calculated using a 
nonparametric Mann-Whitney U test, and values < 0.05 were considered statistically significant.
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R5 Envs tested were highly sensitive to neutralization by
IgG1b12 whereas in comparison, only 2/6 PA-R5 Envs
were neutralized by IgG1b12 and 4/6 PA-R5 Envs were
completely resistant to neutralization by IgG1b12 (IC50
and IC90 > 50 µg per ml). However, there were no differ-
ences in sensitivity to neutralization by the Env mAb
2G12 (Fig. 8C) or polyclonal HIV-Ig (Fig. 8D) between
viruses pseudotyped with Envs either containing or lack-
ing N362. Since the binding site for IgG1b12 overlaps the
CD4bs in gp120 [67], these results suggest that the A-R5
Envs containing N362 have increased CD4bs exposure
compared to the PA-R5 Envs lacking N362. This conclu-
sion is supported by results of FACS-based antibody bind-
ing studies, which showed that A-R5 Envs containing
N362 bound to non-saturating concentrations of
IgG1b12 more efficiently than PA-R5 Envs lacking N362

when expressed to equivalent levels on the surface of 293T
cells (data not shown).

N362 contributes to enhanced fusogenicity of A-R5 Envs in 
a strain-dependent manner
To determine whether N362 contributes to enhanced
fusogenicity of R5 Envs, a panel of Env mutants was gen-
erated that either introduced or removed Asn at position
362 in gp120. Western blot analysis of transfected 293T
cells demonstrated equivalent levels of Env expression
between wild type Envs and Env mutants (Fig. 9A). The
effect of N362 on fusogenicity was first determined in R5
control Envs (Fig. 9B). Wild type ADA and YU2 Envs have
N362 and are highly fusogenic, whereas wild type JR-CSF
Env lacks N362 and is, by comparison poorly fusogenic
(data not shown). Replacement of Asn with Lys at posi-

N362 exerts a strain-dependent enhancement of fusogenicity by R5 EnvsFigure 9
N362 exerts a strain-dependent enhancement of fusogenicity by R5 Envs. Western blot analysis of 293T cells trans-
fected with wild type and Env mutants (A). Fusion assays were performed using 293T effector cells expressing equivalent levels 
of wild type or Env mutants generated from control R5 ADA, YU2 and JRCSF Envs (B) or from A-R5 NB2-C4, NB6-C3, NB7-
C1 and NB8-C4 Envs (C), and Cf2-Luc target cells expressing CD4 and CCR5 as described in the Methods. Cells were har-
vested at 2, 4, 6, 8, 10 and 12 h post-mixing and assayed for luciferase activity. Results are expressed as the percentage of max-
imal fusion levels attained by the wild type Env clone. Means values of duplicate infections are shown. Error bars represent 
standard deviations. The results are representative of 2 independent experiments. P values were calculated with a paired t-test, 
and values < 0.05 were considered significant*. P values approaching significance are also indicated.
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tion 362 in ADA and YU2 Envs resulted in significant
reductions in fusogenicity. Conversely, introducing Asn at
position 362 in JR-CSF Env resulted in a significant
increase in fusogenicity. Thus, N362 contributes to
enhanced fusogenicity of ADA and YU2 Envs and
increases fusogenicity of JR-CSF Env.

To better understand the contribution of N362 to
enhanced fusogenicity of A-R5 Envs, Asn at position 362
in gp120 of the highly fusogenic NB2-C4, NB6-C3, NB7-
C1 and NB8-C4 Envs was replaced with Lys. The removal
of Asn at position 362 resulted in significant reductions in
fusogenicity of NB2-C4, NB6-C3 and NB8-C4 Envs, but
resulted in an apparent increase in fusogenicity by NB7-
C1 Env (Fig. 9C). However, increased fusogenicity by the
NB7-C1 Env mutant was marginal and significant only at
one early timepoint (6 h). Thus, whether substituting Asn
for Lys at position 362 modulated fusogenicity of NB7-C1
Env is presently unclear. Together, results of the mutagen-
esis studies indicate N362 contributes to fusogenicity of
the majority of the R5 Envs studied. However, the effect of
N362 on fusogenicity of A-R5 Envs appears to be strain-
dependent, suggesting the presence of additional factors
contributing to fusogenicity of R5 Envs.

Discussion
In this study we generated and characterized full-length,
functional R5 Env clones derived from well characterized
R5 HIV-1 viruses isolated from patients with asympto-
matic infection or AIDS. In this panel of Envs, enhanced
fusogenicity was a phenotype that distinguished A-R5
from PA-R5 Envs. We showed N362 near the CD4bs in the
C3 region of gp120 occurs at higher frequency in A-R5
Envs than PA-R5 Envs and is associated with enhanced
fusogenicity, decreased sensitivity to the inhibitory effects
of the fusion inhibitor T-20, and increased HIV-1 entry
kinetics. Mutagenesis studies showed N362 enhances
fusogenicity of A-R5 Envs in a strain-dependent manner.
Structural models indicate N362 is located adjacent to the
CD4 binding loop of gp120, and together with conforma-
tional mapping studies with Env Abs suggest N362 may
contribute to enhancement of fusogenicity by promoting
greater exposure of the CD4bs and/or stabilizing the CD4-
bound Env structure. Together, our results provide evi-
dence that A-R5 Envs have genetic and structural altera-
tions that augment Env-mediated fusion and entry.
Enhanced fusogenicity may contribute to pathogenicity of
late emerging R5 HIV-1 strains in subjects who persist-
ently maintain R5 HIV-1 variants at late stages of HIV-1
infection.

Increased Env-mediated fusogenicity was found to be a
prominent phenotype of the A-R5 Envs studied. Consist-
ent with previous studies that showed membrane fusing
capacity to be essential for Env-mediated cytopathicity in

vitro [17], the results of our studies suggest increased
fusogenicity by A-R5 Envs may reflect an increased ability
of A-R5 Envs to cause cytopathic effects. This idea is sup-
ported by macaques studies, where passage of chimeric
SHIV strains led to enhancement of pathogenicity associ-
ated with adaptive changes in Env [18-23]. These muta-
tions arose in the gp120 C2, C3, V3, V4, and gp41 Env
regions, resulting in increased Env-mediated fusogenicity
that was thought to occur via increased Env-receptor bind-
ing. Thus, increased fusogenicity contributes to viral path-
ogenicity in the macaque model. In addition, increased
cytopathicity by an A-R5 Env in SCID-hu mice was
reported recently, and thought to occur via increased
CCR5 usage [68]. The cytopathic effects of Env-mediated
fusogenicity are also evident in humans as MNGC, which
are present in autopsy brain tissues of subjects with HIVE
[69] and formed by Env-mediated fusion between
infected and uninfected macrophage-lineage cells [27].
Multinucleated giant cells in brain are caused predomi-
nantly by R5 HIV-1 Envs [44-46,70], which share several
features with blood-derived A-R5 Envs such as enhanced
fusogenicity [45,46,71], increased sensitivity to neutrali-
zation by IgG1b12 [45], and Env structures that enable
efficient Env-CD4 interactions [43]. Thus, increased
fusogenicity of blood-derived A-R5 Envs may enhance
their cytopathic potential. This provides, at least in part, a
plausible explanation contributing to CD4+ T-cell deple-
tion that occurs in HIV-1-infected individuals who
progress to AIDS whilst exclusively harbouring R5 HIV-1
variants.

Sequence analysis identified the presence of N362 near
CD4bs residues in the C3 region of gp120 at higher fre-
quency in A-R5 Envs than PA-R5 Envs. N362 was associ-
ated with enhanced fusogenicity and increased HIV-1
entry kinetics, suggesting that its presence contributes to
the highly fusogenic, A-R5 Env phenotype. Molecular
modeling the N362 residue on the unliganded SIV and
CD4-liganded HIV-1 JRFL crystal structures places N362
immediately adjacent to the disordered loop region of the
CD4bs in the unliganded gp120. In the CD4-liganded
gp120, N362 has the potential to form hydrogen bonds
with residues from neighbouring strands of the β-sheet.
Alternatively, modeling glycosylated residues on the CD4-
bound gp120 demonstrated N362 is proximal to N392,
another potentially glycosylated residue in the β-18 strand
(data not shown), suggesting N362 may influence the
CD4-bound Env structure via interaction with other N-
linked glycans. The latter possibility is supported by recent
studies that showed the potentially glycosylated N386 res-
idue in the V4 gp120 region influences CD4bs and
IgG1b12 epitope exposure of certain brain-derived Envs
[72]. These models suggest that N362 may contribute to
stabilizing the CD4-bound state of gp120 by forming
intramolecular hydrogen bonds with residues from neigh-
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bouring strands and/or interaction with other glyco-
sylated residues.

In this context A-R5 Envs with N362 may have an
enhanced ability to interact with CD4, which is supported
by recent studies of the N283 Env variant that is present at
high frequency in brain-derived R5 Envs [43,73], and was
shown to enhance CD4 binding by forming an additional
hydrogen bond with Gln 40 of CD4 [43]. Further support-
ing this hypothesis are results from recent studies showing
increased CD4 affinity by engineered trimeric gp120 glyc-
oproteins with enhanced IgG1b12 epitope exposure [74].
Studies of single-molecule bond force spectroscopy in liv-
ing cells demonstrated that gp120-CD4 binding is short-
lived and weak compared with gp120-CD4 complex bind-
ing to CCR5 [75], so enhanced Env-CD4 binding may
increase the capacity of A-R5 Envs to use CD4 on target
cells for HIV-1 entry. Alternatively, since CCR5 is more
mobile in the cell membrane than CD4 [76], a more sta-
ble gp120-CD4 interaction by A-R5 Envs could poten-
tially permit the Env-CD4 complex to more readily
colocalize with CCR5, thus increasing the efficiency of
CCR5 usage. Both of these possibilities are supported by
our previous studies on the primary R5 HIV-1 isolates
used to generate the A-R5 and PA-R5 Env clones, which
showed that A-R5 isolates have reduced dependence on
both CD4 and CCR5 levels for HIV-1 entry compared to
PA-R5 isolates [36]. The possibility that A-R5 Envs may
have enhanced CCR5 usage via increased Env-CD4 inter-
actions is supported by recent studies that demonstrated
enhanced cytopathicity of an A-R5 Env clone in SCID-hu
mice that was thought to occur via increased CCR5 usage
[68]. Additional protein binding studies are required to
determine whether A-R5 Envs with N362 have increased
CD4 binding. However, our results indicating that A-R5
Envs with N362 have greater binding to the Env mAb
IgG1b12, which has been mapped to an epitope overlap-
ping the CD4bs [67], and are more sensitive to neutraliza-
tion by IgG1b12 than PA-R5 Envs lacking N362 support
this contention.

Like the effect of the N283 variant in brain-derived R5
Envs on CD4 binding and M-tropism [43], the effect of
N362 on augmenting Env-mediated fusogenicity of
blood-derived R5 Envs appears to be context dependent,
since it did not enhance fusogenicity of all A-R5 Envs (Fig.
9C). Furthermore, a subset of published A-R5 Envs (26%)
lack N362, and a considerable fraction of published PA-
R5 Envs (49%) contain N362 [34,38,58-65]. There were
no other signature changes that segregated PA-R5 and A-
R5 Envs, suggesting that cooperative changes that might
be required for N362 to mediate enhanced fusogenicity
are likely to be strain specific. Cooperative changes may
include alterations in hydrogen bond partners of N362
which may affect the ability of N362 to stabilize the CD4-

bound Env structure. The relationship between fusogenic-
ity and CD4bs exposure attributable to N362 also appears
to be context dependent, since comparisons of fusogenic-
ity and sensitivity to neutralization by IgG1b12 between
primary Envs and respective N362 Env mutants (Fig. 9C)
showed a direct relationship between alterations in
fusogenicity by N362 and sensitivity to IgG1b12 for NB6-
C3 and NB7-C1 Envs, but not for NB2-C4 and NB8-C4
Envs (data not shown). Thus, the ability of N362 to
increase fusogenicity of NB2-C4 and NB8-C4 Envs (Fig.
9C) may depend on other factors to increase exposure of
the IgG1b12 epitope. Sequence analysis of the sequen-
tially obtained Envs from subject IK1 demonstrated N362
in both the PA-R5 and A-R5 Envs (data not shown). How-
ever, the PA-R5 virus from IK1 differs from the PA-R5
viruses from the cross sectional panel in that it was iso-
lated just prior to the onset of CD4+ T-cell loss and pro-
gression toward AIDS [13], whereas the cross sectional
panel of PA-R5 viruses were isolated from subjects at ear-
lier stages of asymptomatic infection [34]. Therefore,
although the A-R5 viruses from both panels were isolated
from patients with AIDS, there is considerable heteroge-
neity among the PA-R5 viruses across the panels with
respect to the stage of asymptomatic HIV-1 infection from
which they were isolated. It is possible that N362 may
occur with different frequencies in PA-R5 Envs isolated at
different stages of asymptomatic infection. Of note, even
though the A-R5 Envs from IK1 were more fusogenic than
PA-R5 Envs from this subject, the fusogenicity of the PA-
R5 Envs from IK1 was comparable to that of the A-R5 Envs
from the cross sectional cohort. Thus, although N362 is
associated with enhanced fusogenicity of A-R5 Envs, addi-
tional Env changes present in A-R5 Envs of IK1 may
increase fusogenicity further.

Whether R5 HIV-1 strains may acquire N362 through
adaptive changes and contribute to the pathogenesis of R5
HIV-1 infection in vivo is presently unclear. However, in
support of this hypothesis, longitudinal analysis of R5
Env sequences in two individuals infected from the same
source showed maintenance of N362 in a rapid progressor
whereas a nonprogressing subject continued to maintain
a mixture of N362, K362, S362, T362 and F362 amino
acid variants [64]. Thus, N362 may be selected in vivo and
potentially contribute to progressive R5 HIV-1 infection
in a host-dependent manner. It is also presently unclear
whether phenotypic differences in R5 Envs attributable to
N362 are likely to be relevant in vivo, since in some assays
only relatively small differences were observed. More
detailed longitudinal studies on virus derived from
plasma of subjects with progressive R5 HIV-1 infection are
necessary to determine the temporal nature of N362
acquisition and it's effect on HIV-1 pathogenicity in vivo.
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In conclusion, enhanced fusogenicity is a phenotype of A-
R5 Envs which is associated with N362 in gp120, and
linked to increased entry kinetics and increased exposure
of the CD4bs in gp120. N362 contributes to enhanced
fusogenicity of A-R5 Envs in a strain-dependent manner.
These results lead to a better understanding of the mecha-
nisms contributing to CD4+ T-cell depletion in subjects
who progress to AIDS whilst exclusively harbouring R5
HIV-1 variants.

Methods
Virus isolates
In this study, we utilized two independent panels of well
characterized primary R5 HIV-1 isolates. The first was a
cross sectional panel of R5 HIV-1 viruses isolated from
immunocompetent subjects with asymptomatic HIV-1
infection (n = 4 isolates) or from patients with AIDS (n =
4 isolates) [34,36]. The second comprised R5 HIV-1
viruses isolated sequentially from one subject (IK1) from
chronic HIV-1 infection to AIDS (n = 2 isolates) [13,42].
For the purpose of this study, the viruses isolated from
patients with AIDS are referred to as AIDS R5 (A-R5)
viruses, and those isolated from the earlier times are
referred to as pre-AIDS R5 (PA-R5) viruses.

A detailed characterization of the cross sectional panel of
R5 HIV-1 viruses including analysis of quasispecies diver-
sity, coreceptor usage, replication kinetics, and clinical
characteristics of the subjects from whom they were iso-
lated, has been described previously [34,36]. Briefly, the
PA-R5 viruses NB23, NB24, NB25 were isolated from
peripheral blood mononuclear cells (PBMC) of individu-
als with CDC category II disease (asymptomatic infection)
with CD4 counts of >500 cells/µl. PA-R5 virus NB27 was
isolated from PBMC of an individual with CDC category I
disease (acute seroconversion) with CD4 count of >750
cells/µl. A-R5 viruses NB2, NB6, NB7 and NB8 were iso-
lated from PBMC of individuals with CDC category IV dis-
ease (AIDS) and CD4 counts of <50 cells/µl.

The longitudinal R5 HIV-1 viruses isolated from sequen-
tial PBMC samples from subject IK1 are designated IK1-
PA and IK1-A. These viruses were referred to previously as
435–531 and 435–3415, respectively [13]. A detailed
characterization of these HIV-1 isolates including analysis
of quasispecies diversity, coreceptor usage, replication
kinetics, and clinical characteristics of the subjects from
whom they were isolated, has been described previously
[13,42].

Cells
PBMC were purified from blood of healthy HIV-1-nega-
tive donors, stimulated with 5 µg of phytohemagglutinin
(PHA) (Sigma, St. Louis, MO) per ml for 3 days, and cul-
tured in RPMI 1640 medium supplemented with 10%

(vol/vol) fetal calf serum (FCS), 100 µg of penicillin and
streptomycin per ml, and 20 U of interleukin-2 (IL-2)
(Roche, Basel, Switzerland) per ml. Cf2-Luc cells [25] are
derived from the Cf2th canine thymocyte cell line [77],
and stably express the luciferase gene under the control of
the HIV-1 long terminal repeat and were cultured in Dul-
becco modified Eagle medium (DMEM) supplemented
with 10% (vol/vol) FCS, 100 µg of penicillin and strepto-
mycin per ml, and 0.7 mg of G418 per ml. Cf2-CD4 cells
[78] were cultured in DMEM supplemented with 10%
(vol/vol) FCS, 100 µg of penicillin and streptomycin per
ml, and 0.5 mg of G418 per ml. Cf2-CD4/CCR5 cells [79]
were cultured in DMEM supplemented with 10% (vol/
vol) FCS, 100 µg of penicillin and streptomycin per ml,
0.5 mg of G418 per ml, and 0.1 mg of hygromycin per ml.
Cf2-CD4/CXCR4 cells were constructed by transduction
of the Cf2-CD4 cell line [78] with pBABE-puro vectors
expressing CXCR4 [80,81] followed by selection and
expansion in DMEM supplemented with 10% (vol/vol)
FCS, 100 µg of penicillin and streptomycin per ml, 0.5 mg
of G418 per ml, and 1 µg of puromycin per ml. Cf2-CD4/
CCR5/CXCR4 cells [56] were cultured in DMEM supple-
mented with 10% (vol/vol) FCS, 100 µg of penicillin and
streptomycin per ml, 0.5 mg of G418 per ml, 0.1 mg
hygromycin per ml, and 1 µg puromycin per ml. JC53
cells are derived from the HeLa cell line and stably express
high levels of CD4, CXCR4 and CCR5 on the cell surface
[82], and were cultured in DMEM supplemented with
10% (vol/vol) FCS, and 100 µg of penicillin and strepto-
mycin per ml. 293T cells were cultured in DMEM supple-
mented with 10% (vol/vol) FCS, and 100 µg of penicillin
and streptomycin per ml.

PCR amplification, HIV-1 Env cloning, identification of 
functional Envs, and sequence analysis
Genomic DNA was extracted from PBMC infected with
NB2, NB6, NB7, NB8, NB23, NB24, NB25 and NB27 pri-
mary isolates using a QIAmp genomic DNA purification
kit (Qiagen) according to the manufacturers' protocol.
Viral RNA was isolated from 1 ml of IK1-PA and IK1-A pri-
mary isolates using a QIAmp UltraSense viral RNA isola-
tion kit (Qiagen), according to the manufacturers'
instructions. cDNA was reversed transcribed from viral
RNA using SuperscriptIII RT (Invitrogen) and random
hexamers, according to the manufacturers' protocol. An
approximately 2.1 kb fragment spanning the KpnI to
BamHI restriction sites in HIV-1 env (corresponding to
nucleotides 6348 to 8478 in HXB2) was amplified by PCR
using nested primers and Expand high fidelity DNA
polymerase (Roche diagnostics), as described previously
[56,57]. The outer primers were env1A and env1M [83],
and the inner primers were Env-KpnI and Env-BamHI
[56,57]. PCR cycling consisted of an initial denaturation
step at 94°C for 2 min followed by 9 cycles of 94°C for 15
s, 60°C for 30 s and 72°C for 2 min, then a further 20
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cycles of 94°C for 15 s, 60°C for 30 s and 72°C for 2 min
but with a 5 s increasing extension time for each cycle, fol-
lowed by a final extension at 72°C for 7 min. The prod-
ucts of 3 independent PCR reactions were purified and
pooled, then cloned into the pSVIII-HXB2 Env expression
plasmid [83] by replacement of the 2.1 kb KpnI to BamHI
HXB2 env fragment. Thus, the resulting Env clones con-
tain the entire gp160 coding region of primary virus-
derived env genes except for 36 amino acids at the N ter-
minus and 105 amino acids at the C terminus, which are
derived from HXB2. Three to 4 functional Env clones from
each virus were identified by the ability to support entry
when pseudotyped onto Env-deficient GFP reporter
viruses and used in single round entry assays in JC53 or
Cf2-CD4/CCR5/CXCR4 cells, and by Western blot analy-
sis of gp120/gp160 in transfected 293T cells and fusion
assays. The coreceptor usage of functional Env clones was
verified by single round entry assays in Cf2-CD4/CCR5
and Cf2-CD4/CXCR4 cells infected with Env-pseudo-
typed GFP reporter viruses, as described previously
[56,84]. Envs were sequenced by Big Dye terminator
sequencing (Applied Biosystems) and analyzed using a
model 3100 Genetic Analyzer (Applied Biosystems).

Env mutagenesis
Mutagenesis to introduce or remove Asn at position 362
in gp120 was performed using the QuikChange II site-
directed mutagenesis kit (Stratagene) according to the
manufacturer's instructions. Mutagenesis primers were
designed to span the CD4 binding loop region corre-
sponding to nucleotides 7297 to 7325 of HXB2 for con-
trol R5 Env clones ADA, YU2, and JR-CSF and primary A-
R5 Env clones NB2-C4, NB6-C3, NB7-C1 and NB8-C4.
The primers used in the mutagenesis studies are shown in
Additional file 1. Envs mutants were sequenced to con-
firm the presence of the mutated residue.

Western blot analysis
For analysis of Env expression, 293T cells were co-trans-
fected with 8 µg of pSVIII-Env plasmid and 2 µg pSVL-Tat
plasmid using the calcium phosphate method. At 72 h
after transfection, cells were rinsed twice in PBS and resus-
pended in 400 µl of ice cold lysis buffer (0.5% [vol/vol]
NP-40; 0.5% [wt/vol] sodium deoxycholate; 50 mM
NaCl; 25 mM Tris-HCl [pH 8.0]; 10 mM EDTA, 5 mM
benzamidine HCl; and a cocktail of protease inhibitors)
for 10 min, followed by centrifugation at 15,300 × g for 10
min at 4°C to remove cellular debris. Cell lysates were
separated in 8.5% (wt/vol) sodium dodecyl sulfate-poly-
acrylamide gel electrophoresis (SDS-PAGE) gels and ana-
lyzed by Western blotting using rabbit anti-gp120
polyclonal antisera. Env proteins were visualized using
horseradish peroxidase-conjugated anti-rabbit immu-
noglobulin G antibody and enhanced chemilumines-
cence (Promega).

Fusion assays
Fusion assays were conducted as described previously
[43,45,71,85] with minor modifications. Briefly, 293T
effector cells co-transfected with 3.4 µg of Env-expressing
plasmid and 0.6 µg pSVL-Tat plasmid using Lipo-
fectamine 2000 (Invitrogen) were mixed with Cf2-Luc tar-
get cells that had been co-transfected with 2 µg of
pcDNA3-CD4 and 6 µg of pcDNA3-CCR5, and incubated
at 37°C in replicate wells of 96-well tissue culture plates
containing 200 µl of culture medium. Cells from replicate
wells were harvested at 2, 4, 6, 8, 10 and 12 h post-mixing
and assayed for luciferase activity (Promega) according to
the manufacturers' protocol. 293T cells transfected with
pSVL-Tat alone were used as negative controls to deter-
mine the background level of luciferase activity. In exper-
iments analysing the ability of T-20 to inhibit Env
function in fusion assays, the 10 h time point was used for
analysis. To control for cell surface Env expression levels
in 293T effector cells, Env expression was measured by
flow cytometry using pooled AIDS serum and a FITC-con-
jugated anti-human F(ab')2 Ig (Chemicon). To account
for both the number of Env expressing cells and the fluo-
rescence intensity, the relative fluorescence was calculated
from fluorescence-activated cell sorter (FACS) profiles by
multiplying the percentage Env-expressing cells by the
mean channel fluorescence, as described previously [86].

Production and quantitation of Env-pseudotyped, 
luciferase reporter viruses
Env-pseudotyped, luciferase reporter viruses were pro-
duced by transfection of 293T cells with
pCMV∆P1∆envpA, pHIV-1Luc and pSVIII-Env plasmids
using Lipofectamine 2000 (Invitrogen) at a ratio of 1:3:1,
as described previously [56,79,87,88]. Supernatants were
harvested 48 h later and filtered through 0.45 µm filters.
Recombinant luciferase reporter viruses were ultracentri-
fuged through a 25% (vol/vol) sucrose cushion at 25,000
rpm for 2 h at 4°C using a Beckman Ultra high speed cen-
trifuge and a SW28 rotor, resuspended in 2 ml culture
medium, aliquotted and stored at -80°C. The TCID50 of
virus stocks was determined by titration in JC53 cells.

Analysis of HIV-1 entry kinetics
Time-of-addition experiments using the HIV-1 fusion
inhibitor T-20 and Env-pseudotyped luciferase reporter
viruses were conducted to measure the entry kinetics of
Env. This method was based on that recently described by
Olivieri et al., [68] with the following modifications. Two
hundred TCID50 of Env-pseudotyped luciferase reporter
virus (equating to an MOI of 0.02) was added to replicate
wells of JC53 cells. Fifty micrograms of T-20 per ml was
added to the replicate wells at 0, 10, 20, 30, 40, 50 60 and
120 min post-infection. This concentration of T-20 was
empirically determined to be completely inhibitory for
each of the Env-pseudotyped luciferase reporter viruses
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tested when added to virus before infection of JC53 cells
(data not shown). After 2 h, the virus inoculum was
removed and the cells were washed twice prior to addition
of fresh culture medium containing 50 µg of T-20 per ml.
Cells were harvested 48 h later and assayed for luciferase
activity (Promega) according to the manufacturers' proto-
col. The maximum delay time after addition of virus to
JC53 cells when addition of 50 µg per ml of T-20 can still
completely inhibit HIV-1 entry was calculated (Max. delay
of entry). For these analyses, inhibition of entry was
defined as luciferase activity measurements <3-fold above
background, as determined using reporter virus pseudo-
typed with a non-functional Env (∆KS Env) [25]. Luci-
ferase activity was plotted against time of T-20 addition
using Prism version 4.0c (GraphPad Software, San Diego,
CA.). Data were fitted with a nonlinear function, and Max.
delay of entry was calculated by least squares regression
analysis of time-of-addition curves. Envs with lower Max.
delay of entry values were interpreted to have faster entry
kinetics, and vice-versa.

Neutralization assays
Human mAbs against HIV-1 gp120 (IgG1b12, 2G12) and
the polyclonal antibody HIV-Ig have been described pre-
viously [89-93]. The ability of these antibodies to neutral-
ize the infectivity of Env-pseudotyped luciferase reporter
viruses was assayed using JC53 cells. Two hundred TCID50
of each Env-pseudotyped luciferase reporter virus (equat-
ing to an MOI of 0.02) was incubated with 10-fold
increasing concentrations of each mAb (0.0005 to 50 µg/
ml) or HIV-Ig (1 to 10,000 µg/ml) for 1 h at 37°C. The
virus-Ab mixtures were then used to inoculate JC53 cells
overnight at 37°C. Cells were rinsed twice with culture
medium to remove residual virus inoculum and incu-
bated a further 48 h at 37°C. Virus infectivity was then
measured by assaying luciferase activity in cell lysates
(Promega), according to the manufacturers' protocol.
Negative controls included mock-infected cells that were
incubated with culture medium instead of virus, and cells
treated with luciferase reporter virus pseudotyped with the
non-functional ∆KS Env. After subtracting background
luciferase activity, the amount of luciferase activity in the
presence of antibody was expressed as a percentage of the
amount produced in control cultures containing no anti-
body. The percent inhibition was calculated by subtract-
ing this number from 100. Data were fitted with a
nonlinear function, and fifty percent inhibitory concen-
tration (IC50) and IC90 values were calculated by least
squares regression analysis of inhibition curves, as
described previously [36,45,85].

Structural modeling
Proteins structures of unliganded SIV gp120 (2BF1)
[66,94] and the V3 loop-containing protein structure of
JR-FL (2B4C) [95] were obtained from the RCSB Protein

Data Bank. Structural modelling was performed using
Swiss PDB Viewer. Hydrogen bond analysis was per-
formed using CSU software [96].

Nucleotide sequence accession numbers
The Env nucleotide sequences reported here have been
assigned GenBank accession numbers EU308533 to
EU308568.
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