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Abstract

Background: The HIV-I nucleocapsid protein (NC) is formed of two CCHC zinc fingers flanked
by highly basic regions. HIV-1 NC plays key roles in virus structure and replication via its nucleic
acid binding and chaperoning properties. In fact, NC controls proviral DNA synthesis by reverse
transcriptase (RT), gRNA dimerization and packaging, and virion assembly.

Results: We previously reported a role for the first NC zinc finger in virion structure and
replication [1]. To investigate the role of both NC zinc fingers in intracellular Gag trafficking, and
in virion assembly, we generated series of NC zinc fingers mutations. Results show that all Zinc
finger mutations have a negative impact on virion biogenesis and maturation and rendered defective
the mutant viruses. The NC zinc finger mutations caused an intracellular accumulation of Gag,
which was found either diffuse in the cytoplasm or at the plasma membrane but not associated with
endosomal membranes as for wild type Gag. Evidences are also provided showing that the
intracellular interactions between NC-mutated Gag and the gRNA were impaired.

Conclusion: These results show that Gag oligomerization mediated by gRNA-NC interactions is
required for correct Gag trafficking, and assembly in HIV-l producing cells and the release of
infectious viruses.

the MA protein is located under the virion envelope,
which derives from the infected cell membrane. In the

Background
The retroviral Gag polyprotein precursor is formed of

three essential domains, namely the matrix (MA), the cap-
sid (CA) and the nucleocapsid (NC), which upon protease
mediated processing of Gag constitute the architecture of
the infectious mature viral particle. The three Gag
domains contain the critical determinants that orchestrate
virus assembly in the infected cell, via membrane-MA, CA-
CA and NC-gRNA interactions [2-8]. In the mature virus,

case of HIV-1, MA is myristoylated and contains basic
amino acids within its N-terminus required for Gag-mem-
brane binding and determinants that specifically interact
with the cellular adaptator proteins AP-3 and AP-2. These
AP proteins contribute to the intracellular transport of
Gag to endosomal compartments and retroviral budding
[9-11]. The CA molecules form the outer shell of the viral
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core while NC molecules extensively coat and condense
the gRNA in the interior of the virion core [2]. HIV-1 NC
contains two zinc fingers flanked by basic regions and is
located at the C-terminus of Gag, followed by the p6
domain. This later p6 domain is required for particle bud-
ding during which the viral particles pinch-off from the
cellular membrane (reviewed in [5]. The p6 domain con-
tains a Proline-rich and a di-Leucine domains, which are
the target of the cellular proteins Tsg101 and Alix, respec-
tively, involved in the cellular class E protein sorting path-
way and the HIV-1 budding machinery [5,12,13].

HIV-1 NC has been extensively studied during the past 15
years and was shown to be implicated in virus structure,
gRNA dimerization and proviral DNA synthesis [3,4,7].
The highly basic nature of NC makes it a partner of choice
of RNA while the zinc fingers appear to provide specific
recognition of the HIV-1 Psi packaging signal necessary
for gRNA packaging [14]. Furthermore, specific RNA-NC
interactions promote Gag-Gag oligomerization which
turns out to be a prerequisite for assembly and virus bio-
genesis [15-18]. Both NC zinc fingers and basic domains
are essential for virus formation and infectivity
[1,16,17,19-21]. Mutations in NC basic residues cause
defects in Gag-viral RNA interactions and thus in HIV-1
assembly and budding [15,16,22]. More recently, new
insights into the role of NC in Gag assembly show that
mutations and deletions in the basic residues of NC pre-
vent Gag-Gag multimerization but not Gag association
with cellular membranes [23].

In the present study, we explored the influence of the NC
zinc fingers in HIV-1 assembly by analyzing intracellular
Gag and gRNA localization, Gag/membrane association
and virion morphogenesis.

Methods

Plasmid DNA

HIV-1 pNL4-3 DNA was provided by the National Insti-
tute of Health, USA. The HIV-1 AZF1 and H23C Gag
mutant DNA constructs were described elsewhere [1]. The
HIV-1 GagANC proviral DNA construct [24] was provided
by A.Cimarelli. The HIV-1 AZF2 and H44C Gag mutants
were obtained by site directed mutagenesis on the pNL4.3
HIV-1 molecular clone as described [1] using the follow-
ing oligonucleotides
5'CCTGTCTCTCAGTACCGCCCITITTCCTAG3' and
5'CTTTCATTTGGCATCCTTCC3', respectively. The double
AZF1ZF2 and H23C/H44C Gag mutants were obtained by
cloning the Apal-Agel fragments of H44C and AZF2 into
the H23C and AZF1 pNL4.3 mutant clone, respectively.
The pcDNA3.1 plasmid (Clonetech) was used as a control
DNA vector.
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Mammalian cell culture, DNA transfection and virus
production

The human 293T cell line, HeLa P4 cells expressing the
CD4 receptor and the LacZ gene under the control of the
HIV-1 LTR and Hela cells used were grown in Dulbecco's
modified essential medium (DMEM), all supplemented
with 10% fetal calf serum and antibiotics. 293T were
transfected using the calcium phosphate method [18]. For
immunofluorescence staining, HelLa cells were transfected
with DNA using the Fugene® transfection method (Invitro-
gen). To analyse virus production, cells were washed with
PBS and medium was changed 5 h post-transfection. Cul-
ture supernatants containing virus particles were har-
vested 24 hours later and clarified by filtration (0.45 pm,
Nalgen). The cells were then washed and lysed with 0,5%
Triton-PBS.

Virus preparation

Virions were purified from filtered culture supernatants by
pelleting them through a cushion of 20% sucrose in TNE
(100 mM NaCl, 10 mM Tris HCl, pH 7.4 and 1 mM
EDTA) at 35 K rpm for 1 h in a Beckman SW41 rotor.

CAp24 antigen ELISA

To measure viral production, a CAp24 ELISA test was
used. Aliquots of the same volume of viral supernatants
(free CAp24 + virion associated = S) and pellet virions by
ultracentrifugation (V) were resuspended in cell media
with 0.5% Triton, and administered on 96 well plates
coated with 10 pg/ml anti-CAp24 antibodies (23A5G and
3D10GYB8, BioMérieux) and then blocked with 10%
horse serum in PBS-0.05% Tween-20. A biotinylated anti-
CAp24 antibody (bioMérieux) was added and the ELISA
was revealed with streptavidin and orthophenylene-
diamine (OPD)-H,0, (Sigma). The plate was read on
ELISA-reader at 490 and 630 nm.

HIV Infectivity assays
Virus infectivity was assessed on HeLaP4 cells as described
in [25]. The infectivity was determined by counting the
number of blue cells.

Genomic RNA analysis by Dot-Blot

For viral RNA analysis, virus pellets were resuspended in
TNE buffer and lysed in 1% SDS, 100 ng of proteinase K
per ml. Nucleic acids were extracted twice with phenol-
chloroform and ethanol precipitated. Pellets were resus-
pended in DNase buffer (40 mM Tris-HCI, pH 7.5, 6 mM
MgClI2, 10 mM NaCl, 10 mM dithiotreitol, 200 U of RNa-
sin per ml) and contaminant plasmid DNA was digested
with RQ1 DNase (100 U/ml) for 20 min at 37°C. RNA
was purified by phenol-chloroform extraction, ethanol
precipitated and resuspended in water. Hybridization
with a random 32P-labeled 5.3 kb SacI-Sall fragment of
the pNL4-3 plasmid corresponding to gag and pol
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sequences and quantitative analyses were done as previ-
ously described [19].

Subcellular fractionation

Twenty-four hours post transfection, 293T cells were
washed with PBS and removed from the plate in PBS-1
mM EDTA, pelleted by centrifugation at 600 x g, resus-
pended in 1 ml of a homogenization buffer containing 10
mM Tris-HCI, pH 7.5, 0.25 M sucrose, 1 mM EDTA and
protease inhibitors (Complete Mini EDTA-free from
Roche), and then fragmented using a glass homogenizer.
Nuclei were eliminated by centrifugation at 600 x g for 10
min at 4°C. The resulting post-nuclear supernatant (PNS)
was subjected to subcellular fractionation on OptiPrep®
gradient for the separation of different membrane com-
partments as described elsewhere [25]. Fractions were col-
lected and proteins were analyzed by SDS-PAGE and
immunoblotting.

Immunoblotting

Viral proteins were separated on 10% SDS-PAGE and
detected by immunoblotting with a mouse anti-CAp24
(P3D10GY9BS8, BioMérieux), and the cellular protein in
the gradient was detected with the mouse anti-Lamp2
(Santa Cruz Biotechnology Inc.). The corresponding
immunoglobulins conjugated with horse radish peroxi-
dase (HRP) (DakoCytomation) were used and the signal
was detected using SuperSignal® West Pico Chemilumi-
nescent Substrate (Pierce).

RT-PCR

Fractions from Optiprep® gradients were resuspended in
equal volumes of a lysis buffer containing 100 mM Tris-
HCI, pH 7.4, 20 mM EDTA, 2% SDS, 200 mM NaCl and
200 pg/ml proteinase K and incubated at 37°C for 30
min. RNA was purified by phenol/chloroform extraction,
and precipitated with ethanol. RNA samples were pelleted
by centrifugation at 4°C, 14 000 rpm for 30 min, and
resuspended in RNAse-free water. Contaminant DNA was
eliminated by digestion with RQ1 DNAse. RNA aliquots
were reverse transcribed using the Invitrogene RT assay.
The RT reaction was followed by PCR of the cDNA using
primers for the cPPT as follows: up cPPT- nt. 4775
GCGCGATCGATCCACAATTTTAAAAGAAAAG-
GGGGGATTG, and down cPPT- nt. 4907 GCGCGATC-
GATTGTAATAAACCCGAAAATTTTG. The PCR DNA
product of 132 bp was separated on a 2% agarose gel and
visualized by ethidium bromide staining. The gel images
were quantified by Metamorph software and semi-quanti-
tave analysis of the gRNA was evaluated.

Immunofluorescence staining and confocal microscopy
imaging

293T cells grown on poly-lysine coated coverslips and
HelLa cells were transfected and, 24 h later, fixed in 3%
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paraformaldehyde-PBS for 20 min. After fixation, cells
were permeabilized using 0.2 % Triton, and then incu-
bated in 1% BSA-PBS with primary antibodies: mouse
anti-CAp24 (BioMérieux or NIH), rabbit anti-MAp17
(NIH, USA), mouse anti-Lamp1 and anti-Lamp3 (Santa
Cruz Biotechnology Inc.). The corresponding fluorescent
Alexa® 488 and 546-conjugated secondary antibodies
were used (Molecular probes). Coverslips were washed
and mounted on microscope slides with Mowiol (Sigma).
Images were acquired on Axioplan 2 Zeiss CLSM 510 con-
focal microscope with Argon 488/458, HeNe 543 lasers
and plan apochromat 63x 1.4 oil objective, supplied with
LSM 510 software. The percentage of colocalization
(merge signals) was evaluated by the Metamorph software
(urQ).

Fluorescent in situ hybridization (FISH)

Transfected 293T or HeLa cells were grown on poly-lysine
treated coverslips and 24 h post-transfection were washed
with PBS and fixed as described before [26] and stored at
4°C in 70% ethanol. Detection of the HIV-1 genomic
RNA was performed by FISH [26] with a Cy3-conjugated
oligonucleotide (GagHIVCy3), corresponding to position
1524 to 1563 of the HIV-1 sequence (MWG-Biotech). The
probe was adjusted to 1 ng/ul in 66% formamide, 0.2x
SSC, 2 pg/pl tRNA and 2 pg/ul of sheared salmon sperm
DNA. After a denaturation step of 5 min at 95°c¢, the
probe was mixed V/V with a solution containing 20% sul-
fate dextran, 4 x SSC, 0,04% RNase-free BSA and 4 mM
Vanadyl-ribonucleoside complex, and applied to each
coverslip. Hybridization was performed at 37°C over-
night in a humid chamber. 24 hs later, the coverslips were
washed twice with 50% formamide, 2x SSC at 37°¢, fol-
lowed by 3 washes with 50% formamide, 1x SSC at 37°c¢,
and mounted on a slide in Vectashield with DAPI (Vector
Laboratories Inc.). Image acquisition and analysis were
performed in the Montpellier RIO Imaging microscopy
facility. Images were taken with a Leica DMRA wide-field
microscope and acquisition was performed with a Cool-
snap HQ camera driven by Metamorph software.

Transmission electron microscopy

HeLaP4 cells expressing HIV-1 or either one of the NC
zinc finger mutants were fixed in 2% glutaraldehyde, 0.1
M Sorensen phosphate buffer, pH 7.4 for 30 min at 4°C.
Then, cells were washed 3 x 10 min with phosphate buffer
containing 0.2 M sucrose and post-fixed in 1% OsO4 that
was 1.5% with respect to potassium ferrocyanide for 1 hr
at room temperature. Cells were dehydrated through
graded ethanol and embedded in Epon 812. Thin sections
were cut and picked up on 200 mesh copper grids, stained
with uranyl acetate and counter-stained with lead citrate.
Specimens were analyzed with a Philips CM120 electron
microscope (CMEABG - Villeurbanne - France).
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Results

I- Mutations in NC zinc fingers impair virus production,
maturation, gRNA packaging and infectivity

Mutations were generated in the HIV-1 NC zinc fingers
(ZF), namely ZF1 and ZF2, so as to change or impair Zn2*
coordination known to modify the central globular
domain of NC formed by the ZFs [1,19,21,27,28]. Four
HIV-1 constructs containing ZF mutations were analyzed,
namely H44C, H23H44C, AZF2 and AZF1ZF2 (Fig. 1A),
while two additional mutants, namely H23C and AZF1
have previously been characterized [1]. HIV-1 wild-type
and ZF mutant virions (V) and cell lysate (Cell) were
recovered and analyzed by immunoblotting (Fig. 1B).

To monitor the impact of the ZF mutations on virus pro-
duction, the levels of CAp24 present in the supernatant
(S) or as viral particles (V) were determined by ELISA
(Table 1). In comparison with wild-type, all the ZF
mutants were impaired for CAp24 release, reducing parti-
cle production by more than two fold, with a 3 to 5-fold
reduction for the mutations affecting both zinc fingers in
comparison with wild-type (Table 1). Furthermore, when
the amounts of virus (V) were determined and compare to
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the total CAp24 production, the impact of the ZF muta-
tions was found to be even more pronounced since delet-
ing or mutating the second ZF extensively decreased
particle production found to be below 10% of the wild-
type level (Table 1, column V). The most drastic effect was
observed when both ZFs were deleted because less than
1% of virus was released in particular for AZF1ZF2
mutant, just as for an HIV-1 mutant carrying the complete
deletion of NC (Table 1, column V). Very similar results
were obtained for the HIV-1 NC-ZF mutants expressed in
293T cells (data not shown). In conclusion, in both 293T
and HeLaP4 cells mutating or deleting both ZFs prevented
the proper assembly and efficient production of HIV-1.

Viral proteins present in cells and viral particles were ana-
lyzed by immunoblotting using anti-CAp24 (Fig. 1B). In
wild-type virions, the vast majority of Gag has been proc-
essed (Fig. 1B, lane wt, V) while large amounts of unproc-
essed Gag and p41/p49 were found in the ZF mutant
virions (Fig. 1B, lanes V). In comparison with the wild-
type HIV-1, processing of Gag in viral particles was par-
tially changed by mutating the NC zinc fingers, as evi-
denced by an accumulation of the MA-CA precursor (p41)

A c ﬁc
23 44
GKEG’H| GKEG’HQ
G‘“Zn A Zn M
N %, NK K / %, [l)(
1 e % T v =
IQKGNFRNQRKTVK RAPRKKG r’ERQAN
TAZF1 AZF2
B , ANC ., WT , AZF1ZF2  AZF2 H23H44C  HAAC  H23C
V Cel V Cel V Cll V Cel vy gell V Cel vV Cel
Pr55Gag — - a» o d - - a» "™ <« Pr55Gag
Gag-ANC S "PsE -8=5=8:
Y . - ~ & W s -~ @ | <p24ip25(CA)
Anti-CAp24
Figure |

A. The HIV-1 NC Zinc finger mutants. The sequence of HIV-I NCp7 (I-55) is shown. Mutations H23C and H44C are
indicated. Deletions AZF| and AZF2 correspond to a complete deletion of the zinc fingers (ZF). ANC was described else-
where [24]. B. Gag expression and maturation in HeLaP4 cells. HelaP4 cells were transfected with the pNL4.3 DNA
(wild-type or either one of the NC mutants) and subsequently harvested and lysed. Viral proteins were analyzed by SDS-PAGE
and revealed by immunoblotting with anti-CAp24. Inmunodetection of the Gag maturation products. Wild-type HIV-1 and NC
mutants are indicated. Lanes "V" and "Cell" representing pelletable virions from culture medium and cell lysates, respectively.
Pr55Gag, p41(MA-CA), p49(MA-CA-p2-NC) and CAp24/p25 are indicated by arrows.
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Table I: Properties of HIV-1 NC zinc fingers mutants produced
by HeLa-P4 cells

Virus total p24 % of p24in  relative levels of  Infectivity
release (S) virions (V) gRNA in virions
wt 100% 100% 100% +
H23C 37+9 31.5+45 10£3 b
H44C 18.5+95 31 3515 -
AZF2 436 8305 51 -
H23CH44C 247 £ 12 177 410 -
AZFIZF2 23710 1 £0.1 3505 -
ANC ~10 05+0.1 nd -2

Viral production was assessed by Elisa test: The percentage of CAp24
found in filtered viral supernatant and in virions after
ultracentrifugation (V) in comparison to wt (the numbers are
representative of at least 2 experiments). The relative level of gRNA
in virions was assessed by dot blot. The infectivity was assessed on
HelLaP4 relative to the same amount of gRNA. References: (a) by
[24]; (b) by [1]. Note that AZF| is described in [1].

and probably MA-CA-p2-NC (p49) (Fig. 1B, lanes V). The
same defect in Gag processing was observed following
mutating or deleting the first ZF [1]. Processing of Gag was
modified by the H23H44C mutations and AZF1ZF2 dele-
tions, as indicated by the accumulation of partially
cleaved Gag products, in particular p41 in virions (Fig. 1B,
see arrows; compare lane "V" of these ZF mutants with
lane "V" for the WT). In particular, these two NC mutants
lack p49; thus the absence of p49 could be due to an
undetectable level of protein or that mutations in both
ZFs still permit maturation of p49. All the other NC
mutants show p41 and p49 accumulation in the virions
(Fig. 1B, lanes V), indicating a defect in maturation cleav-
age between NC-p1 or p1-p6 (that can be due to a confor-
mational change of NC induced by ZF mutation, as
previously reported [27]. All NC mutants show intracellu-
lar Gag and p41/49 accumulation, except for limited
amounts of CAp24/25, suggesting some defect in the bud-
ding process (Fig 1B, lanes Cell). These results suggest that
ZF mutants have a negative impact on virus budding and
Gag processing.

Although the viral production was low, enough virus
could be recovered to monitor the relative level of
genomic RNA (gRNA) in virions. The level of gRNA in vir-
ions was analyzed by dot blot hybridization (not shown)
and, as reported in Table 1, none of the NC mutants har-
bored a wt gRNA level. In fact, mutations in the ZF
reduced gRNA levels by 10 to 20 fold in comparison with
wild-type HIV-1. Finally, the infectivity of HIV-1 ZF
mutants was assessed and none of the mutants were infec-
tious (Table 1).

2- Intracellular accumulation and localization of Gag
proteins with NC ZF mutations

Since Gag with ZF mutations accumulated in cells, we
examined the intracellular Gag localization in Hela cells
by immunofluorescence and confocal microscopy using
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) H23CHA44C (1)

- H23CHAAC (2)

AZFAZF2(3)

Figure 2

Localization of HIV-1 Gag carrying NC zinc finger
mutations by immunofluorescence microscopy. Cells
were transfected with the indicated viral DNA and then fixed
and stained with an anti-CAp24 antibody, as described in
material and methods. In addition, cytoplasmic ring-like
membranes were found labeled with these two latter Gag
mutants (zoomed picture) in less than % of the cells. Note
that the images obtained for NC(AZFIZF2) was also found
for NC(H23H44C).

an anti-CAp24 antibody (Fig. 2). Wild-type HIV-1 Gag
displayed a punctuate pattern in the cytoplasm and was
found in patches at or near the plasma membrane (PM)
(Fig. 2), in agreement with the data of [29,30]. As shown
in Fig. 2, NC mutated Gag accumulated at the PM and in
the cytoplasm. More precisely, Gag with a mutation or a
deletion of the first ZF (AZF1 and H23C) preferentially
accumulated in patches at the PM while Gag carrying
mutations in the second ZF (AZF2 and H44C) accumu-
lated at the PM and in intracellular vesicles (Fig. 2). Simi-
lar results were observed with 293T cells (data not
shown). The most dramatic effect was observed with Gag
carrying mutations in both ZFs, namely Gag-AZF1ZF2 and
Gag-H23H44C, which strongly accumulated at the PM
and sometimes in intracellular membranes with "rings"-
like structures (~1% of the cells) (Fig. 2, AZF1ZF2 zoomed
picture). In addition, these NC-Gag mutants also showed
a very diffuse pattern in the cytoplasm, as if mutated Gag
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had lost membrane association (Fig. 2, see H23H44C).
The complete deletion of NC domain of Gag caused an
overall accumulation, where Gag-ANC was found essen-
tially at the PM, in the cytoplasm and even sometimes in
the nucleus (Fig. 2, ANC).

In order to assess the nature of the membranes where the
ZF mutant Gag was found, cells expressing either Gag-
AZF1ZF2 or Gag-H23H44C were analyzed by immunoflu-
orescence staining using late endosomal (Lamp3) and lys-
osomal (Lamp1) markers (Fig. 3). Wild-type HIV-1 Gag
colocalized with Lamp3-containing vesicles (~30%), i.e.
late endosomes, but very few with Lampl (less than
10%), i.e. lysosomes (Fig. 3A). For the AZF1ZF2 NC
mutant, Gag was found either in the cytoplasm, poorly
associated with the Lamp1 marker (Fig. 3B), or at the PM.
Similar observations were made with the H23H44C NC
mutant (data not shown). This latter Gag mutant weakly
localized with Lamp3(+) vesicles (7 + 4%) and with
Lamp1(+) vesicles (5 + 2%). Thus, it appears that the dou-
ble ZF-mutated Gag accumulated in the cytosol and
strongly at the PM, and is delocalized from endosomal
membranes in comparison with the wild-type Gag. Taken
together these results suggest that upon synthesis NC-
mutated Gag molecules are targeted mainly to the PM (or
to intracellular ring-shape membranes, that can derived
from PM invaginations) where they concentrate, resulting
in a strong intracellular Gag retention and a decrease in
virus production.

3- Influence of ZF mutations on intracellular genomic RNA
localization

Intracellular localization of the gRNA was assessed by
FISH analysis in HeLa cells expressing either HIV-1 wild-
type, AZF1ZF2- or H23H44C-NC mutant (Fig. 4). For
wild-type HIV-1, the gRNA labeling was located in the
nucleus, in the cytoplasm and at distinct PM locations
(Fig. 4A, see arrows). With the NC mutants, signals were
found in the nucleus and in the form of patches in the
cytoplasm but not at the PM (Fig. 4B and 4D). Thus, the
main difference between the wild-type and the ZF
mutants was that the gRNA of the ZF mutants accumu-
lated in the cytoplasm.

These results suggest that ZF-mutated Gag is poorly asso-
ciated with the gRNA at the cell surface and that the
AZF1ZF2 and H23H44C NC mutations alter intracellular
Gag-gRNA interactions.

4- NC ZF mutations prevent intracellular Gag-RNA
localization in late endosomes

The fact that intracellular HIV-1 Gag molecules co-frac-
tionate with late endosomal markers [25] prompted us to
examine the localization of ZF-mutated Gag and the
gRNA using the same subcellular fractionation and gradi-
ent protocols as before (see methods). Post-nuclear super-
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natants from 293T cells expressing either wild-type HIV-1,
the AZF1ZF2-NC or ANC mutant were fractionated and
each fraction was analyzed for its content in viral proteins
and gRNA (Fig. 5A, 5B and 5C, respectively). In agreement
with our previous findings [25], wild-type Gag was found
at the bottom of the gradient together with the gRNA (Fig.
5A, fractions 18-21) and associated with small vesicles or
in dense complexes with very few gRNA (fractions 14—
16). In the late endosomal/lysosomal fractions, Gag and
processed proteins were found together with the gRNA
(fractions 8-12), indicating that Gag and the viral RNA
are most probably associated in the form of viral ribonu-
cleoprotein complexes. Only small amounts of Gag were
present at the PM together with the gRNA (fraction 1). By
immunofluorescence microscopy, Gag was present in
patches at the PM and in the cytoplasm, ressembling the
gRNA pattern by FISH (see IF and FISH pictures, Fig. 5A).

In the case of the AZF1ZF2-NC mutant, the subcellular
fractionation only reveals the mutated Gag and the viral
RNA located at the bottom of the gradient (Fig. 5B, frac-
tions 18-20), probably associated with active ribosomes.
Semi-quantitative analysis of the gRNA level by RT-PCR
show that 70% of the gRNA for AZF1ZF2-NC mutant and
15% for ANC-Gag mutant is remaining in comparison
with wild-type gRNA (100% in the whole gradient), indi-
cating that deletion of the NC domain results in gRNA
instability, possibly due to impaired interactions between
Gag and the gRNA. In addition, colocalization of the
mutated Gag and the gRNA disappeared at the level of late
endosomes and at the PM (Fig. 5B, fractions 7-10, and
fraction 1, respectively). Abnormal processed mutated
Gag was found in fractions 14-15 in comparison with
wild-type Gag, suggesting a defect in Gag targeting and/or
budding. As in Hela cells, we observed by immunofluo-
rescence microscopy of 293T cells that mutated Gag accu-
mulated in endosomal membranes and in discrete
domains at the PM (Fig. 5B, see IF). By FISH, the gRNA
accumulated in the cytoplasm, and again the PM labeling
was lost (Fig. 5B, see FISH). Similar results were obtained
upon deletion of NC (Fig. 5C) since GagANC was found
all over the gradient, in agreement with the immunofluo-
rescence analysis where Gag was evenly distributed within
the cell (Fig. 5C, see IF) as well as the gRNA (see FISH).
Similar results were obtained with the H23H44C-Gag
mutant (data not shown).

Taken together, these results indicate that the ZF muta-
tions impair intracellular Gag/gRNA association, most
probably due to an alteration of their interactions.

5- Impact of the NC zinc finger mutations on the structure
of the viral particles as seen by electron microscopy

To analyze the influence of ZF-mutations on virus assem-
bly, virions produced by HeLa cells expressing either one
of the HIV-1 ZF-mutants were collected and processed for
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HIV-1 wt {

AZFAZF2 {

\ aMA

Figure 3
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Plasma membrane accumulation of the HIV-1 NC(AZF1ZF2) Gag. Hela cells were transfected with wild-type HIV-1
(A) or NC(AZFIZF2) (B) DNA, then fixed and stained for the detection of Gag with an anti-MAp | 7; with an anti-CDé63/Lamp3
for late endosomes, and with an anti-Lamp| for lysosomes, as indicated. Zoomed-| picture shows wild-type Gag colocalization
with CD63/Lamp3 late endosomal marker (26 + 6%) and zoomed-2 picture with the Lamp| marker (6 + 2%). In contrast,

zoomed-3 picture shows less colocalization of this mutant with Lamp3 in comparison to wt (6 + 4%). Zoomed-4 picture shows
an accumulation of NC(AZF|ZF2)-Gag mutant at the PM, and less or equal with Lamp | (+) intracytoplasmic vesicles (3 + 1%).

electron microscopy as described before [1] (Fig. 6). Most
HIV-1 wild-type virions show a mature morphology with
either a conical or central globular nucleocore (Fig. 6, wt).
NC mutants H44C and AZF2 exhibited either an imma-
ture morphology or a poorly defined core structure (Fig. 6,
H44C; AZF2). NC mutant H23H44C and AZF1ZF2 had
often an immature morphology or contained a small core-
like structure located close to the viral envelope (Fig. 6,
H23H44C and AZF1ZF2). The arrows indicate the elec-
tron-dense structure at the PM of AZF1ZF2-NC mutant,

showing an accumulation of mutated Gag unable to com-
plete particle assembly and release.

Data presented in Table 2 show that HIV-1 particles had a
canonical morphology with either a conical or a rod-like
core with with a mean particle diameter of about 110 nm
(Table 2). All the ZF NC mutant particles displayed drastic
changes in the core structure with sometimes an imma-
ture-like morphology (Fig. 6, see H44C, AZF2, H23H44C
and AZF1ZF2) and displaced or poorly defined cores or
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Wt HIV-1 HIV-1 GagAZF1ZF2

Hela mock HIV-1 GagH23CH44C

Figure 4

Intracellular localization of the gRNA in cells
expressing the NC zinc finger-mutant Gag. Hela cells
were transfected with wild-type HIV-1 (A), or NC(AZFIZF2)
(B), or NC(H23H44C) (D) DNA, then fixed and stained for
the detection of the gRNA by FISH, as described in material
and methods. The fluorescent Cy3-labelled oligonucleotide
probe hybridized to the HIV-1gag gene (in red). The nucleus
was stained with Dapi in the "mock” HIV-negative cells (C).
The arrows indicate the accumulation of wt gRNA at the PM.

even two core structures (Table 2). All mutant virions har-
bored a defect in the conical shape of the core (Table 2)
that can be correlated with the defect in Gag maturation
(Fig. 1B, lanes V). In the case of HIV-1 AZF1ZF2, the
mutant has no distinct core and seemed to accumulate at
the budding site but unable to complete the process since
we observed electron-dense curvatures of the PM reminis-
cent of an accumulation of Gag at the PM (Fig. 6, see white
arrows).

Taken together, these results show that HIV-1 NC zinc fin-
gers play an important role in viral core structure and sug-
gest that NC-NC and/or NC-gRNA interactions are
essential for HIV-1 Gag assembly and particle release.

Discussion

The retroviral Gag polyprotein orchestrates retrovirus
assembly in the infected cell via two platforms, which are
a cellular membrane and a RNA (reviewed in [2,6]. The
current view of the assembly process implies that the
newly made Gag binds to the cellular membrane by the N-
terminal myristoylated domain and stretches of basic res-
idues of the matrix domain (reviewed in [31,32], also

http://www.retrovirology.com/content/4/1/54

involving inositol phosphates/Gag interactions [33-36].
At the same time, the NC domain selectively binds the
gRNA via specific interactions with the packaging Psi sig-
nal [4], which in turn promote Gag oligomerization [15].
Although, a leucine zipper motif could functionally, at
least in part, replace NC to drive the assembly of a "mini-
mal" Gag [37]. We propose that the interactions between
Gag-NC and the genomic Psi signal will ensure both the
formation of Gag oligomers and the selective recruitment
of the gRNA. Consistent with this view, mutations in the
first NC zinc finger or the flanking basic residues result in
a strong decrease of viral particle production and infectiv-
ity [1,16,17,19,38]. Thus, it has been proposed that the
NC domain of Gag is required for the proper assembly
and release of infectious virions.

To confirm the multiple roles played by NC in HIV-1
assembly, we have examined the role of the NC zinc fin-
gers (ZF) in Gag trafficking. Taken together, our results
show that both NC zinc fingers play critical roles in the
ability of Gag to properly assemble and ultimately to bud.
In fact, all HIV-1 ZF mutants examined so far produced
particles at levels five to ten fold, or more, lower than that
of wild-type HIV-1 and were not infectious (Table 1).

In model cell lines, the wild-type HIV-1 Gag was found to
accumulate either at the PM or on intracellular tet-
raspanin-rich endosomal membranes as recently reported
[8,25,30,39-43]. Mutating the NC Zinc fingers caused Gag
to accumulate within the cell, in a diffuse manner and at
the PM (Fig. 2). Thus, mutating the NC ZF appears to pre-
vent Gag targeting to and accumulation in endosomes
(Fig. 3). This favors the view that endosomes are an
important site for virus formation and release (Fig. 3), and
also maturation since intracellular mature CAp24 was
drastically reduced in the case of the ZF mutants (Fig. 1B).
It also indicates that NC is not the major determinant for
Gag targeting to the PM, such as the basic MA domain of
Gag and phosphatidyl inositol phosphate lipids are
[8,30,34,44,45]. However, NC contributes to the localiza-
tion of Gag in late endosomes (Fig. 3 and 5).

As already stated, the other platform necessary for virus
assembly is the gRNA since it directs the oligomerization
of the newly made Gag upon binding [15,46,47]. As pre-
viously shown for mutations in the first ZF [1], we found
that mutating the second ZF and both of them strongly
impaired gRNA content in mutant virions as well as parti-
cle release (Table 1), and resulted in the production of
replication defective viruses. Staufen, a cellular RNA-bind-
ing protein involved in RNA transport and metabolism,
was reported to interact with both the gRNA and the NC
domain of HIV-1 Gag, and to have a role in HIV-1 gRNA
encapsidation and Gag assembly [48,49]. Mapping the
interaction domain between Staufen and Gag reveals the
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Figure 5

Subcellular localization of Gag and the gRNA. Subcellular fractionations of 293T cells expressing wild-type HIV-1 (A, as
in (21)) or NC(AZFIZF2) (B) or ANC (C) were analyzed by OptiPrep gradient centrifugation. Cells were broken as described
in materials and methods and the post-nuclear supernatant (PNS) was fractionated by Optiprep gradient. 20 pl of each fraction
were loaded on SDS-PAGE, and Gag and Lamp2 were analyzed by immunoblotting using anti-Cap24 and anti-Lamp2 antibodies.
Each fraction of the gradient was tested for the presence of the gRNA by RT-PCR as described in materials and methods. The
expected 132 bp DNA fragment was detected on |% agarose gel. In addition to the gradient analyses, the immunofluorescence
(IF) detections are shown, representing the cells stained with an anti-CAp24 (in green) for Gag (A) or mutated Gag (B and C),
and the FISH treatment of the 293T cells expressing HIV-1 (A) or the NC Gag mutants (B and C) for the gRNA using the Gag-
oligo-Cy3 probe (in red).
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importance of the NC domain, in particular the second ZF
[48,49]. This could explain, at least in part, the role played
by the second ZF on gRNA encapsidation if Staufen is
responsible for gRNA trafficking to the assembly site and
consequently RNA-dependent Gag oligomerization and
assembly.

However, Ott and colleagues reported that the decrease in
viral production due to NC deletion can be compensated
by an RNA binding site in HIV-1 MA domain of Gag [50].
It is very difficult to dissociate the role of NC in virus
assembly from NC-RNA interactions, which are critical for
the structure of the viral particle [22,51], rather than
assembly or budding [16,17]. Our data favor a model in
wich all events are linked and dependent upon Gag-RNA
interactions via the NC domain, required to achieve a
proper viral assembly, i.e. multimerization of Gag, Gag
oligomer targeting and trafficking, and ultimately particle
assembly, budding and release.

To better examine the role of Gag-RNA interactions in
assembly, we examined gRNA localization by FISH (Fig.
4) and by subcellular fractionation (Fig 5). The gRNA was
found in the nucleus, most probably due to provirus tran-
scription, in the cytoplasm and at the PM of cells express-
ing wild-type HIV-1 (Fig. 4), in agreement with Berthold
and Mandarelli [52]. Wild-type Gag and the gRNA were
also found at the level of late endosomes [25,53,54].
Mutating the NC ZF motifs drastically altered the cellular
distribution of the gRNA, because it was found evenly dis-
tributed within the cell and no longer associated with the
PM (Fig. 4, by FISH) or the late endosomes (Fig. 5, by gra-
dient), while the NC-mutated Gag accumulated mainly at
the PM (Fig. 3 and 5). Thus, specific Gag-gRNA interac-
tions via the NC-ZF are most probably required for proper
Gag trafficking through Gag-Gag multimer complexes. In
agreement with this view, it was reported that Gag
expressed from Psi(-) RNA diffuses throughout the cell
and shows delayed cytoplasmic colocalisation with the
gRNA [54]. The authors propose that the packaging signal
may coordinate capture of the genomic Psi(+) RNA by

http://www.retrovirology.com/content/4/1/54

Figure 6

Electron microscopy analysis of HIV-1 NC mutant
virions. Virions were produced by DNA transfected HelLaP4
cells and further processed as indicated in materials and
methods. Bar is 100 nm.

Gag, followed by assembly and transport to the budding
site. This data indeed mirrors the results obtained with the
NC mutants, in particular the Gag-ANC mutant, for which
both the gRNA and mutated Gag were found diffuse
throughout the cell and had probably lost Gag-gRNA
association (as seen in Fig. 4 and 5). Taken together, these
data strongly suggest that the specific Gag-gRNA interac-
tions via the NC domain are necessary for proper Gag traf-
ficking and assembly, for Gag oligomers to be targeted to

Table 2: Quantitative analysis of virus core morphology of NC mutant HIV-1 particles produced by HeLaP4 cells

Dense cone Dense material Round Round Tubular core Two core No defined Diameter of
shape core in base of cone  centered core displaced core structure structures or core particles
membrane*

wt 19 38 21 | 0 7 1134
H23C 7 16 16 40,5 6 0 14,5 134% 14
H44C | 7 5 45 13 | 28 129 £ 14
H23-H44C 0 0 13 16 23 I5% 33 96 £ 12
AZFI 6 16 15 39 4 0 20 131£12
AZF2 | 8 3 62 6 2 17 ND
AZFI-ZF2 | 0 I 23,5 13 22,5% 29 101 £13

Number of particles observed: 80 to 200. Numbers are expressed in % of total observed particles.
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either specific domains at the PM or to the late endo-
somes.

Finally, the structure of the HIV-1 virions carrying one or
several mutations in the NC ZF was determined by elec-
tron microscopy (Fig. 6). Results show that the NC
mutated virions have lost their conical core shape and are
immature, which confirm the role of NC in HIV-1 virion
structure [1,16], as well as for other retroviruses, such as
SIV[55] and MLV [17]. Our results correlate with previous
studies on the assembly of several retroviruses, namely
HIV, MLV, RSV that have revealed a critical role of NC in
virus assembly and release [1,16,17,21,56,57].

In conclusion, the HIV-1 NC protein appears to be a
major actor in the late steps of the virus replication in
addition to its roles in proviral DNA synthesis and varia-
bility [4,58-60].
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