Oral presentation

Open Access

The enhancement of HIV-1 infectivity by Nef depends on dynamin 2

Massimo Pizzato^{1,2,3}, Anna Helander¹, Elena Popova¹, Arianna Calistri^{1,2}, Alessia Zamborlini^{1,2}, Giorgio Palu² and Heinrich Göttlinger^{*1}

Address: ¹Dana-Farber Cancer Institute, Boston, Massachusetts, USA, ²Institute of Microbiology, University of Padua, Italy and ³Department of Infectious Diseases, Imperial College, London, UK

Email: Heinrich Göttlinger* - heinrich.gottlinger@umassmed.edu * Corresponding author

from 2006 International Meeting of The Institute of Human Virology Baltimore, USA. 17–21 November, 2006

Published: 21 December 2006 Retrovirology 2006, **3**(Suppl 1):S96 doi:10.1186/1742-4690-3-S1-S96

© 2006 Pizzato et al; licensee BioMed Central Ltd.

Nef is a virulence factor of HIV-1 and other primate lentiviruses that is crucial for rapid progression to AIDS. Nef modulates the activation state of infected T cells and macrophages, and induces the downregulation of the viral receptor CD4 and of MHC class I molecules. Additionally, Nef increases the intrinsic infectivity of HIV-1 progeny virions by an unknown mechanism. We now show that dynamin 2 (Dyn2), a key regulator of vesicular trafficking, is a binding partner of Nef that is required for its ability to increase viral infectivity. Dominant-negative Dyn2 or the depletion of Dyn2 by small interfering RNA potently inhibited the effect of Nef on HIV-1 infectivity. In Dyn2depleted cells, this function of Nef could be rescued by ectopically expressed Dyn2 but not by Dyn1, a closely related isoform that does not bind Nef. In contrast, Dyn2 is not specifically required for the downregulation of CD4 or MHC class I molecules by Nef. These findings suggest a functional link between the infectivity enhancement activity of Nef and dynamin-dependent membrane trafficking events.