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Abstract
When endogenous retroviruses (ERV) were discovered in the late 1960s, the Mendelian
inheritance of retroviral genomes by their hosts was an entirely new concept. Indeed Howard M
Temin's DNA provirus hypothesis enunciated in 1964 was not generally accepted, and reverse
transcriptase was yet to be discovered. Nonetheless, the evidence that we accrued in the pre-
molecular era has stood the test of time, and our hypothesis on ERV, which one reviewer described
as 'impossible', proved to be correct. Here I recount some of the key observations in birds and
mammals that led to the discovery of ERV, and comment on their evolution, cross-species
dispersion, and what remains to be elucidated.

Background
If Charles Darwin reappeared today, he might be sur-
prised to learn that humans are descended from viruses as
well as from apes. Some 8% of human DNA represents
fossil retroviral genomes, and that is not counting the
LINE elements and other retrotransposons that are scat-
tered so liberally across our genome [1,2]. Darwin might
be reassured that we share most though not all of these
insertions with chimpanzees [3,4]. But how did endog-
enous viruses first come to light?

The discovery of ERV took place in the late 1960s and
early 1970s. Three types of ERV were found around the
same time: avian leukosis virus in the domestic fowl (Gal-
lus gallus), and murine leukemia virus and murine mam-
mary tumor virus in the laboratory mouse (Mus musculus).
Initially, ERV were discovered by combining virological
and immunological methods with Mendelian genetics;
their existence was then confirmed by nucleic acid hybrid-
ization.

Retroviruses can be classified as those that have simple
genomes – the alpha, beta, gamma and epsilon retrovi-
ruses, and those with complex genomes – the lentiviruses,
deltaviruses and spumaviruses (Figure 1). Only the simple
retroviruses have become endogenous in their hosts, with
the questionable exception of spumaviruses. Why this
should be so is not understood.

Retroviruses and the provirus hypothesisis
Although retroviruses did not gain their name until 1974
[5], retroviral diseases were distinguished much earlier.
Bovine leukosis and Jaagsiekte in sheep were recognized
in the 19th century. In 1904, Vallée and Carré showed that
equine anemia was infectiously transmitted by a filtrate
and we now know that the etiologic agent is a lentivirus.
Oncogenic retroviruses have been studied ever since
erythroleukemia in chickens was shown to be experimen-
tally transmissible in 1908 by Ellermann and Bang, and
the transfer of sarcoma in chickens through filtrates by
Rous in 1911 and by Fujinami and Inamoto in 1914 [6,7].
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In 1961 Rous sarcoma virus (RSV) particles were shown to
contain RNA [8] and thus oncogenic retroviruses were
called RNA tumor viruses. However, cells transformed by
RSV maintained stable properties through many mitoses.
This heritability of virus-transformed phenotype, even in
the absence of viral replication [9], led Howard Temin to
postulate that in the infected cell, the RSV genome made
a DNA copy which then integrated into host chromo-
somal DNA [10]. Temin called his concept the DNA pro-
virus hypothesis by analogy with the integrated prophage
of temperate bacteriophage. Indeed, André Lwoff, who
won a Nobel Prize for discovering prophage and lysogeny,
had suggested integration of the DNA tumor virus, poly-
oma virus [11]. Thus the concept of integration of DNA
tumor virus genomes in transformed somatic cells was
debated, and was demonstrated in 1968 [12]. However,
the notion of Mendelian transmission of integrated

genomes of RNA tumor viruses in the germ-line of healthy
animals was regarded as bizarre.

Conversely, non-Mendelian inheritance of genetic mark-
ers was also puzzling geneticists at that time. For example,
Barbara McClintock was studying "jumping genes" in
maize, as she relates in her 1983 Nobel Prize address [13].
It was only much later that many of these strange transpo-
sitions in maize and Drosophila were found to be effected
by retrotransposons.

Endogenous avian leukosis viruses (ALV)
ALV is an alpha-retrovirus. Chickens infected in ovo fre-
quently develop lymphoid leukosis, which is a B-cell
leukemia arising from infected cells in the bursa of Fabri-
cius. ALV replicates in chick embryo fibroblasts but does
not transform them. Rous sarcoma virus (RSV) is closely

Phylogeny of Retroviruses: genera that include endogenous genomes are marked with an asteriskFigure 1
Phylogeny of Retroviruses: genera that include endogenous genomes are marked with an asterisk.
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related but carries the src oncogene and transforms fibrob-
lasts. These viruses have a simple genome organisation:

ALV: 5' LTR-gag-pol-env-LTR 3'

RSV (Bryan): 5' LTR-gag-pol-src-LTR 3'

RSV (Prague): 5' LTR-gag-pol-env-src-LTR 3'

In America, the Bryan strain of RSV was chiefly studied,
which is defective for replication because the src gene is
substituted for the env gene. In Europe, non-defective RSV
strains (Prague, Schmidt-Ruppin and Carr-Zilber) were
studied, which carry src in addition to the replicative
genes. Defective Bryan RSV can be rescued by ALV which
supplies the missing Env glycoproteins. As a provider of
this complementing Env, ALV was called a helper virus
[14]. Different envelope 'subgroups' – or serotypes – of
ALV are distinguished by neutralizing sera and by utilizing
distinct cell surface receptors [15,16] and the RSV particles
with ALV envelopes were named 'pseudotypes' [15].

In the 1960s, avian leukosis was becoming an increasing
problem in egg-laying hens, and efforts were made to
maintain leukosis-free flocks. To screen for leukosis, a
serologic test was devized for 'group-specific' antigen,
which was common to all ALV serotypes [17]. This was
done by complement fixation (ELISA technology had not
yet been invented), and it was called the COFAL test. We
now know that group-specific antigen is the major capsid
antigen (CA), p27. In fact, the term Gag was coined [5] as
an acronym for group-specific antigen.

Robert Dougherty became concerned that the COFAL test
was apparently not sufficiently specific because certain
uninfected chickens gave positive results [18]. Later his
team also detected virus-like particles as well as Gag-
related antigen in 'ALV-free' chicken tissue [19]. Then
Payne and Chubb [20] demonstrated that Gag-related
antigen was inherited as a dominant Mendelian gene in
crosses between Gag-positive and Gag-negative inbred
lines of chicken. The question remained whether the
endogenous antigen was encoded by a latent retroviral
genome or whether it represented a normal host protein
with a cross-reacting epitope.

I first heard Payne's preliminary results at the European
Tumor Virus Workshop at Sorrento, Italy, in April 1967. I
was enthralled because I was puzzling over a different
problem as part of my doctoral studies. I had found that
fibroblast cultures of some chick embryos but not others,
allowed the release of infectious Bryan RSV in the appar-
ent absence of a helper leukosis virus [21]. Peter K Vogt
observed the same phenomenon and found that the virus
infected Japanese quail cells [22]. I then found that the

envelope of the 'helper-free' RSV was novel in its receptor
specificity and neutralization properties [23,24]. Later,
Hidesaburo Hanafusa's laboratory published similar data
[25] and called the activity 'chick helper factor'. It thus
became apparent that some normal chick cells could pro-
vide the missing Env protein to complement Bryan RSV.

When I first submitted my results in 1968 on a novel
'endogenous' envelope, suggesting the existence of an
integrated retrovirus in normal embryo cells, the manu-
script was roundly rejected; one reviewer pronounced that
my interpretation was impossible! Clearly this reviewer
had no time for Temin's provirus hypothesis either. Later
that year, Howard Temin visited me in London because
my short 1967 paper [21] had aroused his curiosity. He
pored over my lab notebooks very critically, and after
some 4 hours of intense discussion he urged me to try
publishing it again. I was most grateful to him and to the
Journal of General Virology when my work was finally
accepted [23,24]. George Todaro also visited me in 1968
and cited my data in his and Huebner's hypothesis on
latent retroviruses that first coined the term 'oncogene'
[26].

Mendelian inheritance of a Gag-like antigen and comple-
mentation of an Env-defective strain of RSV comprised
two separate lines of evidence that something related to a
retrovirus existed in normal embryo cells. So the next step
was to collaborate with Jim Payne to determine whether
Env complementation and Gag expression were inherited
concomitantly. Using inbred chickens, F1 hybrids and
back-crosses, we found that both phenotypes were indeed
inherited according to Mendel's first law and that they seg-
regated together as a single locus [27]. A complete, infec-
tious endogenous virus was not released in our birds
although both Gag and Env were expressed, but we
obtained evidence for release of infectious virus after treat-
ment of cells with X-rays. Meanwhile, Vogt and Friis [28]
had found that a different line of chickens spontaneously
released infectious virus with identical envelope proper-
ties to the one we were studying.

After I joined Peter Vogt's laboratory in 1970, we were
able to show that treatment of normal chicken cells with
a variety of activating agents such as ionizing radiation or
carcinogens stimulated release of virus [29]. Curiously, we
found that both inbred lines of chicken, positive or nega-
tive for Gag and Env expression, produced virus after
physical or chemical activation. It was later shown that the
induced virus originated from a different provirus than
that expressing Gag and Env [30].

When I came to Vogt's group, reverse transcriptase (RT)
had recently been discovered [31,32] and we used RT
activity to measure release of virus particles [29]. With
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Temin's provirus hypothesis vindicated by the discovery
of RT, it seemed opportune to investigate whether normal,
uninfected chickens contained proviral DNA. Using
labelled ALV RNA, it was possible to detect related DNA
sequences by Cot hybridization [33-35]. After Southern
blotting techniques were developed, many proviral copies
were found to be present in most chicken breeds [36].
Individual proviral loci were characterized and mapped
[30]; many represent incomplete or defective genomes
[37].

I was interested to know if the chicken ERV was a recent
introduction into domestic fowl, or whether it was present
in the ancestor species, the red jungle fowl. In 1970, I
made a field trip to Malaysia and lived with tribesmen
(orang asli) in the Pahang jungle who knew how to trap
these birds, in order to take blood samples and to collect
eggs for cell culture. The red jungle fowl carried endog-
enous ALV [38]. We later found that the three other extant
species of the same genus, Gallus, did not possess endog-
enous ALV [39]. Apparently this ERV colonized the
chicken germ-line after speciation but before domestica-
tion.

The modes of transmission of exogenous and endogenous
ALV are shown in Figure 2. However, the situation is more
complex than that depicted because exogenous infection
leads to the generation of recombinant viruses at high fre-
quency, provided that endogenous env sequences are
expressed [40]. We therefore postulated that genetic
exchange occurs through mixed assembly of RNA
genomes in virus particles, followed by molecular recom-
bination upon reverse transcription in the next replicative
cycle. A similar recombination phenomenon with endog-
enous env transcripts of gamma-retroviruses in mice and
cats is part of the pathway of leukemogenesis. Expression
of endogenous Env can also block receptors on chicken
cells to incoming virus [41] so that the endogenous virus
has a potentially xenotropic host range, an effect equiva-
lent to the Fv-4 endogenous viral gene described later in
mice.

Astrin et al [42] identified a rooster that lacked any inte-
grated provirus and a line of chickens was eventually bred
from this bird. The generation of birds without endog-
enous ALV sequences indicated that viral genomes were
not essential for host functions. However, these chickens
do carry a second family of ERV called endogenous avian
virus (EAV) although they are not infectious. EAV
sequences are present in DNA of all species of Gallus and
therefore have a more ancient origin [43].

More recently, the characterization of a highly virulent
strain of ALV (ALV-J) causing myeloid leukemia in broil-
ers showed that it was a recombinant virus, with ALV gag

and pol and an EAV-related env gene [44]. This is reminis-
cent of the chimeric genome of the endogenous genome
in cats derived from baboons (discussed later) which is a
recombinant between a gamma-retrovirus related to
murine leukemia virus and a beta-retrovirus related to
Mason-Pfizer monkey virus [45]. The cellular receptor for
the ALV-J virus has recently been identified [46].

A third group of avian retroviruses includes the reticulo-
endotheliosis virus (REV) of turkeys, which probably had
a mammalian origin. Interestingly REV has not integrated
into germ line DNA but both REV and ALV have inserted
into the circular DNA of Marek's disease herpesvirus [47]
and REV has also integrated into fowlpox genomes
[48,49]. Thus retroviruses have become 'endogenous' in
the genome of larger, more complex DNA viruses.

Murine leukemia virus (MLV) and mammalian gamma-
retroviruses
Thymic lymphomagenesis in mice follows activation of
endogenous MLV but this was not appreciated until 1970
[50]. In 1933 Jacob Furth bred the AKR mouse strain that
has a high probability of developing lymphoma, but MLV
was not discovered as a virus until 1951, by Ludwig Gross
[7]. AKR mice, carrying two endogenous genomes of N-
tropic MLV, can replicate activated virus as they carry a
permissive allele of the Fv-1 cellular restriction gene [51].
They begin to release virus spontaneously as late embryos
[50].

Spontaneous release of MLV from uninfected murine cell
cultures was observed by Aaronson et al [52]. At the same
time as we found we could induce ERV production in
chick embryo cells [29] similar experiments were reported
for MLV activation by halogenated pyrimidines [53,54].
In fact, radiation-induced lymphomagenesis with virus
activation had been reported in mice earlier [55,56]. At
that time, however, in vivo activation of a latent exogenous
virus could not be distinguished from an endogenous
genome in the germ-line. The genetic mapping and anal-
ysis of viral gene expression of endogenous MLV was stud-
ied in great detail in the 1970s and 1980s [37]. As with
endogenous ALV many of the genomes are defective,
while others maintain open reading frames or complete,
potentially infectious genomes.

The induction of thymic lymphomas in AKR and other
susceptible mice involves more than activation of MLV.
The AK virus in viremic mice recombines with other
endogenous env genes, and it is these recombinant retro-
viruses with expanded tropism that elicit malignancy fol-
lowing integration adjacent to proto-oncogenes [57].
There is an analogous situation in cats except that the ini-
tiating feline leukemia virus subtype A is an exogenous
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Exogenous and endogenous modes of transmission of ALVFigure 2
Exogenous and endogenous modes of transmission of ALV.
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infection which then forms lymphomagenic recom-
binants with endogenous env, giving rise to FeLV-B [57].

With the discovery of endogenous MLV, many investiga-
tors in the early 1970s began to examine cells from other
species for similar viruses. Reverse transcriptase assays,
electron microscopy and nucleic acid hybridization pro-
vided useful methods of detection. Many mammalian
species were found to harbor gamma-retroviruses related
to MLV, including non-human primates. For instance
gamma-retrovirus was isolated from trophoblastic cells of
the baboon placenta [58]. This virus was found to be very
closely related antigenically and by sequence homology to
the endogenous RD114 virus in cats (which is itself unre-
lated to endogenous FeLV). Benveniste and Todaro [59]
observed, like we did for jungle fowl, that only certain spe-
cies of the cat genus, Felis, possessed this endogenous
genome related to the baboon ERV. In contrast, all species
of baboons [60] carry this virus so it would appear to have
been present in the germ line of primates much longer
than in cats. Thus it seems evident that a horizontal, infec-
tious event occurred to transfer the virus from baboons to
cats, whereupon it became endogenous in the new species
(Figure 3).

Since cats would be quite likely to scavenge and feed on
baboon placentae, a possible exposure to the virus can be
envisioned. The human placenta is also permissive to the
expression of multiple families of human endogenous ret-
rovirus (HERV) genomes. Indeed, it appears that the ret-
roviral envelope glycoproteins of at least one of them
(HERV-W and possibly ERV-3) may be involved in natural
syncytium induction to form the syncytiotrophoblast [61-
63].

Murine mammary tumor virus (MMTV)
Susceptibility to breast cancer in mice was initially
thought to be genetic because high and low incidence
strains of mice seemed to breed true. In 1936, however, J.
J. Bittner showed that foster-nursing a low-incidence
strain of new born mice on high-incidence mothers
caused the females to develop breast cancer as adults [7].
Eventually, observations of a filterable oncogenic agent in
the milk led to the identification of the MMTV in 1949 by
L. Dmochowski in electronmicrographs. However, in
1952 both Bittner and Otto Mühlbock observed that in
certain mouse strains, mammary tumor predisposition
could be transmitted by the male. It was thought that virus
was transmitted in the semen to the female, to infect
fetuses in turn [7].

MMTV was discovered to be endogenous at the same time
as endogenous ALV. During the 1967 conference at which
Payne described Mendelian inheritance of Gag antigen
and I reported Env complementation in chickens, a young

investigator with Mühlbock at the Netherlands Cancer
Institute, Peter Bentvelzen, reported that the inherited
mammary cancer in GR mice was associated with MMTV
production. By the time he published this study,
Bentvelzen and colleagues had evidence to suggest that
the virus itself was the inherited factor [64,65].

As with endogenous ALV and MLV, mice carry numerous
MMTV ERV in their chromosomes [66]. Later, Acha-Orbea
showed that these MMTV loci encode superantigens [67].

Xenotropism and xenotransplantation
Many endogenous retroviruses do not readily re-infect
their own host cells but can infect other species in vitro or
in vivo. Thus the endogenous ALV of chickens infects cells
of quail, pheasants and turkey more readily than the
chicken [22,23]. Jay Levy studied New Zealand black mice
with auto-immune disease and discovered an endogenous
MLV strain that could infected human and rat cells but not
murine cells. He coined the term 'xenotropic' for viruses
that only infect foreign species [68] in contrast to 'eco-
tropic' and 'amphotropic' strains. Thus the reservoir of
infection may be a DNA provirus in the chromosomes of
one species while the virus produced from it may infect
other species.

There is a selective advantage for the host to be insuscep-
tible to re-infection by a potentially pathogenic ERV,
because, when a few cells spontaneously release virus, it
cannot then be amplified to reach a high viral load. Resist-
ance mechanisms include mutation of receptors, blocking
of receptors by endogenous Env expression, and intracel-
lular restriction factors [51,69].

The feline ERV RD114 is an interesting example of
xenotropism. It was first detected in the human rhab-
domyosarcoma cell line, RD, and its discovery was hailed
as the first human RNA tumor virus [70]. When several
groups showed that RD114 virus was actually an endog-
enous cat virus, it was realized that the human RD cell line
had been passaged as a xenograft in the brain of a fetal kit-
ten – this was a convenient immunologically privileged
site before immunodeficient mice were available. Human
tumor xenografts in mice also become infected with xeno-
tropic MLV [71]. There is recent evidence that a gammaret-
rovirus related to xenotropic MLV is present in a small
proportion of patients with prostate cancer [72].

If human tumors can pick up retroviruses when
xenografted into animals, it follows that cross-species
infection might also occur if animal tissues were to be
xenotransplanted into humans. That is why we investi-
gated pig endogenous retroviruses (PERV) and found that
two of three envelope subgroups could infect human cells
in vitro [73]. Thankfully there is no evidence to date of
Page 6 of 11
(page number not for citation purposes)



Retrovirology 2006, 3:67 http://www.retrovirology.com/content/3/1/67
PERV infection in vivo in exposed humans [74]. Murine
hybridomas can also release xenotropic MLV, so it is
important to ensure that biologic medicines such as ther-
apeutic monoclonal antibodies are not contaminated by
retroviruses [75].

ERV and retroviral vectors
ERV expression can affect retroviral vectors in two ways.
First, their transcripts can be packaged alongside the gene
of choice and thus constitute contaminating genetic mate-
rial in gene therapy formulations. Although the murine
packaging cell lines do not express endogenous MLV
genomes they do express VL30 ERV and other sequences
which can represent 50% or more of the vector stock and
which are transferred to primates [76]. Adoption of pack-
aging lines of other species such as the dog will exclude
VL30, but so little research of canine ERV has been done
that the potential hazard remains unknown. Regarding

human packaging cells, there is no evidence that HERVs
are incorporated into MLV-based [77] or lentiviral vectors.

Second, ERV expression might mobilize genomes con-
taining therapeutic genes if the packaging signals remain
intact, and they might generate replication-competent
recombinants. Since humans do not produce infectious
HERV, mobilization appears unlikely, and MLV-based
genomes are not cross-packaged into expressed HERV par-
ticles [77].

Evolutionary perspective
Retroviral genomes and other retro-elements such as Alu
and LINE sequences are widely dispersed among hosts
[37]. Do such insertions simply represent "junk" DNA, or
do they play a role in genetic regulation of the host? Do
retroviruses serve as vectors for horizontal gene exchange?
Do ERVs always become defective over time?

Exit from and entry into host genomes: transmission of the baboon ERV, BaEV to become the feline ERV, RD114Figure 3
Exit from and entry into host genomes: transmission of the baboon ERV, BaEV to become the feline ERV, RD114.
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MLV-related gamma-retroviruses may reside for millions
of years in the germ-line in one group of animals, as we
showed for old world pig species [78], and yet remain rep-
lication competent [73]. Maintenance of functional
genomes with open reading frames probably requires ret-
rotransposition and therefore complete genomes tend to
be recently recycled ones. M. Tristem's group [79] has
demonstrated multiple host switching of ERV (Figure 4).
Colonization of a new host presumably goes via an infec-
tious phase before insertions occur in its germ-line.

Different bursts of endogenization have occurred at differ-
ent times. This has been exemplified for beta-retroviruses
related to HERV-K in old world primates [2,3]. Such a
process of endogenization currently appears to be taking
place with a highly leukemogenic gamma-retrovirus of the
Koala in Australia [80]. Endogenization may eventually
help to modulate viral load and pathogenicity if it acts as
a dominant negative factor to related exogenous viruses.

As Mendelian elements, retroviruses must be subject to
host selection. However, with the exception of enrolling
env genes in placental differentiation, ERV appear to be
parasitic DNA sequences for which the host has little use,
other than to protect against further retrovirus infection.
Potentially, ERV can damage the host by mutational inser-
tion and by homologous recombination. But despite a
tendency to implicate ERV in many 'non-infectious' dis-
eases in humans, there is scant evidence that they play a
significant role [1]. There are only rare examples where a
recessive single gene disorder in a family lineage is caused
by an endogenous retroviral insertion disrupting gene
function [2,3].

Given the propensity of retroviruses to switch between
transmission as infectious agents and as host Mendelian
elements, and given that they are able to transduce host
genes to become viral oncogenes, it seems strange that
there are no examples of gene transduction by retroviruses

Co-evolution and cross-species infection of MLV-related genomes among mammalsFigure 4
Co-evolution and cross-species infection of MLV-related genomes among mammals. Host and retroviral phylogenies are shown 
on the left and right respectively. Horizontal links indicate co-evolution, whereas sloping links show cross-species infection 
across large host taxa. Thus two closely related retroviruses infect an ape (gibbon) and a marsupial (koala), and two closely 
related ERV genomes are found in a carnivore (fox) and a ruminant (sheep). Adapted from Martin et al. [79].
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into the germline of new hosts. Retroviruses could in the-
ory serve as a horizontal means of exchange of genetic
information, like transducing lysogenic bacteriophage.
However, other than transporting themselves, ERV do not
appear to be purveyors of genes; even the retroviruses that
bear oncogenes are not recorded as being naturally trans-
mitted from host to host.

Finally, one may ask why DNA viruses that have a capacity
to integrate into host DNA have not been detected in the
germ line. Although integration is not an obligate step in
their replication cycles, polyoma viruses, papilloma
viruses, hepadnaviruses, adenoviruses and parvoviruses
could each have gained a free ride to the next host gener-
ation, provided they were able to infect primordial germ
cells or early embryo cells before segregation of the germ
line. Adeno-associated virus has a preferred integration
site on human chromosome 19 but has apparently not
become inherited at this locus. Like MLV [81], the poly-
oma virus, SV40, can infect embryonal stem cells in vitro,
and become latent in them [82]. This would be a good
way to endogenize yet there is little evidence that it has
happened. I am aware of only one example of a Mende-
lian DNA virus, that of human herpesvirus 6 [83,84], and
this is not universal in the human population. It will be
fascinating to work out why HHV-6 but not other herpes-
viruses endogenize, and whether other non-retroviral
endogenous genomes will be discovered.

Conclusion
ERV were discovered through the careful analysis of viro-
logical and immunological markers that appeared to be
inherited by the host as Mendelian traits. Interestingly, the
crucial evidence of endogenous ALV, MLV and MMTV
came to light in the same period in the late 1960s. The dis-
covery of reverse transcriptase in 1970 made these strange
findings plausible. Later molecular genetic studies
showed that the genomes of all vertebrate species studied
have been colonized by multiple sets of retrovirus. Phylo-
genetic studies of viral genomes indicate that the intro-
duction of ERV proceeds in waves with relatively rapid
amplification of copy numbers and dispersal in the host
genome. Their functions, if any, in the host remain an
enigma, except for env genes driving differentiation of the
syncytiotrophoblast in the placenta.
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