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Abstract
During interphase, each cell contains a single centrosome that acts as a microtubule organizing
center for cellular functions in interphase and in mitosis. Centrosome amplification during the S
phase of the cell cycle is a tightly regulated process to ensure that each daughter cell receives the
proper complement of the genome. The controls that ensure that centrosomes are duplicated
exactly once in the cell cycle are not well understood. In solid tumors and hematological
malignancies, centrosome abnormalities resulting in aneuploidy is observed in the majority of
cancers. These phenotypes are also observed in cancers induced by viruses, including adult T cell
lymphoma which is caused by the human T cell lymphotrophic virus Type 1 (HTLV-1). Several
reports have indicated that the HTLV-1 transactivator, Tax, is directly responsible for the
centrosomal abnormalities observed in ATL cells. A recent paper in Nature Cell Biology by Ching et
al. has shed some new light into how Tax may be inducing centrosome abnormalities. The authors
demonstrated that 30% of ATL cells contained more than two centrosomes and expression of Tax
alone induced supernumerary centrosomes. A cellular coiled-coil protein, Tax1BP2, was shown to
interact with Tax and disruption of this interaction led to failure of Tax to induce centrosome
amplification. Additionally, down-regulation of Tax1BP2 led to centrosome amplification. These
results suggest that Tax1BP2 may be an important block to centrosome re-duplication that is
observed in normal cells. Presently, a specific cellular protein that prevents centrosome re-
duplication has not been identified. This paper has provided further insight into how Tax induces
centrosome abnormalities that lead to ATL. Lastly, additional work on Tax1BP2 will also provide
insight into how the cell suppresses centrosome re-duplication during the cell cycle and the role
that Tax1BP2 plays in this important cellular pathway.

Background
Faithful duplication of the genetic content of cells and
proper segregation into two daughter cells are two highly
regulated and distinct processes. The cell cycle determines
when cells will duplicate their genome and the four
phases are regulated by a series of different cyclin/cyclin-
dependent kinase complexes. Duplication of the genome

occurs during the S phase while segregation of duplicated
chromosomes into daughter cells occurs during the M
(mitotic) phase. Proper segregation of chromosomes dur-
ing M phase requires that the centrosomes are faithfully
duplicated prior to mitosis. Duplication of centrosomes
occurs at the end of G1 and the beginning of the S phase,
yet is regulated separately from the duplication of the
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genome. Dysregulation of either the cell cycle or centro-
some duplication can result in major genetic alterations
and cancer [1-3]. Changes in centrosome duplication
have been observed in cancers caused by genetic muta-
tions as well as in cancers induced by viruses. A recent
report by Ching et al. [4] further elucidates how the HTLV-
1 Tax protein may modulate centrosome duplication
resulting in aneuploidy and the development of adult T
cell leukemia (ATL).

The centrosome functions as the microtubule organizing
center (MTOC) of the cell and modulates the microtubule
network critical for chromosome segregation, cell divi-
sion, intracellular transport, and development [1-3]. The
centrosome is composed of a pair of centrioles sur-
rounded by the pericentriolar material [1,2], which is
composed of at least 50 different proteins including sev-
eral different tubulins, centrin, and proteins containing a
coiled-coil motif [2]. To prepare for chromosome segrega-
tion in the next M phase, a single centrosome needs to be
duplicated. During the G0 and G1 phases of the cell cycle
there is a single centrosome that is inherited from the
mother cell during the previous cell division, which is
duplicated during the late G1 and S phases. During mito-
sis, the number of spindle poles is generally determined
by the number of centrosomes [1].

Centrosome duplication occurs in a semi-conservative
manner and consists of four phases: (i) centriole splitting
in which the mother and daughter centrioles detach; (ii)
semiconservative centrosome duplication, where a new
centriole is formed adjacent to the original centriole; (iii)
maturation involves recruitment of pericentriolar material
proteins; and (iv) centrosome separation during mitosis
to form the spindle poles [1,2]. Centrosome duplication
is regulated by a series of phosphorylation and dephos-
phorylation events mediated by several kinases including
Cdk2, Nek2, polo-like kinases, and aurora kinases [1,2,5].
The coordination between replication and centrosome
duplication suggests that these events may be regulated by
a common mechanism. Cdk2 is attractive as the central

modulator since it is involved in both processes. Cdk2 is
activated by binding to Cyclin E or Cyclin A at the start of
S phase to induce DNA replication. Additionally, Cdk2 is
required for centrosome duplication in a variety of cell
systems [2,6]. Centrosomes are duplicated only once dur-
ing each cell cycle and there is an apparent intrinsic block
to reduplication of centrosomes [7]. However, the nature
of this block is not known, but it apparently is overcome
in cancer. Increased centrosome numbers leads to distur-
bances in mitosis and cytokinesis leading to errors in
chromosome segregation and chromosome instability
[6].

Alterations in centrosome duplication and the resulting
aneuploidy are observed in a significant number of can-
cers. There are several possible mechanisms of centro-
some amplification, including: (i) centrosome
duplication more than once in a cell cycle; (ii) failure to
undergo cytokinesis resulting in doubling of the genome
[6]; and improper splitting, or fragmentation, of centro-
somes in the M phase due to DNA damage [8]. Centro-
some amplification is frequently seen in a number of solid
cancers including breast, lung, colon, prostate, testicular,
and head and neck squamous cell carcinoma [6], as well
as several hematological malignancies such as Hodgkin's
lymphoma, multiple myeloma, and chronic lymphocytic
leukemia [9]. Some of the common genetic alterations in
cancer associated with centrosome amplification include
inactivation of p53, over-expression of Cyclin E [6], and
mutation of BRCA1 [6,10].

Centrosome abnormalities are also observed in cancers
caused by tumor viruses such as hepatitis B virus (HBV)
[11-13], human papillomavirus [14,15], Kaposi's sar-
coma-associated herpesvirus (KSHV) [16,17], and human
T cell lymphotropic virus type 1 (HTLV-1) [4,18-20]
[Table 1]. The HBV X protein induces centrosome ampli-
fication by activating the Ras-MEK-MAP kinase pathway
[13]. Additionally, HBV X targets the Crm1 nuclear recep-
tor, sequestering it in the cytoplasm [12]. Inactivation of
Crm1 leads to abnormal centrioles and the presence of

Table 1: Effect of various viral proteins on centrosomal abnormalities

Viral Protein Cellular Interacting Protein Function in Normal Cells Phenotype

HBV X Crm1 Nuclear export receptor Abnormal centrioles
>2 centrosomes per cell

HPV E7 Rb Tumor suppressor
Transcriptional repressor

>2 centrosomes per cell

HPV E6 P53 Tumor suppressor >2 centrosomes per cell
KSHV LANA P53 Tumor suppressor Abnormal mitotic spindles

>2 centrosomes per cell
HTLV Tax TaxBP181 Mitotic spindle checkpoint protein Multinucleated cells

RanBP1 Regulator of Ran-GTPase pathway >2 centrosomes per cell
Tax1BP2 Regulates centrosome duplication >2 centrosomes per cell
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more than two centrosomes in 39% of mitotic cells [11].
For human papillomavirus, both the E7 and E6 proteins
contribute to supernumerary centrosomes. E7 inactivates
Rb [14] and induces an increase in the number of centri-
oles, a portion of which give rise to mature centrosomes
[15], whereas E6 inactivates p53 [14]. Expression of either
protein alone will induce centrosome amplification; how-
ever, co-expression of E6 and E7 results in a higher inci-
dence of supernumerary centrosomes [3,14]. Similar to
HPV E6, the KSHV latency associated nuclear antigen
(LANA) binds to p53 and inhibits the ability of p53 to
transactivate cellular genes resulting in abnormal centro-
somes, multinuclear cells, and other genomic abnormali-
ties [17].

Discussion
The HTLV-1 Tax protein contributes to the ability of the
virus to cause ATL by inactivating p53 [21-24], altering the
cell cycle [25,26], and inactivating Rb [27]. As Tax is able
to deregulate cellular checkpoints, most notably the G1/S
transition [28,29], it is not surprising that this oncopro-
tein is involved in mitotic disruption. An early report
demonstrated that expression of Tax alone was sufficient
to induce both centric (containing a kinetochore and rep-
resentative of segregation defects) and acentric (represent-
ative of DNA damage) micronuclei [30]. While
clastogenic effects induced by Tax appears to be due to
subversion of DNA damage repair pathways [31-34], Tax
involvement in aneugenic damage was less clear. A study
by Jin et al. [20] indicated that the association of Tax with
hsMAD1, a mitotic spindle checkpoint (MSC) protein, led
to the translocation of both MAD1 and MAD2 to the cyto-
plasm. The MSC is necessary to halt the cell cycle when an
error(s) in chromosome segregation is detected. When all
of the kinetochores are attached to both poles of the
mitotic spindle apparatus and chromosomes are equally
segregated to opposite poles, the block is then released
[35]. By disrupting normal localization of these factors
(i.e. MAD1 and MAD2) to kinetochores following chro-
mosomal missegregation, Tax was able to usurp this
checkpoint and thus allow for accumulation of multinu-
cleated cells, a common phenotype of ATL cells. However,
several questions remained including (i) was aneu-
ploidogenic damage simply the accumulation of natural
occurring mis-segregation events [36] due to Tax or (ii)
were there other Tax-related mechanisms either direct or
indirect, that induced aneugenic damage?

Evidence for the direct involvement of Tax in aneuploidy
development was recently shown by Peloponese and col-
leagues [19]. Tax was shown to localize to centrosomes
during mitosis and interact with the Ran-GTPase pathway
through the Ran-binding protein 1 (RanBP1). This pro-
tein complex regulates mitotic centrosome stability and
microtubule nucleation and spindle formation [37,38].

Interaction of Tax with RanBP1 was shown to be necessary
for Tax targeting to centrosomes and induction of super-
numerary centrosomes. The interaction of Tax with the
Ran-GTPase pathway to dysregulate centrosome duplica-
tion is reminiscent of HBV X interaction with Crm1 [12],
a Ran-GTP binding nuclear export receptor [39].

The involvement of Tax in centrosome amplification has
been further strengthened by recent findings from Ching
et al. [4]. Tax was observed to localize to centrosomes in
both transfected cells and HTLV-1 transformed cells.
About 30% of ATL cells displayed centrosome amplifica-
tion (>2 centrosomes) and 30–80% of cells expressing Tax
alone had supernumerary centrosomes indicating that Tax
was responsible for the abnormal centrosome phenotype
in ATL. Through a yeast two-hybrid approach, Tax was
shown to associate with a coiled-coil protein, Tax1BP2
(formerly known as TaxBP121). Tax1BP2 has high
sequence similarity to C-Nap1 (centrosomal Nek2-associ-
ated protein 1), a protein involved in centrosome cohe-
sion during the interphase of cell cycle [40], and was
shown to be part of the centrosome complex. Tax interac-
tion with Tax1BP2 was shown to be necessary for Tax to
induce supernumerary centrosomes and over-expression
of Tax1BP2 countered this effect. Additionally, down-reg-
ulation of Tax1BP2 expression by siRNAs resulted in
amplification of centrosomes leading the authors to spec-
ulate that Tax1BP2 may be the intrinsic block to re-dupli-
cation proposed by Wong and Stearn [7]. This interaction
provides a novel way for Tax to induce aneuploidogenic
damage through centrosome amplification. Furthermore,
if Tax1BP2 proves to be important for the block to centro-
some duplication this will be the first protein identified to
perform such a function. However, several questions
remain: (i) is there differential expression or localization
of Tax1BP2 during the cell cycle; (ii) does knock-down of
Tax1BP2 expression in the S and G2 phases allow for cen-
trosome re-duplication; and more importantly (iii) how
does Tax1BP2 function to limit amplification of centro-
somes?

Conclusion
Centrosome amplification, which results in aneuploidy, is
seen in a large number of cancers, including adult T cell
lymphoma, and the HTLV-1 transactivator Tax plays a crit-
ical role in this process. Tax targets several pathways to
induce uncontrolled cell growth including Rb [27], cyclin
D2 [25,26,41-43], and Cdk 4 [44-48]. However, develop-
ment of ATL takes decades and only a small percentage of
infected individuals' progress to ATL, indicating that addi-
tional genetic alterations are required. Interestingly, while
lymphoma and acute stage ATL patients display a high
amount of structural (clastogenic) and numerical (aneu-
genic) damage, earlier stage patients (smoldering/
chronic) do exhibit some aneugenic damage as exhibited
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by multinucleated T cells. This suggests that aneugenic
damage is an early phenomenon in ATL development;
however, how aneugenic damage contributes to malig-
nant transformation is still not known. Duplication of
centrosomes and proper segregation of chromosomes
into daughter cells is a highly regulated process involving
a number of centrosome proteins, which have yet to be
fully elucidated. Recent work has demonstrated that Tax
can induce genomic instability and aneuploidy by directly
targeting several proteins involved in centrosome duplica-
tion [Figure 1]. Interaction with Tax1BP2 may interrupt
the intrinsic block to centrosome reduplication allowing
for centrosome amplification. As mentioned by the
authors, future studies will entail determining the mecha-
nism of Tax1BP2 contributing to this block and how Tax
may modulate this effect. Since Tax1BP2 appears to be
phosphorylated and possibly regulated by Cdk2, Tax may
bring Cdk2 into contact with Tax1BP2. Interaction with
members of the APC induces a delay in mitotic entry and
increased chromosomal instability. The centrosome
amplification and chromosomal instabilities would allow
for additional genetic alterations. Lastly, the interaction of
Tax with Mad1, a component of the mitotic spindle check-
point, inactivates this critical checkpoint allowing cells
with supernumerary chromosomes and improperly segre-
gated chromosomes to move through mitosis and into the
next cell cycle. Additional questions remain as to whether
there are Tax-dependent defects within cytokinesis that
contribute to aneugenic damage and how the three Tax
binding proteins identified by this group function
together to regulate centrosome duplication. The role of
Tax as a transcriptional regulator may also provide ave-
nues for Tax to disrupt mitotic processes. Future studies
will not only allow for better understanding of Tax
involvement at mitosis but help to further elucidate how
deregulation of this phase of the cell cycle contributes to
carcinogenesis.
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