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Abstract
Background: Nef is an accessory protein of primate lentiviruses, HIV-1, HIV-2 and SIV. Besides
removing CD4 and MHC class I from the surface and activating cellular signaling cascades, Nef also
binds GagPol during late stages of the viral replicative cycle. In this report, we investigated further
the ability of Nef to facilitate the replication of HIV-1.

Results: To this end, first the release of new viral particles was much lower in the absence of Nef
in a T cell line. Since the same results were obtained in the absence of the viral envelope using
pseudo-typed viruses, this phenomenon was independent of CD4 and enhanced infectivity. Next,
we found that Nef not only possesses a consensus motif for but also binds AIP1 in vitro and in vivo.
AIP1 is the critical intermediate in the formation of multivesicular bodies (MVBs), which play an
important role in the budding and release of viruses from infected cells. Indeed, Nef proliferated
MVBs in cells, but only when its AIP1-binding site was intact. Finally, these functions of Nef were
reproduced in primary macrophages, where the wild type but not mutant Nef proteins led to
increased release of new viral particles from infected cells.

Conclusion: We conclude that by binding GagPol and AIP1, Nef not only proliferates MVBs but
also contributes to the egress of viral particles from infected cells.

Background
Primate lentiviruses HIV-1, HIV-2 and SIV infect macro-
phages and T lymphocytes via CD4 and CCR5 or CXCR4
chemokine receptors, respectively. Infected individuals
eventually develop the acquired immunodeficiency syn-
drome (AIDS). The course of their disease varies greatly,
which depends on genetic factors and host immune
responses [1,2]. Another important determinant of dis-

ease progression is the viral accessory protein, the
misnamed negative factor or Nef. Indeed, adult rhesus
macaques and humans infected with lentiviruses lacking
Nef have very low levels of viral replication and little, if
any, evidence of disease [3-5]. Only with the reconstitu-
tion of their nef genes do these viruses start to replicate
robustly, which then leads to AIDS [6-8]. Thus, Nef has
been considered a critical factor for the production and
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infectivity of primate lentiviruses in the host, which is a
phenotype that is reproduced best in studies using pri-
mary cells in culture [9-12].

Nef is a small, myristylated protein that is expressed early
in the viral replicative cycle. It is found on cellular mem-
branes as a homodimer, where each subunit measures 27
to 32 kDa. Among all Nef proteins, the most conserved
region is the central core domain of 6  helices and 5 
sheets that binds many lipid, serine/threonine and tyro-
sine kinases as well as guanine nucleotide exchange fac-
tors and small GTPases [13]. The signalosome that is
assembled on Nef leads to downstream effector functions
and cytoskeletal rearrangements [14]. Near its N-terminus
is the binding site for CD4 and the C-terminal flexible
loop interacts with several subunits of adaptor protein
(AP) complexes as well as with other trafficking molecules
[15-20]. Thus, Nef also affects the movement of intracel-
lular organelles. Of interest, these functions can be linked,
as phosphoinositol 3-kinase (PI3K) also contributes to
the sequestration of major histocompatibility complex
(MHC) class I determinants [21].

In addition, Nef can accumulate in detergent resistant
microdomains (DRMs) or lipid rafts [22], and is incorpo-
rated into new viral particles [23,24]. It also augments the
infectivity of progeny virions, in part, by increasing the
incorporation of lipids into viral membranes [25]. To this
end, Nef not only induces the synthesis of cholesterol but
carries this lipid into viral particles [25]. These viral parti-
cles then fuse with DRMs on the recipient cell [26]. To
accomplish some of these chaperone functions, Nef binds
the transframe p6* protein from GagPol, which does not
exist in Gag [27]. Of interest, if Nef is retained near the
endoplasmic reticulum (ER) either as a naturally occur-
ring dominant negative Nef protein (NefF12) or by add-
ing the ER-retention signal (KKXX) to Nef (NefKKXX), no
viral particles are made and no Gag processing is observed
[27,28]. Thus, by biochemical and genetic criteria, Nef
binds GagPol and affects the replication of HIV-1 via its
association with viral assembly intermediates.

Recently, Nef has been demonstrated to proliferate multi-
vesicular bodies (MVBs) [29,30] and to facilitate the
egress of a variety of pseudotyped viruses from cells [31].
These studies suggest that Nef contributes directly to the
replication of HIV-1, possibly as a "modified" late (L)
domain. L domains of retroviruses and other RNA viruses
bind the tumor suppressor gene 101 (Tsg101) from the
Endosomal Sorting Complex Required for Transport I
(ESCRTI) [32-35] or the apoptosis linked gene 2 (ALG2)-
interacting protein 1 (AIP1) that bridges ESCRTI and
ESCRTIII [36-39]. With the help of PI3K, phosphoinositol
3 phosphate (PI3P), AAA ATPase Vps4, these E-Vps or
ESCRT proteins then create vacuoles into which vesicles

bud [40-42]. Indeed, these interactions are required for
the successful morphogenesis and release of viruses from
infected cells. In the case of HIV-1, whereas p6 from Gag
binds both Tsg101 and AIP1, p6* from GagPol contains a
completely different sequence and no such consensus
binding motif. However, we found that its binding part-
ner, Nef, not only contains such a site and binds AIP1 but
that it proliferates MVBs and leads to increased produc-
tion of viral particles from transformed cell lines and pri-
mary macrophages. Thus, Nef can contribute directly to
the egress of HIV-1 from infected cells.

Results
Nef increases levels of HIV-1 produced from SupT1 cells by 
a mechanism that is independent of CD4 and 
enhancement of viral infectivity
Previously, we demonstrated that Nef binds GagPol from
HIV-1 during late stages of the viral replicative cycle [27].
To determine what role this binding plays for the virus,
several CD4-positive cells were examined for the replica-
tion of HIV-1 in the presence and absence of Nef. Initially,
SupT1, Jurkat, CEM and MOLT4 cells were electroporated
with plasmids that directed the expression of HIV-1NL4-3
and mutant HIV-1NL4-3 Nef proviruses and virus produc-
tion was measured 2 to 8 days later, both by levels of p24
capture ELISA and by western blotting of purified viruses
with  p24 antibodies. At day 2, we observed an 8-fold
decreased release of viral particles from SupT1 cells trans-
fected with the mutant

HIV-1NL4-3 Nef provirus when compared to its wild type
HIV-1NL4-3 counterpart, whereas intracellular viral produc-
tion was at the same levels for both proviruses (Fig. 1A,
compare lanes 1 to 4). The earlier time point is presented
because at 2 days, we observed only a single round of viral
replication. Of interest, this decreased egress of mutant
HIV-1NL4-3 Nef viral particles was not observed in Jurkat,
CEM and MOLT4 cells (data not presented). These find-
ings are in agreement with previous studies demonstrat-
ing the importance of Nef for the production of HIV-1
from SupT1 cells [43,44].

Since it was reported that Nef facilitates the release of HIV-
1 in T cells by decreasing the expression of CD4 on the cell
surface [45,46], a possible explanation for our finding
would be that SupT1 cells contain higher amounts of
CD4. In these studies, by binding HIV-1 Env, CD4
blocked the release of new viral particles and/or prevented
the infection of new cells via CD4 [45,46]. To exclude this
possibility, we pseudotyped mutant HIV-1NL4-3 Env and

HIV-1NL4-3 Env Nef proviruses that lack HIV-1 Env with
Env from the murine leukemia virus (MuLV Env) that
does not bind CD4, and obtained identical results (Fig.
1B). Again, at day 2 after the transfection, levels of p24 in
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the supernatant from these SupT1 cells were 8-fold higher
in the presence than in the absence of Nef (Fig. 1B, com-
pare lanes 1 and 2). Importantly, the MuLV Env does not
support a second round of viral replication in SupT1 cells.
Identical results were obtained when no Env was co-
expressed with HIV-1NL4-3 Env and HIV-1NL4-3 Env Nef
proviruses (data not provided). Thus, these assays do not
measure effects of Nef on the infectivity of HIV-1. This
result confirms that Nef is required for the egress of HIV-
1 by a mechanism other than the removal of CD4 from
HIV-1 Env and emphasizes the importance of Nef during
late stages of the viral replicative cycle in these cells.

Nef can substitute for the function of the L domain of Gag
The budding of HIV-1 is dependent on the consensus
Tsg101-binding motif (PTAP), which is located in p6 of
Gag [33]. To confirm that Nef could contribute to the
release of viral particles, we examined the ability of Nef to
rescue the production of VLPs from mutant Gag proteins
(Gag VLPs) with deletions (Gag  p6) or mutations
(GagLTAL) in the L domain. As presented in Fig. 2A, very
low levels of Gag VLPs were detected in supernatants from
cells, which expressed Gag  p6 alone (lane 2). However,
when Nef was linked to the C-terminus of the mutant

Gag  p6 polyprotein (Gag  p6.Nef), the production of
Gag VLPs was restored to wild type levels (Fig 2A, compare
lanes 1, 2 and 3). Intracellular levels of wild type Gag,
mutant Gag  p6 and mutant hybrid Gag  p6Nef proteins
are presented in the bottom panel of Fig. 2A. Thus, Nef
can substitute for the function of the L domain for the
production of Gag VLPs.

For the second strategy, Nef was expressed as a hybrid
Vpr.Nef protein, because the binding site for Vpr within
Gag is preserved in the mutant GagLTAL protein. Thus,
Vpr should bring Nef to Gag. When the mutant GagLTAL
protein was expressed with Vpr, a very inefficient produc-
tion of Gag VLPs was observed from 293T cells (Fig. 2B,
lane 1). However, the co-expression of the mutant
GagLTAL protein with increasing amounts of the Vpr.Nef
chimera augmented the release of these Gag VLPs (Fig 2B,
top panel, compare lanes 1, 2 and 3). We loaded equiva-
lent amounts of the mutant GagLTAL protein in the lysate
so that increased levels of Gag VLPs in the supernatant
could be compared directly (Fig. 2B, top and bottom pan-
els, compare lanes 1, 2 and 3). For the graph at the bottom
of Fig. 2B, which presents ratios between mutant GagLTAL
proteins in supernatants and lysates, amounts of mutant
GagLTAL proteins were measured by densitometry of dif-
ferent exposures of these western blots. From this graph
(Fig. 2B, bottom), we conclude that the Vpr.Nef chimera
can increase the release of these Gag VLPs up to 10-fold.
Thus, Nef can promote the egress of HIV-1 and Gag VLPs
from cells.

Nef contains a consensus-binding site for AIP1
From these results, we hypothesized that Nef could func-
tion as a "modified" L domain by helping to connect viral
assembly intermediates to the components of the ESCRT
machinery involved in HIV-1 budding. To confirm this
hypothesis we first generated multiple alignments of Nef
using the Clustal W algorithm [47,48] and inspected them
visually for the presence of sequences resembling the
already described L domain-binding motifs. We found the
YPLT sequence (residues from positions 135 to 138),
close to the C-terminal flexible-loop of Nef (Fig. 3). This
sequence resembles the YPLTS domain described as an
AIP1-binding site in p6 from HIV-1 and p9 from EIAV
[36]. It is important to note that this sequence has a high
degree of conservation among all isolates of HIV-1 but not
of HIV-2 and SIV (Fig. 3). Rather, Nef proteins from these
related lentiviruses contain another consensus AIP1-bind-
ing site at their N-termini (data not presented), which has
been implicated recently in high levels of SIV replication
in rhesus macaques [49].

Nef binds AIP1 in vitro and in vivo
Next, we investigated the ability of Nef to bind AIP1. To
detect this binding, plasmids directing the expression of

Nef increases levels of HIV-1 produced from SupT1 cells by a CD4 independent mechanismFigure 1
Nef increases levels of HIV-1 produced from SupT1 
cells by a CD4 independent mechanism.A) SupT1 cells 
(1 × 107cells) were electroporated with 10 g of plasmids 
directing the expression of wild type HIV-1NL4-3 and mutant 
HIV-1NL4-3 Nef proviruses. 2 days later, supernatants and 
cells were collected and p24 levels were measured by p24 
capture ELISA (top panel). Viruses from cell supernatants 
were concentrated by ultracentrifugation. Viruses and cell 
lysates were processed for western blotting (WB) with  
p24 antibodies (bottom panel). Bar graphs contain: Black 
bars, wild type HIV-1NL4-3 provirus; white bars, mutant HIV-
1NL4-3 Nef provirus. Errors bars denote differences between 
three experiments performed in duplicate. (B) SupT1 cells (1 
× 107cells) were electroporated with 10 g of plasmids 
directing the expression of mutant HIV-1NL4-3 Env and HIV-
1NL4-3 Env Nef proviruses together with 5 g of an expres-
sion plasmid for the MuLV Env glycoprotein (MuLV Env). 2 
days later, supernatants and cells were collected and p24 lev-
els were measured as in (A). Error bars are as in (A).
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wild type and mutant Nef proteins at the putative consen-
sus AIP1-binding site were generated. Whereas the mutant
Nef  YPL protein contains a deletion of this motif, in the
mutant NefYPL protein, the YPL sequence has been
replaced by three alanines (Fig. 3, bottom). All Nef pro-
teins were expressed from the coupled transcription and
translation reactions with rabbit reticulocyte lysates in
vitro (IVT) (Fig. 4A, inputs). AIP1 was expressed and puri-
fied as the GST.AIP1 chimera from E. coli. GST alone was
expressed likewise and used as the negative control (Fig.
4A, inputs). Subsequent GST pulldowns revealed that Nef
binds AIP1 (Fig. 4A, lanes 1 and 2). Since the deletion of
the YPLTF sequence in the mutant Nef  YPL protein abol-
ished this binding, this interaction was also specific (Fig.
4A, lanes 3 and 4). Thus, Nef binds AIP1 and its consensus
AIP1-binding site is required for this interaction in vitro.

This binding was confirmed by co-immunoprecipitations
in cells. 293T cells co-expressed AIP1 and Nef proteins,
which were immunoprecipitated with  AIP1 antibodies.
After SDS-PAGE and transfer to membranes, western blot-
ting with  Nef antibodies revealed Nef-specific bands
(Fig. 4B). Again, AIP1 was only able to precipitate the wild
type but not mutant NefYPL proteins (Fig. 4B, compare
lanes 1, 2 and 3). Importantly, wild type and mutant Nef
proteins were expressed robustly in cells. Additionally,
since their migration patterns did not change, these muta-
tions most likely do not affect the structure of the protein.
Of note, similar confirmatory deletions and mutations
were used to map the AIP1-binding site in p6 [36]. Impor-
tantly, two independent approaches with two comple-
mentary mutant Nef proteins yielded identical results. We
conclude that Nef from HIV-1 binds AIP1 specifically in
vitro and in vivo.

Interactions between Nef and AIP1 are required for the 
proliferation of MVBs
It had been demonstrated that Nef increases the accumu-
lation of late endosomes in CEM and SupT1 cells [30].
More recently, Nef induced the proliferation of MVBs in
HeLa.CIITA cells [29]. Given that AIP1 plays an important
role in the formation of MVBs, we investigated if this find-
ing results from interactions between Nef and AIP1. Thus,
we expressed GFP, wild type Nef.GFP and mutant
NefYPL.GFP chimeras in HeLa.CIITA cells. Cell expressing
GFP were isolated by FACS, fixed and processed for elec-
tron microscopy. Under the electron microscope, MVBs
can be identified by their unique morphological appear-
ance, higher electron density and tightly packed internal
vesicles, which distinguishes them from other organelles
(Fig. 5A, bottom left panel) [29]. The number of MVBs in
each cell was counted directly under the electron micro-
scope from 30 images taken randomly from each sample.
Thus, at least 30 cells were examined and findings from
three independent experiments were averaged (Fig. 5A,
bottom right panel). In agreement with the previous pub-
lication [29], the expression of the wild type Nef protein
increased the accumulation of MVBs 3-fold in HeLa.CIITA
cells (Fig. 5, top and right bottom panels). Remarkably,
this effect was abolished with the mutant NefYPL protein,
which no longer binds AIP1. Indeed, in cells expressing
the mutant NefYPL.GFP chimera, the number of MVBs
was similar to that in control cells that expressed only
GFP. Thus, the proliferation of MVBs requires interactions
between Nef and AIP1.

Interactions between Nef and AIP1 are required for 
increased production of HIV-1 by Nef in primary 
macrophages
Mature viral particles accumulate inside late endosomes
in human mononuclear cells [50]. Later, the site of HIV-1
budding was proved to be in MVBs in macrophages

Nef rescues the release of Gag VLPs from the L domain-deleted and L domain-mutated Gag polyproteinsFigure 2
Nef rescues the release of Gag VLPs from the L 
domain-deleted and L domain-mutated Gag polypro-
teins.A)Efficient production of Gag VLPs from a 
mutant hybrid Gag  p6.Nef chimera. Two days after 
the transfection, supernatants from 293T cells expressing 
wild-type Gag as well as mutant Gag  p6 proteins and the 
mutant hybrid Gag  p6.Nef chimera were collected and sub-
mitted to ultracentrifugation for the purification of Gag VLPs. 
Purified Gag VLPs and cell lysates were processed as in Fig. 1. 
Lane 1: Wild type Gag protein; Lane 2: Mutant Gag  p6 pro-
tein; Lane 3: Mutant hybrid Gag  p6.Nef chimera. 
(B)Hybrid Vpr.Nef protein increases the release of 
Gag VLPs from a mutated p6 and Pol-deleted virus. 
The mutant GagLTAL provirus was co-expressed with Vpr 
or with the Vpr.Nef chimera in 293T cells. Two days after 
the transfection, supernatants and cells were collected. Puri-
fied Gag VLPs and cell lysates were processed as in Fig. 1. 
Equivalent amounts of the mutant GagLTAL protein were 
loaded in the lysate to facilitate comparisons between GagV-
LPs in the supernatant. Gag VLPs were detected with  p24 
antibodies. Ratios between the mutant GagLTAL proteins in 
supernatants and lysates are presented in the bar graph 
below the western blots. Lane 1: Mutant GagLTAL protein 
with Vpr; Lanes 2 and 3; Mutant GagLTAL protein and 
increasing concentrations of the hybrid Vpr.Nef protein.
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[29,51]. Since by binding AIP1, Nef proliferates MVBs, we
investigated further viral replication in primary macro-
phages, which were derived from peripheral blood mono-
nuclear cells (PBMCs). Macrophages were allowed to
differentiate for 7 days. They were transfected and then
harvested 5 days later. Similar to data in Fig. 1, we
observed that in the absence of Nef, the production of the
mutant R5 virus, HIV-1ADA  Nef, was up to 6-fold lower
than of its wild type counterpart (HIV-1ADA) in primary
macrophages (Fig. 6A, compare bars 3, 4, 7 and 8). Fur-
thermore, the co-expression of the wild type but not
mutant Nef  YPL proteins with the mutant HIV-1ADA
Nef provirus rescued the production of progeny virions to
the same levels as were observed with the wild type HIV-
1ADA provirus (Fig. 6A, compare bars 1, 2, 5 and 6). These
experiments were repeated a total of 5 times with identical
results. Western blotting from cell lysates demonstrated
that levels of Gag and Nef were matched in cells express-
ing the wild type and mutant HIV-1ADA  Nef proviruses
(Fig. 6B, top and bottom panels), confirming that the

block in viral production was at a later step. Although ini-
tial experiments were performed using lipofectamine to
transfect primary macrophages, the resulting levels of p24
were low. Nevertheless, a total of 8 independent experi-
ments with lipofectamine also demonstrated the same
effects of Nef. Subsequently, these studies were repeated
using CaPO4, which led to 5-fold better tranfection effi-
ciencies (Fig. 6). Nevertheless, levels of expression
remained somewhat lower in our transfected than have
been observed in infected macrophages [51]. Identical
results were obtained when we used another R5 virus, the
wild type HIV-1ELI and mutant HIV-1ELI  Nef proviruses
(data not presented). Thus, Nef also increases the produc-
tion of HIV-1 from primary macrophages.

Discussion
In this report, we studied effects of Nef on the prolifera-
tion of MVBs and increased production of HIV-1 from
infected cells. Whereas in SupT1 cells and primary macro-
phages, Nef increased the extracellular accumulation of

Nef contains the consensus-binding site for AIP1Figure 3
Nef contains the consensus-binding site for AIP1. Multiple alignments of sequences were generated by the Clustal W 
software and visually inspected for the presence of already described L domain motifs [47]. The AIP1-consensus binding site is 
highlighted. Consensus residues represent several subtypes of HIV-1. Below them are Nef sequences from HIV-2 and SIV that 
do not contain this consensus sequence. AIP1 binds elsewhere on these proteins. These sequences are from the Los Alamos 
database [48]. Below these sequences are diagrammed mutations that were introduced into Nef, one mutating the YPL 
sequence to three alanines (NefYPL), the other deleting the entire consensus motif (Nef  YPL).

CONSENSUS_B gyfpdwqnyt pgpgiryplt fgwcfklvpv epekveea-- negennsllh [200]

SF2 .......... .......... .......... ........-- .......... [200]

CONSENSUS_C .......... ....v..... .......... d.re....-- ......c... [200]

CONSENSUS_F1_4 .......... .......... .......... d..e..k.-- ......c... [200]

CONSENSUS_D_4 .-........ .......... .....e.... d.qe....-- t...d.c... [200]

CONSENSUS_CPZ .i........ ....v..... -........l t-.e..q.-- ...-d.i... [200]

HIV-2_2 ---------- ---------- ---------- ---------- ---------- [200]

HIV2_1 .iia...... s...v...mf ...lw..... dtsqeg.dte tdt.thc... [200]

HIV2UC2 .vi....... h...v...mc ...lw..... nmsqea.--- -dd.t.c.m. [200]

SIVmac .ii....d.. s.......k. ...lw..... nvsdeaq--- -.d.ehy.m. [200]

SIVmac239 .ii....d.. s.......k. ...lw..... nvsdeaq--- -.d.ehy.m. [200]

flexible loop

potential site for AIP1 interaction

NefYPL ………… pgpgiraaatfgwcfklvpv…………………………

Nef YPL ………… pgpgir gwcfklvpv…………………………
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new viral particles, in 293T cells, Nef rescued the produc-
tion of Gag VLPs from mutant Gag  p6 or Gagp6LTAL
proteins, which lacked the L domain. This phenotype was
correlated with interactions between Nef and AIP1, which
were documented by GST pulldowns and co-immunopre-
cipitations in cells. Importantly, this association was spe-
cific, as mutations in the conserved YPL motif in Nef
abolished this binding and eliminated effects of Nef on
the proliferation of MVBs and release of viral particles. We
conclude that by connecting GagPol and AIP1, Nef acts as
a chaperone the production and optimal egress of HIV-1
from infected cells.

Importantly, we used a transformed cell line as well as pri-
mary cells, especially since effects of Nef are most pro-
nounced in PBMCs and in the infected host [3-12]. Since
we did not observe the same phenotype in Jurkat, CEM
and Molt4 cells, the targeting of viral assembly intermedi-
ates to the cell surface rather than intracellular organelles
must also be more efficient in these cells. Indeed, in sharp
contrast to macrophages, no budding into MVBs had been
observed in these other T cell lines [50,51]. Importantly, a
role for CD4 could be excluded since the egress of pseudo-
typed viral particles, which contained the MuLV Env that

does not bind CD4 instead of HIV Env, from SupT1 cells
and that of wild type progeny virions from macrophages
that express low levels of CD4, were impacted identically
by Nef. In addition, it was important to confirm this effect
of Nef with mutant Gag proteins bearing deletions or
mutations in p6, as this assay represents an important
genetic proof for interactions between viral proteins and
the ESCRT machinery [27,33]. We also confirmed the spe-
cificity of binding for AIP1 by deletions and mutations of
the consensus YPL motif in Nef. For morphological stud-
ies, we used HeLa.CIITA cells, which express the class II
transactivator (CIITA) and hence MHC class II [52]. There
were several reasons for this choice. First, the effect of Nef
on the proliferation of MVBs had been documented in
these cells [29]. Second, they contain MHC class II com-
partments (MIICs), which are MVBs for antigen process-
ing and presentation by this pathway. Since their
composition had been examined extensively in these
cells, we could conclude that our dense vacuoles filled
with vesicles were MVBs by morphological criteria alone
[29,53]. In addition, increased levels of MVBs in our study
were identical to those already reported [29,30]. Impor-
tantly, the mutation of the AIP1- binding site in Nef abol-
ished this proliferation.

How do these findings fit into our view of Nef? Although
effects of Nef in infected cells are multifactorial, above all,
Nef is required for high levels of viral replication and the
progression to AIDS in the infected host [3-5]. In primary
cells, Nef also increases levels and infectivity of progeny
virions [12,54,55]. Cellular activation by Nef has been
implicated in low but detectable levels of viral replication
in unstimulated PBMCs [22,56]. However, even after the
stimulation with PHA, levels of progeny virions from
mutant HIV-1  Nef proviruses are still 5-fold lower when
compared to those with wild type proviruses in PBMCs
[57]. These findings suggested an additional role for Nef
in increasing viral production, possibly during the mor-
phogenesis and release of new virions. To this end, first,
Nef binds p6* in GagPol [27], which means that Nef trav-
els with viral assembly intermediates inside cells and is
incorporated into new viral particles. This association
found strong genetic support when two different Nef pro-
teins, one the naturally occurring allele of Nef (NefF12),
the other engineered artificially from NefNL4-3
(NefKKXX), could retain GagPol near the ER and block
subsequent processing and release of viral particles
[27,28]. Second, Nef stimulates transcription from the
viral LTR as well as of many cellular genes [58-60], which
include those involved in cholesterol biosynthesis [61].
Indeed, Nef also binds cholesterol and can be found in
DRMs [25], although one study disputes this localization
[62]. In addition, like DRMs, internal vesicles of MVBs are
enriched in cholesterol and harbor most of the cholesterol
from the endocytic pathway [63]. Third, Nef binds PI3K,

Nef binds AIP1 in vitro and invivoFigure 4
Nef binds AIP1 in vitro and invivo.(A)Nef binds AIP1 
in vitro. GST and GST.AIP1 fusion proteins were expressed 
in E. coli and purified by glutathione S-transferase beads. They 
were incubated with V5 epitope-tagged wild type Nef and 
mutant Nef  YPL proteins expressed in IVT. Bound proteins 
were resolved by 10% SDS-PAGE followed by western blot-
ting with  V5 antibodies. GST was used as the negative con-
trol (top right panel, lane 2). 10% of input proteins (inputs) is 
presented to the left of GST pulldowns. (B) Nef binds 
AIP1 in cells. HA epitope-tagged AIP1 protein was 
expressed alone or with the wild type and mutant NefYPL 
proteins in 293T cells. Cells were disrupted by dounce 
homogenization in hypotonic buffer containing protease 
inhibitor cocktails, followed by incubation with  HA poly-
clonal antibodies and protein-G beads. After the immunopre-
cipitation, western blotting was performed using  Nef 
antibodies (top left panel). A control western blot for 10% of 
input proteins was performed with  Nef and  AIP1 anti-
bodies (bottom left panels).
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whose kinase activity is required for the formation of
MVBs [42,64,65]. To this end, it is of interest that wort-
mannin, an inhibitor of PI3K, blocks the release of viral
particles from cells [66]. Finally, why would the virus
require a "modified" L domain, when ratios of Gag to
GagPol are 20:1 in viral particles? Possibly, because Gag-
Pol is bulkier and/or otherwise contains additional reten-
tion signals in Pol, which represents one half of the
polyprotein. Possibly, because Nef forms oligomers, it
could increase the size of viral assembly intermediates
that would be optimal for the targeting and egress of viral
particles from the infected cell. Otherwise, Nef contains
additional motifs that might be attractive to the virus at
this stage of its replicative cycle. PI3K and lipids have been
mentioned already, but Nef also associates with addi-
tional trafficking and signaling molecules. As both Nef
and gp41 interact with AP complexes, some of these
might facilitate the loading of Env onto viral particles
[67]. Others cause cytoskeletal rearrangements and
increase the local polymerization of actin, which is
required not only for the formation of pseudopodia, from
which virions bud, but also for the integrity of viral parti-
cles themselves [14,68]. In support of these findings, a
recent study found that SIV Nef not only augments the
incorporation of many retroviral glycoproteins onto Gag

of SIV by increasing their co-localization in late endo-
somes but leads to greater egress of these pseudotyped
viral particles from infected cells [31].

Conclusion
From these studies emerges an additional effect of Nef on
viral replication. During late stages of the viral replicative
cycle, Nef behaves like a chaperone for HIV-1. By interact-
ing with viral structural proteins and the ESCRT machin-
ery, it facilitates the egress of optimally infectious progeny
virions from infected mononuclear cells Future studies
will evaluate the role of PI3K in this process as well as con-
firm these findings in the primate model of AIDS, with
SIV in rhesus macaques.

Methods
Antibodies
Monoclonal  HA epitope (F7) (Santa Cruz Biotechnol-
ogy, Santa Cruz, CA), monoclonal  V5 (Invitrogen,
Carlsbad, CA), monoclonal  FlagM2 (Sigma-Aldrich, St.
Louis, MO), monoclonal  Nef [25], and mouse  p24
(AG3.0) antibodies were used as first antibodies to detect
epitope-tagged proteins, Nef and Gag, respectively. Sec-
ondary HRP-conjugated anti-mouse antibodies (Santa
Cruz Biotechnology, Santa Cruz, CA) were detected by
enhanced chemilumnescence (ECL, Amershan Bio-
sciences, Evanston, IL).  AIP1 antibodies were a kind gift
of Wesley Sundquist (U. of Utah, Salt Lake City, UT)

Plasmid constructions
Plasmid DNAs encoding replication-competent HIV-1
proviruses were from HIV-1NL4-3 [69]. The nef-deleted var-
iant NL4-3  Nef was generously provided by John Gua-
telli (U. of California, San Diego, CA). Proviral infectious
clones for the macrophage-tropic viruses ADA and ELI,
and the same clones disrupted for the Nef ORF (ADA
Nef, ELI  Nef) where provided by Marcelo Soares (Federal
University, Rio de Janeiro, Brazil), and are described else-
where [70,71]. Plasmid DNAs encoding env-deleted, env
plus nef-deleted proviruses, and MLV-env, were kindly
provided by Hirofumi Akari (NIH, Bethesda, MD) and are
described elsewhere [72].

The Nef expression plasmid was generated by the amplifi-
cation of the nef gene from the NL4-3 provirus and
inserted into pcDNA3.1D (Invitrogen) at the TOPO site.
This plasmid was used to derive the expression plasmids
for the mutant Nef  YPLF (Nef from NL4-3, residues
deleted from positions 135 to 138), and the mutant
NefYPL (Nef from NL4-3, mutated residues from posi-
tions 135 to 137 to alanines) proteins, by standard muta-
geneses. The human Aip1 cDNA was obtained from the
American Type Culture Collection and was amplified by
PCR with Bam HI (5') and EcoRI (3') restriction sites and
inserted into pEF-BOS-HA (to obtain the HA epitope-

Interactions between Nef and AIP1 are required for the pro-liferation of MVBsFigure 5
Interactions between Nef and AIP1 are required for 
the proliferation of MVBs. HeLa.CIITA cells were trans-
fected with plasmids, which directed the expression of GFP, 
Nef.GFP, or mutant NefYPL.GFP chimeras (top panels). GFP-
positive cells were isolated by FACS and fixed before ultra-
thin sectioning was performed. MVBs were identified by their 
unique morphology (bottom left panel) under the electron 
microscope (indicated by arrows). Numbers of MVBs of each 
cell type were counted directly under the electron micro-
scope from 30 profiles randomly taken from each sample. 
Bar graphs contain: White bars, GFP control; black bars, Nef; 
striped bars, mutant Nef.YPL protein.The black bar inside the 
EM panels measures 1 m.
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tagged AIP1 protein) and into pGEX-4T1 (Pharmacia, Pis-
cataway, NJ)(to obtain the GST.AIP1 fusion protein).
pENX, which expresses Gag without p6, Env, Rev and Tat
[33], was used to create pENX.Flag.Nef, which has a Flag
eptiope-tagged Nef ORF at the C-terminus of the Gagp7
ORF. This plasmid expressed the mutant Gag  p6.Nef chi-
mera. pNL-  pol was derived from pNL-, which bears two
mutations in the Gagp6 L domain (PTAP to LTAL). To
generate the pNL-  pol plasmid, the entire pol gene
together with the Vif and the Vpr ORFs were removed by
Bcl I-Sal I digestion, treated with Klenow enzyme and fur-
ther ligated with the T4 DNA ligase (both from Invitro-
gen). This plasmid expressed virus like particles (VLPs)
that did not bud from cells. To generate the expression
plasmid for the Myc.Vpr protein (pEF.Myc.Vpr), the vpr
gene from HIV-1NL4-3 was inserted into pEF.BOS.Myc. For
the expression of the hybrid Myc.Vpr.Nef protein, the nef
gene from HIV-1NL4-3 was inserted into pEF.Myc.Vpr
downstream from the vpr gene.

Cells and transfections
293T and HeLa.CIITA cells were grown in DMEM with
10% FCS and antibiotics. Transfections were performed
using Lipofectamine (Invitrogen). SupT1 cells were grown
in RPMI1640 medium with 10% FCS, antibiotics and L-
glutamine. Cells were electroporated using a BioRad elec-
troporator (BioRad USA Life Sciences, Hercules, CA) as
follows: 1 × 107 cells in the presence of 10 g of DNA, elec-
troporated at 200 V and 995 F. Primary macrophage cul-
tures were obtained from Peripheral Blood Mononuclear
Cells (PBMCs) by their adherence to plastic. Briefly,
PBMCs were obtained from buffy coats of anonymous,
healthy blood donors and separated by centrifugation
over Ficoll-Paque (Amershan Biosciences, Evanston, IL).
107 cells were incubated in DMEM with 5% human serum
type A and antibiotics. PBMCs were left to sit on TC25
plastic bottles for 7 days. Transfections were performed
using CaPO4 protocols (Stratagene, Carlsbad, CA). Trans-
fected cells were analyzed 5 days later for production of
viral partcles and intracellular levels of Nef.

Virus and Gag VLP production, virion and Gag VLP 
isolation and Gag expression
To assess effects of Nef during the production of new viral
particles, SupT1 cells were electroporated and macro-
phages were transfected with proviral DNAs and Nef
expression plasmids at 1:1 molar ratios. 4 to 8 days later,
cells and cell culture supernatants were harvested. The co-
expression of mutant HIV-1NL4-3  Env or HIV-1NL4-3
Env  Nef (which lacks the nef gene) plasmids with the
MuLV Env at equivalent amounts generated pseudotyped
viruses. For the evaluation of Gag VLPs, 293T cells were
transfected with the pENX and the pENX.Flag.Nef proviral
clones. 293T cells were also transfected with the pL- and
pNL-  pol proviral clones together with the Vpr or
Vpr.Nef fusion plasmids at different proportions of each
plasmid, ranging from 1:1 to 1:5 of the pL- or pNL-  pol
to the Vpr or hybrid Vpr.Nef plasmids. pENX and pL were
kind gift of Paul Bieniasz (ADARC, NYC, NY) [36]. Cul-
ture supernatants were clarified at low-speed centrifuga-
tion, cleared through a 0.45 m-pore-size filter (Millipore,
Bedford, MA) and followed by ultracentrifugation
through a 20% sucrose cushion at 100,000 × g for 1.5 h.
Pellets were suspended in 1 × PBS overnight at 4°C.
Viruses were lysed in SDS-loading buffer and viral protein
contents were analyzed by western blotting. Quantifica-
tion of virion production was performed by p24 capture
ELISA (PerkinElmer/NEN Life Science Products, Boston,
MA). Cells were lysed in radioimmunoprecipitation assay
(RIPA) buffer (150 mM NaCl, 50 mM Tris [pH 7.2], 1%
Triton X-100, 0.1% sodium dodecyl sulfate [SDS]), and
viral protein content analyzed by western blotting. Cell-
associated viral proteins were quantified as above.

Interactions between Nef and AIP1 increase the production of HIV-1 from primary macrophagesFigure 6
Interactions between Nef and AIP1 increase the pro-
duction of HIV-1 from primary macrophages. (A) 
Only the wild type Nef protein can rescue the pro-
duction of mutant viruses in macrophages. Macro-
phages were derived from PBMCs by adherence to plastic in 
the presence of 5% human serum. 7 days after differentiation, 
macrophages were transfected with wild type HIV-1ADA and 
mutant HIV-1ADA  Nef proviruses, or co-transfected with 
HIV-1ADA  Nef provirus with the wild type Nef or mutant 
Nef  YPL proteins. 5 days after the transfection, superna-
tants (S) and cell lysates (L) were examined for the presence 
of viral particles by the p24 capture ELISA. Bar graphs con-
tain: Black bars, HIV-1ADA alone or the mutant HIV-1ADA  
Nef provirus with Nef; white bars, the mutant HIV-1ADA  
Nef provirus; striped bars, the mutant HIV-1ADA  Nef provi-
rus with the mutant Nef  YPL protein. Errors bars denote 
differences between 5 independent experiments performed 
with the CaPO4 transfection protocol. (B)Expression of 
wild type and mutant viruses and wild type and 
mutant Nef proteins were equivalent in cells.Cell 
lysates from transfected macrophages were obtained concur-
rently and processed as in Figs. 1, 2, and 4.
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Protein purification, in vitro translation and GST 
pulldowns
The GST.AIP1 fusion protein was expressed in the
BL21(DE3)pLysS strain of E. coli (Novagen, Madison, WI)
and purified using Glutathione Sepharose beads (GE
Healthcare Bio-Sciences AB, Uppsale, Sweden) with a
modified lysis buffer (50 mM Hepes [pH 7.8], 100 mM
KCl, 1% Triton X-100, 2 mM EDTA, 0.1 mM PMSF, and 1

g/ml lysozyme). Coomassie blue staining of SDS-PAGE
was used to check the purity of the GST.AIP1 chimera.
Amounts of protein were determined by a protein assay
kit (BioRad, Hercules, CA). Wild type and mutant Nef
proteins were transcribed and translated using the rabbit
reticulocyte in vitro (TNT, Promega, Madison, WI). SDS-
PAGE and western blotting using V5 antibodies was
used to assess the quality of translated proteins. For in vitro
binding assays, 0.5 g of immobilized GST or hybrid
GST.AIP1 proteins were incubated with 5 l of V5
epitope-tagged proteins for 4 h at 4°C in 750 l of CHAPS
buffer (50 mM Tris-HCl [pH 7.4], 0.05 mM EDTA, 10 mM
CHAPS and protease inhibitors). Beads were then washed
5 times in the same buffer and subjected to SDS-PAGE
and western blotting.

Co-Immunoprecipitation
293T cells were transfected with 0.5 g of pCR.AIP1.HA
[40] alone or co-transfected with 0.5 g of plasmids
expressing wild type or mutant NefYPL proteins. 36 h after
the transfection, cells were harvested, washed, and dis-
rupted by dounce homogenization in hypotonic buffer
containing protease inhibitor cocktails (Sigma-Aldridge,
Saint Louis, MI). After removing nuclei and unbroken
cells, 5 g/ml of  HA antibodies (Santa Cruz Biotech,
Santa Cruz, CA) was added to the supernatant followed by
proteinG-beads (GE Healthcare Bio-Sciences AB, Uppsale,
Sweden). Immunoprecipitations were resolved by 12%
SDS-PAGE, and Nef proteins were detected by western
blotting using  Nef antibodies.

Electron microscopy
HeLa.CIITA cells were transfected with peGFPN1 (Clon-
tech Laboratories, Mountain View, CA) expressing GFP,
Nef.GFP, or mutant NefYPL.GFP fusion proteins by
Fugene6 (Roche Applied Science, Indianapolis, IN). 48
hours after the transfection, GFP-expressing cells were
sorted by FacsVantage and fixed in a mixture of 3% glutar-
aldehyde and 1% paraformaldehyde, 0.1M cacodylate
buffer, pH 7.4 prior to the process for ultra thin section-
ing. 30 images of each sample were taken randomly, and
the numbers of MVBs were quantified.

Abbreviations
AIDS, acquired immunodeficiency syndrome; AIP1,
apoptosis linked gene 2 (ALG2)-interacting protein 1; AP,
adaptor protein complex; CA, capsid; Env, envelope;

DRM, detergent resistant microdomains; EIAV, equine
infectious anemia virus; ESCRT, endosomal sorting com-
plex required for transport; Gag, group specific antigen;
GagPol, Gag-polymerase; HIV, human immunodeficiency
virus; L, late domain; MVB, multivesicular body; MIIC,
major histocompatibility complex (MHC) class II com-
partment; Nef, negative factor; PI3K, phosphoinositide 3
kinase; PBMC, peripheral blood mononuclear cells; SIV,
simian immunodeficiency virus; VLP, virus like particle;
Tsg101, tumor suppressor gene 101.

Acknowledgements
We thank members of the Peterlin laboratory for helpful advice and discus-
sions, Marek Gajdusek for expert secretarial assistance, Hirofumi Akari, 
Philippe Benaroch, Paul Bieniasz, Heinrich Gottlingers, John Guatelli, 
Marcelo Soares and Wesley Sundquist for reagents. Luciana J. Costa was 
supported with funds from FAPERJ. This work was supported by a grant 
from the NIH (RO1 AI051165).

References
1. Anastassopoulou CG, Kostrikis LG: Viral correlates of HIV-1 dis-

ease.  Curr HIV Res 2005, 3(2):113-132.
2. Vergis EN, Mellors JW: Natural history of HIV-1 infection.  Infect

Dis Clin North Am 2000, 14(4):809-25, v-vi.
3. Deacon NJ, Tsykin A, Solomon A, Smith K, Ludford-Menting M,

Hooker DJ, McPhee DA, Greenway AL, Ellett A, Chatfield C, Lawson
VA, Crowe S, Maerz A, Sonza S, Learmont J, Sullivan JS, Cunningham
A, Dwyer D, Dowton D, Mills J: Genomic structure of an atten-
uated quasi species of HIV-1 from a blood transfusion donor
and recipients.  Science 1995, 270(5238):988-991.

4. Kirchhoff F, Greenough TC, Brettler DB, Sullivan JL, Desrosiers RC:
Brief report: absence of intact nef sequences in a long-term
survivor with nonprogressive HIV-1 infection.  N Engl J Med
1995, 332(4):228-232.

5. Daniel MD, Kirchhoff F, Czajak SC, Sehgal PK, Desrosiers RC: Pro-
tective effects of a live attenuated SIV vaccine with a dele-
tion in the nef gene.  Science 1992, 258(5090):1938-1941.

6. Birch MR, Learmont JC, Dyer WB, Deacon NJ, Zaunders JJ, Saksena
N, Cunningham AL, Mills J, Sullivan JS: An examination of signs of
disease progression in survivors of the Sydney Blood Bank
Cohort (SBBC).  J Clin Virol 2001, 22(3):263-270.

7. Sawai ET, Hamza MS, Ye M, Shaw KE, Luciw PA: Pathogenic con-
version of live attenuated simian immunodeficiency virus
vaccines is associated with expression of truncated Nef.  J Virol
2000, 74(4):2038-2045.

8. Dyer WB, Geczy AF, Kent SJ, McIntyre LB, Blasdall SA, Learmont JC,
Sullivan JS: Lymphoproliferative immune function in the Syd-
ney Blood Bank Cohort, infected with natural nef/long ter-
minal repeat mutants, and in other long-term survivors of
transfusion-acquired HIV-1 infection.  Aids 1997,
11(13):1565-1574.

9. Lundquist CA, Tobiume M, Zhou J, Unutmaz D, Aiken C: Nef-medi-
ated downregulation of CD4 enhances human immunodefi-
ciency virus type 1 replication in primary T lymphocytes.  J
Virol 2002, 76(9):4625-4633.

10. Fackler OT, Wolf D, Weber HO, Laffert B, D'Aloja P, Schuler-
Thurner B, Geffin R, Saksela K, Geyer M, Peterlin BM, Schuler G, Baur
AS: A natural variability in the proline-rich motif of Nef mod-
ulates HIV-1 replication in primary T cells.  Curr Biol 2001,
11(16):1294-1299.

11. Choi J, Walker J, Talbert-Slagle K, Wright P, Pober JS, Alexander L:
Endothelial cells promote human immunodeficiency virus
replication in nondividing memory T cells via Nef-, Vpr-, and
T-cell receptor-dependent activation of NFAT.  J Virol 2005,
79(17):11194-11204.

12. Miller MD, Warmerdam MT, Gaston I, Greene WC, Feinberg MB:
The human immunodeficiency virus-1 nef gene product: a
positive factor for viral infection and replication in primary
lymphocytes and macrophages.  J Exp Med 1994,
179(1):101-113.



 2006, :33 http://www.retrovirology.com/content/3/1/33

Page 10 of 11

13. Geyer M, Peterlin BM: Domain assembly, surface accessibility
and sequence conservation in full length HIV-1 Nef.  FEBS Lett
2001, 496(2-3):91-95.

14. Fackler OT, Luo W, Geyer M, Alberts AS, Peterlin BM: Activation
of Vav by Nef induces cytoskeletal rearrangements and
downstream effector functions.  Mol Cell 1999, 3(6):729-739.

15. Coleman SH, Van Damme N, Day JR, Noviello CM, Hitchin D, Madrid
R, Benichou S, Guatelli JC: Leucine-specific, functional interac-
tions between human immunodeficiency virus type 1 Nef
and adaptor protein complexes.  J Virol 2005, 79(4):2066-2078.

16. Craig HM, Reddy TR, Riggs NL, Dao PP, Guatelli JC: Interactions of
HIV-1 nef with the mu subunits of adaptor protein com-
plexes 1, 2, and 3: role of the dileucine-based sorting motif.
Virology 2000, 271(1):9-17.

17. Piguet V, Gu F, Foti M, Demaurex N, Gruenberg J, Carpentier JL,
Trono D: Nef-induced CD4 degradation: a diacidic-based
motif in Nef functions as a lysosomal targeting signal
through the binding of beta-COP in endosomes.  Cell 1999,
97(1):63-73.

18. Bresnahan PA, Yonemoto W, Ferrell S, Williams-Herman D, Gelezi-
unas R, Greene WC: A dileucine motif in HIV-1 Nef acts as an
internalization signal for CD4 downregulation and binds the
AP-1 clathrin adaptor.  Curr Biol 1998, 8(22):1235-1238.

19. Le Gall S, Erdtmann L, Benichou S, Berlioz-Torrent C, Liu L, Benarous
R, Heard JM, Schwartz O: Nef interacts with the mu subunit of
clathrin adaptor complexes and reveals a cryptic sorting sig-
nal in MHC I molecules.  Immunity 1998, 8(4):483-495.

20. Lu X, Yu H, Liu SH, Brodsky FM, Peterlin BM: Interactions
between HIV1 Nef and vacuolar ATPase facilitate the inter-
nalization of CD4.  Immunity 1998, 8(5):647-656.

21. Blagoveshchenskaya AD, Thomas L, Feliciangeli SF, Hung CH, Thomas
G: HIV-1 Nef downregulates MHC-I by a PACS-1- and PI3K-
regulated ARF6 endocytic pathway.  Cell 2002, 111(6):853-866.

22. Wang JK, Kiyokawa E, Verdin E, Trono D: The Nef protein of HIV-
1 associates with rafts and primes T cells for activation.  Proc
Natl Acad Sci U S A 2000, 97(1):394-399.

23. Pandori MW, Fitch NJ, Craig HM, Richman DD, Spina CA, Guatelli JC:
Producer-cell modification of human immunodeficiency
virus type 1: Nef is a virion protein.  J Virol 1996,
70(7):4283-4290.

24. Welker R, Kottler H, Kalbitzer HR, Krausslich HG: Human immu-
nodeficiency virus type 1 Nef protein is incorporated into
virus particles and specifically cleaved by the viral protein-
ase.  Virology 1996, 219(1):228-236.

25. Zheng YH, Plemenitas A, Fielding CJ, Peterlin BM: Nef increases the
synthesis of and transports cholesterol to lipid rafts and HIV-
1 progeny virions.  Proc Natl Acad Sci U S A 2003,
100(14):8460-8465.

26. Liao Z, Graham DR, Hildreth JE: Lipid rafts and HIV pathogene-
sis: virion-associated cholesterol is required for fusion and
infection of susceptible cells.  AIDS Res Hum Retroviruses 2003,
19(8):675-687.

27. Costa LJ, Zheng YH, Sabotic J, Mak J, Fackler OT, Peterlin BM: Nef
binds p6* in GagPol during replication of human immunode-
ficiency virus type 1.  J Virol 2004, 78(10):5311-5323.

28. Fackler OT, d'Aloja P, Baur AS, Federico M, Peterlin BM: Nef from
human immunodeficiency virus type 1(F12) inhibits viral
production and infectivity.  J Virol 2001, 75(14):6601-6608.

29. Stumptner-Cuvelette P, Jouve M, Helft J, Dugast M, Glouzman AS,
Jooss K, Raposo G, Benaroch P: Human immunodeficiency virus-
1 Nef expression induces intracellular accumulation of mul-
tivesicular bodies and major histocompatibility complex
class II complexes: potential role of phosphatidylinositol 3-
kinase.  Mol Biol Cell 2003, 14(12):4857-4870.

30. Sanfridson A, Hester S, Doyle C: Nef proteins encoded by human
and simian immunodeficiency viruses induce the accumula-
tion of endosomes and lysosomes in human T cells.  Proc Natl
Acad Sci U S A 1997, 94(3):873-878.

31. Sandrin V, Cosset FL: Intracellular versus cell surface assembly
of retroviral pseudotypes is determined by the cellular local-
ization of the viral glycoprotein, its capacity to interact with
Gag, and the expression of the Nef protein.  J Biol Chem 2006,
281(1):528-542.

32. VerPlank L, Bouamr F, LaGrassa TJ, Agresta B, Kikonyogo A, Leis J,
Carter CA: Tsg101, a homologue of ubiquitin-conjugating

(E2) enzymes, binds the L domain in HIV type 1 Pr55(Gag).
Proc Natl Acad Sci U S A 2001, 98(14):7724-7729.

33. Martin-Serrano J, Zang T, Bieniasz PD: HIV-1 and Ebola virus
encode small peptide motifs that recruit Tsg101 to sites of
particle assembly to facilitate egress.  Nat Med 2001,
7(12):1313-1319.

34. Stuchell MD, Garrus JE, Muller B, Stray KM, Ghaffarian S, McKinnon
R, Krausslich HG, Morham SG, Sundquist WI: The human endo-
somal sorting complex required for transport (ESCRT-I) and
its role in HIV-1 budding.  J Biol Chem 2004,
279(34):36059-36071.

35. Stange A, Mannigel I, Peters K, Heinkelein M, Stanke N, Cartellieri M,
Gottlinger H, Rethwilm A, Zentgraf H, Lindemann D: Characteriza-
tion of prototype foamy virus gag late assembly domain
motifs and their role in particle egress and infectivity.  J Virol
2005, 79(9):5466-5476.

36. Strack B, Calistri A, Craig S, Popova E, Gottlinger HG: AIP1/ALIX
is a binding partner for HIV-1 p6 and EIAV p9 functioning in
virus budding.  Cell 2003, 114(6):689-699.

37. von Schwedler UK, Stuchell M, Muller B, Ward DM, Chung HY,
Morita E, Wang HE, Davis T, He GP, Cimbora DM, Scott A, Krauss-
lich HG, Kaplan J, Morham SG, Sundquist WI: The protein network
of HIV budding.  Cell 2003, 114(6):701-713.

38. Martin-Serrano J, Yarovoy A, Perez-Caballero D, Bieniasz PD: Diver-
gent retroviral late-budding domains recruit vacuolar pro-
tein sorting factors by using alternative adaptor proteins.
Proc Natl Acad Sci U S A 2003, 100(21):12414-12419.

39. Morita E, Sundquist WI: Retrovirus budding.  Annu Rev Cell Dev Biol
2004, 20:395-425.

40. Garrus JE, von Schwedler UK, Pornillos OW, Morham SG, Zavitz KH,
Wang HE, Wettstein DA, Stray KM, Cote M, Rich RL, Myszka DG,
Sundquist WI: Tsg101 and the vacuolar protein sorting path-
way are essential for HIV-1 budding.  Cell 2001, 107(1):55-65.

41. Scott A, Gaspar J, Stuchell-Brereton MD, Alam SL, Skalicky JJ, Sun-
dquist WI: Structure and ESCRT-III protein interactions of
the MIT domain of human VPS4A.  Proc Natl Acad Sci U S A 2005,
102(39):13813-13818.

42. Gruenberg J, Stenmark H: The biogenesis of multivesicular
endosomes.  Nat Rev Mol Cell Biol 2004, 5(4):317-323.

43. Alexander M, Bor YC, Ravichandran KS, Hammarskjold ML, Rekosh
D: Human immunodeficiency virus type 1 Nef associates
with lipid rafts to downmodulate cell surface CD4 and class I
major histocompatibility complex expression and to
increase viral infectivity.  J Virol 2004, 78(4):1685-1696.

44. Cavrois M, Neidleman J, Yonemoto W, Fenard D, Greene WC: HIV-
1 virion fusion assay: uncoating not required and no effect of
Nef on fusion.  Virology 2004, 328(1):36-44.

45. Ross TM, Oran AE, Cullen BR: Inhibition of HIV-1 progeny virion
release by cell-surface CD4 is relieved by expression of the
viral Nef protein.  Curr Biol 1999, 9(12):613-621.

46. Lama J, Mangasarian A, Trono D: Cell-surface expression of CD4
reduces HIV-1 infectivity by blocking Env incorporation in a
Nef- and Vpu-inhibitable manner.  Curr Biol 1999,
9(12):622-631.

47. Persson B: Bioinformatics in protein analysis.  Exs 2000,
88:215-231.

48. Kuiken C, Korber B, Shafer RW: HIV sequence databases.  AIDS
Rev 2003, 5(1):52-61.

49. Brenner M, Munch J, Schindler M, Wildum S, Stolte N, Stahl-Hennig
C, Fuchs D, Matz-Rensing K, Franz M, Heeney J, Ten Haaft P, Swigut
T, Hrecka K, Skowronski J, Kirchhoff F: Importance of the N-dis-
tal AP-2 binding element in Nef for simian immunodefi-
ciency virus replication and pathogenicity in rhesus
macaques.  J Virol 2006, 80(9):4469-4481.

50. Orenstein JM, Meltzer MS, Phipps T, Gendelman HE: Cytoplasmic
assembly and accumulation of human immunodeficiency
virus types 1 and 2 in recombinant human colony-stimulat-
ing factor-1-treated human monocytes: an ultrastructural
study.  J Virol 1988, 62(8):2578-2586.

51. Pelchen-Matthews A, Kramer B, Marsh M: Infectious HIV-1
assembles in late endosomes in primary macrophages.  J Cell
Biol 2003, 162(3):443-455.

52. Stumptner-Cuvelette P, Morchoisne S, Dugast M, Le Gall S, Raposo
G, Schwartz O, Benaroch P: HIV-1 Nef impairs MHC class II
antigen presentation and surface expression.  Proc Natl Acad Sci
U S A 2001, 98(21):12144-12149.



Publish with BioMed Central   and  every 
scientist can read your work free of charge

"BioMed Central will be the most significant development for 
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central 

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

 2006, :33 http://www.retrovirology.com/content/3/1/33

Page 11 of 11

53. Raposo G, Moore M, Innes D, Leijendekker R, Leigh-Brown A, Bena-
roch P, Geuze H: Human macrophages accumulate HIV-1 par-
ticles in MHC II compartments.  Traffic 2002, 3(10):718-729.

54. de Ronde A, Klaver B, Keulen W, Smit L, Goudsmit J: Natural HIV-
1 NEF accelerates virus replication in primary human lym-
phocytes.  Virology 1992, 188(1):391-395.

55. Spina CA, Kwoh TJ, Chowers MY, Guatelli JC, Richman DD: The
importance of nef in the induction of human immunodefi-
ciency virus type 1 replication from primary quiescent CD4
lymphocytes.  J Exp Med 1994, 179(1):115-123.

56. Alexander L, Du Z, Rosenzweig M, Jung JU, Desrosiers RC: A role
for natural simian immunodeficiency virus and human
immunodeficiency virus type 1 nef alleles in lymphocyte acti-
vation.  J Virol 1997, 71(8):6094-6099.

57. Shapira-Nahor O, Maayan S, Peden KW, Rabinowitz R, Schlesinger M,
Alian A, Panet A: Replication of HIV-1 deleted Nef mutants in
chronically immune activated human T cells.  Virology 2002,
303(1):138-145.

58. Simmons A, Aluvihare V, McMichael A: Nef triggers a transcrip-
tional program in T cells imitating single-signal T cell activa-
tion and inducing HIV virulence mediators.  Immunity 2001,
14(6):763-777.

59. Varin A, Manna SK, Quivy V, Decrion AZ, Van Lint C, Herbein G,
Aggarwal BB: Exogenous Nef protein activates NF-kappa B,
AP-1, and c-Jun N-terminal kinase and stimulates HIV tran-
scription in promonocytic cells. Role in AIDS pathogenesis.
J Biol Chem 2003, 278(4):2219-2227.

60. Witte V, Laffert B, Rosorius O, Lischka P, Blume K, Galler G, Stilper
A, Willbold D, D'Aloja P, Sixt M, Kolanus J, Ott M, Kolanus W,
Schuler G, Baur AS: HIV-1 Nef mimics an integrin receptor sig-
nal that recruits the polycomb group protein Eed to the
plasma membrane.  Mol Cell 2004, 13(2):179-190.

61. van 't Wout AB, Swain JV, Schindler M, Rao U, Pathmajeyan MS, Mul-
lins JI, Kirchhoff F: Nef induces multiple genes involved in cho-
lesterol synthesis and uptake in human immunodeficiency
virus type 1-infected T cells.  J Virol 2005, 79(15):10053-10058.

62. Sol-Foulon N, Esnault C, Percherancier Y, Porrot F, Metais-Cunha P,
Bachelerie F, Schwartz O: The effects of HIV-1 Nef on CD4 sur-
face expression and viral infectivity in lymphoid cells are
independent of rafts.  J Biol Chem 2004, 279(30):31398-31408.

63. Mobius W, van Donselaar E, Ohno-Iwashita Y, Shimada Y, Heijnen
HF, Slot JW, Geuze HJ: Recycling compartments and the inter-
nal vesicles of multivesicular bodies harbor most of the cho-
lesterol found in the endocytic pathway.  Traffic 2003,
4(4):222-231.

64. Linnemann T, Zheng YH, Mandic R, Peterlin BM: Interaction
between Nef and phosphatidylinositol-3-kinase leads to acti-
vation of p21-activated kinase and increased production of
HIV.  Virology 2002, 294(2):246-255.

65. Schibeci SD, Clegg AO, Biti RA, Sagawa K, Stewart GJ, Williamson P:
HIV-Nef enhances interleukin-2 production and phosphati-
dylinositol 3-kinase activity in a human T cell line.  Aids 2000,
14(12):1701-1707.

66. Sasaki H, Nakamura M, Ohno T, Matsuda Y, Yuda Y, Nonomura Y:
Myosin-actin interaction plays an important role in human
immunodeficiency virus type 1 release from host cells.  Proc
Natl Acad Sci U S A 1995, 92(6):2026-2030.

67. Schiavoni I, Trapp S, Santarcangelo AC, Piacentini V, Pugliese K, Baur
A, Federico M: HIV-1 Nef enhances both membrane expres-
sion and virion incorporation of Env products. A model for
the Nef-dependent increase of HIV-1 infectivity.  J Biol Chem
2004, 279(22):22996-23006.

68. Blom J, Nielsen C, Rhodes JM: An ultrastructural study of HIV-
infected human dendritic cells and monocytes/macrophages.
Apmis 1993, 101(9):672-680.

69. Adachi A, Gendelman HE, Koenig S, Folks T, Willey R, Rabson A, Mar-
tin MA: Production of acquired immunodeficiency syndrome-
associated retrovirus in human and nonhuman cells trans-
fected with an infectious molecular clone.  J Virol 1986,
59(2):284-291.

70. Gendelman HE, Orenstein JM, Martin MA, Ferrua C, Mitra R, Phipps
T, Wahl LA, Lane HC, Fauci AS, Burke DS, et al.: Efficient isolation
and propagation of human immunodeficiency virus on
recombinant colony-stimulating factor 1-treated mono-
cytes.  J Exp Med 1988, 167(4):1428-1441.

71. Alizon M, Wain-Hobson S, Montagnier L, Sonigo P: Genetic varia-
bility of the AIDS virus: nucleotide sequence analysis of two
isolates from African patients.  Cell 1986, 46(1):63-74.

72. Akari H, Uchiyama T, Fukumori T, Iida S, Koyama AH, Adachi A:
Pseudotyping human immunodeficiency virus type 1 by
vesicular stomatitis virus G protein does not reduce the cell-
dependent requirement of vif for optimal infectivity: func-
tional difference between Vif and Nef.  J Gen Virol 1999, 80 ( Pt
11):2945-2949.


	Abstract
	Background
	Results
	Conclusion

	Background
	Results
	Nef increases levels of HIV-1 produced from SupT1 cells by a mechanism that is independent of CD4 and enhancement of viral infectivity
	Nef can substitute for the function of the L domain of Gag
	Nef contains a consensus-binding site for AIP1
	Nef binds AIP1 in vitro and in vivo
	Interactions between Nef and AIP1 are required for the proliferation of MVBs
	Interactions between Nef and AIP1 are required for increased production of HIV-1 by Nef in primary macrophages

	Discussion
	Conclusion
	Methods
	Antibodies
	Plasmid constructions
	Cells and transfections
	Virus and Gag VLP production, virion and Gag VLP isolation and Gag expression
	Protein purification, in vitro translation and GST pulldowns
	Co-Immunoprecipitation
	Electron microscopy

	Abbreviations
	Acknowledgements
	References

