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Abstract

The clinical entity of adult T-cell leukemia (ATL) was established around 1977, and human T-cell
leukemia virus type | (HTLV-l) was subsequently identified in 1980. In the 25 years since the
discovery of HTLV-l, HTLV-Il infection and its associated diseases have been extensively studied,
and many of their aspects have been clarified. However, the detailed mechanism of leukemogenesis
remains unsolved yet, and the prognosis of ATL patients still poor because of its resistance to
chemotherapy and immunodeficiency. In this review, | highlight the recent progress and remaining
enigmas in HTLV-I infection and its associated diseases, especially ATL.

Background

In 1977, Takatsuki et al. reported adult T-cell leukemia
(ATL) as a distinct clinical entity [1-3]. This disease is char-
acterized by its aggressive clinical course, infiltrations into
skin, liver, gastrointestinal tract and lung, hypercalcemia
and the presence of leukemic cells with multilobulated
nuclei (flower cell)(Figure 1). In 1980, Poiesz et al. dis-
covered a human retrovirus in a cell line derived from a
patient with ATL, and designated it human T-cell leuke-
mia virus type I (HTLV-I) [4,5]. The linkage between ATL
and HTLV-1 was proven by Hinuma et al., who demon-
strated the presence of an antibody against HTLV-I in
patient sera [6]. Thereafter, Seiki et al. determined the
whole sequence of HTLV-I and revealed the presence of a
unique region, designated pX [7]. The pX region encodes
several accessory genes, which control viral replication
and the proliferation of infected cells [8]. In this review, I
describe the recent advances in the field of HTLV-I and
ATL research, with particular focus on the mechanism of
leukemogenesis and therapeutic aspects.

I. History of humans and HTLV-I

HTLV-1 is a member of the Deltaretroviruses, which
include HTLV-II, bovine leukemia virus and simian T-cell
leukemia virus (STLV). The latter two viruses also cause
lymphoid malignancies in the host, similar to the case
with HTLV-1. HTLV and STLV are thought to originate
from common ancestors, and share molecular, virological
and epidemiological features. Therefore, they have been
designated primate T-cell leukemia viruses (PTLVs). Phyl-
ogenetical analyses have revealed that HTLV-Ic first
diverged from simian leukemia virus around 50,000 +
10,000 years ago, while the spread of PTLV-I in Africa is
estimated to have occurred at least 27,300 + 8,200 years
ago. Subsequently, HTLV-Ia, which is the most common
subtype in Japan, diverged from the African strain 12,300
+ 4,900 years ago [9]. Thus, these viruses have had a long
history with humans after the interspecies transmission.
In contrast, human immunodeficiency virus type 1 (HIV-
1) is thought to originate from simian immunodeficiency
virus in chimpanzees (SIVp,) [10], and the interspecies
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Figure |
Typical "flower cell" in the peripheral blood of an acute ATL patient. In the peripheral blood of an acute ATL patient, leukemic
cells with multilobulated nuclei.

transmission to humans is estimated to have occurred
recently.

2. How does HTLV-I spread in humans?

There are approximately 10-20 million HTLV-I carriers in
the world [11]. In particular, HTLV-I is endemic in Japan,
parts of central Africa, the Caribbean basin and South
America. In addition, epidemiological studies of HTLV-I
have revealed high seroprevalence rates in Melanesia,
Papua New Guinea and the Solomon islands, as well as
among Australian aborigines [12]. In Japan, approxi-
mately 1.2 million individuals are estimated to be
infected by HTLV-1, and more than 800 cases of ATL are

diagnosed each year [13]. Moreover, this virus also causes
the neurodegenerative disease, HTLV-I-associated mye-
lopathy/tropical spastic paraparesis (HAM/TSP) [14,15].
The cumulative risks of ATL among HTLV-I carriers in
Japan are estimated to be about 6.6% for men and 2.1%
for women, indicating that most HTLV-I carriers remain
asymptomatic throughout their lives [16].

3. How does HTLV-I replicate and increase its copy
number?

The HTLV-I provirus has a similar structure to other retro-
viruses: a long terminal repeat (LTR) at both ends and
internal sequences such as the gag, pol and env genes. A
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characteristic of HTLV-I is the presence of the pX region,
which exists between env and the 3'-LTR. This region
encodes several accessory genes, which include the tax,
rex, p12, p21, p30, p13 and HBZ genes. Among these, the
tax gene plays central roles in viral gene transcription, viral
replication and the proliferation of HTLV-I-infected cells.
Tax enhances viral gene transcription from the 5'-LTR via
interaction with cyclic AMP responsive element binding
protein (CREB). Tax also interacts with cellular factors and
activates transcriptional pathways, such as NF-xB, AP-1
and SRF [8,17-20]. For example, activation of NF-xB
induces the transcription of various cytokines and their
receptor genes, as well as anti-apoptotic genes such as bcl-
xL and survivin [21-23]. The activation of NF-xB has been
demonstrated to be critical for tumorigenesis both in vitro
and in vivo [24,25]. On the other hand, Tax variant with-
out activation of NF-kB has also been reported to immor-
talize primary T-lymphocytes in vitro [26], suggesting that
mechanisms of immortalization are complex. In addition
to NF-xB, activation of other transcriptional pathways
such as CREB by Tax should be implicated in the immor-
talization and leukemogenesis.

Tax also interferes with the functions of p53, p16 and
MAD1 [27-30]. These interactions enable HTLV-I-infected
cells to escape from apoptosis, and also induce genetic
instability. Although inactivation of p53 function by Tax
is reported to be mediated by p300/CBP [27,28,31] or NF-
kB activation [32], Tax can still repress p53's activity in
spite of loss of p300/CBP binding or in cells lacking NF-
kB activation [33], indicating the mechanism of p53 inac-
tivation by Tax needs further investigation.

Although Tax promotes the proliferation of infected cells,
it is also the major target of cytotoxic T-lymphocytes
(CTLs) in vivo. Moreover, excess expression of Tax protein
is considered to be harmful to infected cells. Therefore,
HTLV-I has redundant mechanisms to suppress Tax
expression. Rex binds to Rex-responsive element (RxRE)
in the U3 and R regions of the 3'-LTR, and enhances the
transport of the unspliced gag/pol and the singly spliced
env transcripts. By this mechanism, double-spliced tax/rex
mRNA decreases, resulting in suppressed expression of
Tax [34]. On the other hand, p30 binds to tax/rex tran-
scripts, and retains them in the nucleus [35]. The HBZ
gene is encoded by the complementary strand of HTLV-I,
and contains a leucine zipper domain. HBZ directly inter-
acts with ¢-Jun or JunB [36], or enhances their degradation
[37], resulting in the suppression of Tax-mediated viral
transcription from the LTR.

Transforming growth factor- (TGF-B) is an inhibitory
cytokine that plays important roles in development, the
immune system and oncogenesis. Since TGF-f3 generally
suppresses the growth of tumor cells, most tumor cells
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acquire escape mechanisms that inhibit TGF-f signaling,
including mutations in its receptor and in the Smad mol-
ecules that transduce the signal from the receptor. Tax has
also been reported to inhibit TGF-P signaling by binding
to Smad2, 3 and 4 or CBP/p300 [38,39]. Inhibition of
TGF-B signaling enables HTLV-I-infected cells to escape
TGF-B-mediated growth inhibition.

ATL cells have been reported to show remarkable chromo-
somal abnormalities [40], which should be implicated in
the disease progression. Tax has been reported to interact
with the checkpoint protein MAD1, which forms a com-
plex with MAD2 and controls the mitotic checkpoint. This
functional hindrance of MAD1 by Tax protein causes
chromosomal instability, suggesting the involvement of
this mechanism in oncogenesis [30]. Recently, Tax has
been reported to interact with Cdc20 and activate Cdc20-
associated anaphase-promoting complex, an E3 ubiquitin
ligase that controls the metaphase-to-anaphase transition,
thereby resulting in mitotic abnormalities [41].

In contrast to HTLV-I, HTLV-II promotes the proliferation
of CD8-positive T-lymphocytes in vivo. Although it was
first discovered in a patient with variant hairy cell leuke-
mia, HTLV-II is less likely to have oncogenic properties
since there is no obvious association between HTLV-II
infections and cancers. Regardless of the homology of
their tax sequences, the oncogenic potential of Tax1
(HTLV-I Tax) is more prominent than that of Tax2 (HTLV-
I1 Tax). The most striking difference is that Tax2 lacks the
binding motif at C-terminal end to PDZ domain proteins,
while Tax 1 retains it [42]. When the PDZ domain of Tax1
is added to Tax2, the latter acquires oncogenic properties
in the rat fibroblast cell line Rat-1, indicating that this
domain is responsible for the transforming activity of
HTLV-I [43].

To understand the pleiotropic actions of Tax protein more
clearly, transcriptome analyses are essential. The transcrip-
tional changes induced by Tax expression have been stud-
ied using DNA microarrays, which revealed that Tax
upregulated the expression of the mixed-lineage kinase
MLK3. MLK3 is involved in NF-xB activation by Tax as
well as NIK and MEKK1 [44]. In addition to transcrip-
tional changes, Tax is also well known to interact with cel-
lular proteins and impair or alter their functions. For
example, proteomic analyses of Tax-associated complexes
showed that Tax could interact with cellular proteins,
including the active forms of small GTPases, such as
Cdc42, RhoA and Racl, which should be implicated in the
migration, invasion and adhesion of T-cells, as well as in
the activation of the JNK pathway [45].
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4. How does HTLV-I transmit and replicate in vivo?
Receptor and transmission of HTLV-I

HTLV-I can infect various types of cells, such as T-lym-
phocytes, B-lymphocytes, monocytes and fibroblasts [46].
Glucose transporter 1 (GLUT-1) has been identified as a
receptor for HTLV-1 and this receptor is ubiquitously
expressed on cell surfaces [47]. However, the HTLV-I pro-
virus is mainly detected in CD4-positive lymphocytes,
with about 10% in CD8-positive T-lymphocytes [48]. This
situation possibly arises because Tax mainly induces the
increase of CD4-positive T-lymphocytes in vivo by
enhanced proliferation and suppressed apoptosis.

In HTLV-I-infected individuals, no virions are detected in
the serum. In addition, the infectivity of free virions is very
poor compared with that of infected cells. These findings
suggest that HTLV-1 is spread by cell-to-cell transmission,
rather than by free virions. In vitro analyses of HTLV-I-
infected cells revealed that HTLV-I-infected cells form
"virological synapses” with uninfected cells. Contact
between an infected cell and a target cell induces the accu-
mulation of the viral proteins Gag and Env, viral RNA and
microtubules, and the viral complex subsequently trans-
fers into the target cell [49]. HTLV-I also spreads in a cell-
to-cell manner via such virological synapses in vivo.

HTLV-I is mainly transmitted via three routes: 1) mother-
to-infant transmission (mainly through breast feeding)
[50]; 2) sexual transmission (mainly from male-to-
female); and 3) parenteral transmission (blood transfu-
sion or intravenous drug use) [12]. In either route, HTLV-
I-infected cells are essential for transmission. This was
supported by the findings that fresh frozen plasma from
carriers did not cause transmission [51] and freeze-thaw-
ing of breast milk reduced vertical transmission [52].

Provirus load and transmission

The provirus load varies more than 1000-fold among
asymptomatic carriers [53]. Since most infected cells are
considered to have one copy of the provirus, the provirus
load indicates the percentage of infected cells among lym-
phocytes. The provirus load is relatively constant during
the latent period [53]. Analysis of naive individuals who
seroconvert after marrying an HTLV-I-seropositive spouse
demonstrated that the proviral gp46 sequences are identi-
cal among married couples. This finding confirmed that
HTLV-1 is transmitted from a seropositive individual to an
uninfected spouse. The provirus loads frequently differ
between couples despite infection by the same HTLV-I
virus, indicating that the number of infected cells is deter-
mined by host factors rather than virus itself [54].

Why does HTLV-I increase the number of infected cells by
the pleiotropic actions of Tax? The provirus load in
peripheral blood mononuclear cells (PBMCs) is well cor-
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related with that in breast milk, and a higher provirus load
in breast milk increases the risk of vertical transmission of
HTLV-1 [55,56]. Similarly, a higher provirus load in
PBMCs may be associated with a higher risk of sexual
transmission. Thus, an increase in the number of infected
cells by the actions of accessory genes, especially tax, facil-
itates transmission. Therefore, HTLV-I has strategies that
increase the number of HTLV-I-infected cells via the
action of accessory gene products, thereby increasing the
chance of transmission.

Clonal expansion of HTLV-l-infected cells

After HTLV-I infection, viral proteins such as Tax protein
promote the proliferation of infected cells and also inhibit
apoptosis by their pleiotropic actions. Since the HTLV-I
provirus is randomly integrated into the host genome, the
identification of integration sites enables to identify each
infected clone, and to trace the kinetics of infected cells in
vivo. Analyses using inverse PCR, which can identify the
integration sites of the HTLV-I provirus, revealed that the
proliferation of infected cells is oligoclonal, and that
infected cells persistently survive in vivo [57-59]. Impor-
tantly, such clonal expansion in carriers is directly associ-
ated with the onset of ATL [60]. Thus, the viral strategies
to increase the number of HTLV-I-infected cells work effi-
ciently in most carriers without any adverse effects. How-
ever, the increased number of infected cells causes an
excess immune reaction, leading to inflammatory dis-
eases, HAM/TSP, infective dermatitis [61] or HTLV-I-asso-
ciated uveitis [62]. Moreover, such prolonged
proliferation of infected CD4-positive T-lymphocytes
results in the onset of ATL in some carriers after a long
latent period.

Inactivation of Tax expression in ATL cells

As mentioned above, Tax expression confers advantages
and disadvantages on HTLV-I-infected cells. Although the
proliferation of infected cells is promoted by Tax expres-
sion, CTLs attack the Tax-expressing cells since Tax is their
major target [63]. In HTLV-I-infected cells, Rex, p30 and
HBZ suppress Tax expression. On the other hand, loss of
Tax expression is frequently observed in leukemic cells.
Three mechanisms have been identified for inactivation of
Tax expression: 1) genetic changes of the tax gene (non-
sense mutations, deletions or insertions) [64,65]; 2) DNA
methylation of the 5'-LTR [65,66]; and 3) deletion of the
5'-LTR (Figure 2) [67]. Among fresh leukemic cells iso-
lated from ATL patients, about 60% of cases do not
express the tax gene transcript. Interestingly, ATL cells with
genetic changes of the tax gene expressed its transcripts,
suggesting that ATL cells do not silence the transcription
when the tax gene is abortive [65]. Loss of Tax expression
gives ATL cells advantage for their survival since they can
escape from CTLs.
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Figure 2

Natural course of HTLV-I infection to onset of ATL. HTLV-I is transmitted via three routes, and infected cells are necessary in
all three. After infection, HTLV-l promotes clonal proliferation of infected cells by pleiotropic actions of Tax. Tax expression is
suppressed by viral accessory gene products, such as Rex, p30 and HBZ proteins. Proliferation of HTLV-I infected cells is con-
trolled by cytotoxic T-cells in vivo. After a long latent period, ATL develops in about 5% of asymptomatic carriers. The expres-
sion of Tax is inactivated by several mechanisms, suggesting that Tax is not necessary in this stage. Alternatively, alternations in
the host genome accumulate during the latent period, finally leading to onset of ATL.

Longer lifespan of HTLV-l-infected cells and cancer

Lymphoid malignancy with a T-cell origin is rare com-
pared with B-cell malignancy. ATL shares hematological,
pathological and immunological features with cutaneous
T-cell lymphoma (CTCL; Sezary syndrome and Mycosis
fungoides). The frequency of CTCL in Japan is estimated
to be one/million/year. On the other hand, the frequency
of ATL among carriers is estimated to be 1000/million/
year. From these data, HTLV-I infection is estimated to
increase the risk of T-cell malignancy by up to 1000-fold
in carriers.

HTLV-I infection confers a long lifespan on the infected
cells due to the pleiotropic actions of Tax, resulting in
increased numbers of infected cells. Such infected cells are
essential for the transmission of HTLV-I. This strategy to
increase the number of infected cells in vivo is thought to
increase the incidence of cancer in T-cells. What is the
mechanism for this oncogenesis? DNA methylation is
known to be associated with aging. Some genes are hyper-
methylated in older people, indicating that DNA hyper-
methylation is a physiological phenomenon in some
genes. Under normal circumstances, T-lymphocytes
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survive for several years, and long-lived T-lymphocytes
with disordered methylation should be replaced. How-
ever, HTLV-I-infected T-cells are considered to survive and
accumulate abnormal methylation. The process of onco-
genesis is similar to that of evolution [68]. The infected
cells that are suitable for survival should be selected in
vivo, and epigenetic and genetic changes of the genome
play critical roles in this selection. Accumulating altera-
tions of the host genome transform the HTLV-I-infected
cells into ATL cells, and also enable ATL cells to proliferate
in the absence of Tax expression (Figure 2). In the provi-
rus, DNA methylation of the 5'-LTR silences viral tran-
scription in leukemic cells, which facilitates the escape of
ATL cells from the host immune system [65].

5. Somatic alterations in ATL cells

As described, some ATL cells can proliferate without func-
tional Tax protein, suggesting that somatic (genetic and
epigenetic) alterations cause transcriptional or functional
changes to the host genes. The p53 gene is frequently
mutated in various cancers, and these mutations are asso-
ciated with disease progression and a poor prognosis. The
mutation rate of the p53 gene in ATL cells has been
reported to be 36% (4/11) and 30% (3/10) [69-71]. The
p16 gene is an inhibitor of cyclin-dependent kinase 4/6,
and blocks the cell cycle. Genetic changes in this gene
(deletion in most cases) have been described in many
types of cancer cells. Deletion of the p16 gene has also
been reported in ATL cells [72]. Moreover, DNA methyla-
tion of the promoter region of the p16 gene is also impli-
cated in the suppression of p16 [73]. In addition, genetic
changes in the p27KIP1, RB1/p105 and RB2/p130 genes
have been reported in ATL, although they are relatively
rare: 2/42 (4.8%) for the p27KIP1 gene; 2/40 (5%) for the
RB1/p105 gene; and 1/41 (2.4%) for the RB2/p130 gene)
[74]. The fact that higher frequencies of genetic changes in
these tumor suppressor genes are observed among aggres-
sive forms of ATL suggests that such genetic changes are
implicated in disease progression.

Fas antigen was the first identified death receptor. It trans-
duces the death signal by binding of its ligand, Fas ligand
(FasL). ATL cells highly express Fas antigen on their cell
surface [75], and are highly susceptible to death signals
mediated by agonistic antibodies to Fas antigen, such as
CH-11. Genetic changes of Fas gene in ATL cells, which
confer resistance to the Fas-mediated signal, have been
reported [76,77]. Normal activated T-lymphocytes express
FasL as well as Fas antigen. Apoptosis induced by auto-
crine mechanisms is designated activation-induced cell
death (AICD) and this controls the immune response
[78]. Although ATL cells express Fas antigen, they do not
produce Fasl, thereby enabling ATL cells to escape from
AICD. Attempts to isolate hypermethylated genes from
ATL cells identified the EGR3 gene as a hypermethylated
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gene compared to PBMCs from carriers [79]. EGR3 is a
transcriptional factor with a zinc finger domain, that is
essential for transcription of the FasL gene [80]. The find-
ing that EGR3 gene transcription is silenced in ATL cells
could account for the loss of FasL expression, and the
escape of ATL cells from AICD. Thus, alterations of the Fas
(genetic) and EGR3 (epigenetic) genes are examples of
ATL cell evolution in vivo.

Disordered DNA methylation has been identified in the
genome of ATL cells compared with that of PBMCs from
carriers: hypomethylation is associated with aberrant
expression of the MEL1S gene [81], while hypermethyla-
tion silences transcription of the p16 [73], EGR3 and KLF4
genes as well as many others [79]. It is reasonable to con-
sider that other currently unidentified genes are involved
in such alterations of the genome in ATL cells, and play
roles in leukemogenesis.

Transcriptome analyses using DNA microarrays have
revealed transcriptional changes that are specific to ATL
cells. Among 192 up-regulated genes, the expressions of
the tumor suppressor in lung cancer 1 (TSLC1), caveolin 1
and prostaglandin D2 synthase genes were increased more
than 30-fold in fresh ATL cells compared with normal
CD4+ and CD4+, CD45RO+ T-cells [82]. TSLC1 is a cell
adhesion molecule that acts as a tumor suppressor in lung
cancer. Although TSLC1 is not expressed on normal T-
lymphocytes, all acute ATL cells show ectopic TSLC1
expression. Enforced expression of TSLC1 enhances both
the self-aggregation and adhesion abilities to vascular
endothelial cells in ATL cells. Thus, TSLC1 expression is
implicated in the adhesion or infiltration of ATL cells. By
screening a retrovirus cDNA library from ATL cells, a gene
with oncogenic potency was identified in NIH3T3 cells,
and designated the Tgat gene [83]. Ectopic expression of
the Tgat gene is observed in aggressive forms of ATL, and
in vitro experiments showed that its expression is associ-
ated with an invasive phenotype.

6. Inmune control of HTLV-I infection

The host immune system, especially the cellular response,
against HTLV-I exerts critical control over virus replication
and the proliferation of infected cells [84]. CTLs against
the virus have been extensively studied, and Tax protein
was found to be the dominant antigen recognized by CTLs
in vivo [63]. HTLV-I-specific CD8-positive CTLs are abun-
dant and chronically activated. The paradox is that the fre-
quency of Tax-specific CTLs is much higher in HAM/TSP
patients than in carriers. Since the provirus load is higher
in HAM/TSP patients, this finding suggests that the CTLs
in HAM/TSP cannot control the number of infected cells.
One explanation for this is that the CTLs in HAM/TSP
patients show less efficient cytolytic activity toward
infected cells, whereas CTLs in carriers can suppress the
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proliferation of infected cells [85]. Hence, the gene expres-
sion profiles of circulating CD4+ and CD8+ lymphocytes
were compared between carriers with high and low provi-
rus loads. The results revealed that CD8+ lymphocytes
from individuals with a low HTLV-1 provirus load show
higher expressions of genes associated with cytolytic activ-
ities or antigen recognition than those from carriers with
a high provirus load [86]. Thus, CD8+ T-lymphocytes in
individuals with a low provirus load successfully control
the number of HTLV-I-infected cells due to their higher
CTL activities. Thus, the major determinant of the provi-
rus load is thought to be the CTL response to HTLV-I.

As mentioned above, the provirus load is considered to be
controlled by host factors. Considering that the cellular
immune responses are critically implicated in the control
of HTLV-I infection, human leukocyte antigen (HLA)
should be a candidate for such a host genetic factor. From
analyses of HAM/TSP patients and asymptomatic carriers,
HLA-A02, and Cw08 are independently associated with a
lower provirus load and a lower risk of HAM/TSP. In addi-
tion, polymorphisms of other genes (TNF-¢, SDF-1, HLA-
B54, HLA-DRB-10101 and IL-15) are also associated with
the provirus load, although their associations are not as
significant compared with HLA-A02, and Cw08 [87,88].
Regarding the onset of ATL, only a polymorphism of TNF-
o gene was reported to show an association [89]. How-
ever, familial clustering of ATL cases is a well-known phe-
nomenon, strongly suggesting that genetic factors are
implicated in the onset of ATL [90-92].

Spontaneous remission is more frequently observed in
patients with ATL than those with other hematological
malignancies [90,93]. Usually, this phenomenon is asso-
ciated with infectious diseases, suggesting that immune
activation of the host enhances the immune response
against ATL cells. If the immune response against HTLV-I
is implicated in spontaneous remission, this suggests the
possibility of immunotherapy for ATL patients by the
induction of an immune response to HTLV-1 [94], for
example via antigen-stimulated dendritic cells.

Immunodeficiency in ATL patients is pronounced, and
results in frequent opportunistic infections by various
pathogens, including Pneumocystis carinii, cytomegalovi-
rus, fungus, Strongyloides and bacteria, due to the inevita-
ble impairment of the T-cell functions [95]. To a lesser
extent, impaired cell-mediated immunity has also been
demonstrated in HTLV-I carriers [96]. Such immunodefi-
ciency in the carrier state may be associated with the
leukemogenesis of ATL by allowing the proliferation of
HTLV-I-infected cells. A prospective study of HTLV-I-
infected individuals found that carriers who later develop
ATL have a higher anti-HTLV-I antibody and a low anti-
Tax antibody level for up to 10 years preceding their diag-
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nosis. This finding indicates that HTLV-I carriers with a
higher anti-HTLV-I titer, which is roughly correlated with
the HTLV-I provirus load, and a lower anti-Tax reactivity
may be at the greatest risk of developing ATL [97]. The
anti-HTLV-I antibody and soluble IL-2 receptor (sIL-2R)
levels are correlated with the HTLV-I provirus load [53],
and a high antibody titer and high sIL-2R level are risk fac-
tors for developing ATL among carriers [98]. Taken
together, these findings suggest that a higher proliferation
of HTLV-I-infected cells and a low immune response
against Tax may be associated with the onset of ATL.
Given these findings, potentiation of CTLs against Tax via
a vaccine strategy may be useful for preventing the onset
of ATL [99].

EBV-associated lymphomas frequently develop in indi-
viduals with an immunodeficient state associated with
transplantation or AIDS. This has also been reported in an
ATL patient [100]. Does such an immunodeficient state
influence the onset of ATL? Among 24 patients with post-
transplantation lymphoproliferative disorders (PT-LPDs)
after renal transplantation in Japan, 5 cases of ATL have
been reported. Considering that most PT-LPDs are of B-
cell origin in Western countries, this frequency of ATL in
Japan is quite high. Although the high HTLV-I seropreva-
lence is due to blood transfusion during hemodialysis, the
immunodeficient state during renal transplantation
apparently promotes the onset of ATL [101]. In addition,
when experimental allogeneic transplantation was per-
formed to 12 rhesus monkeys and immunosuppressive
agents (cyclosporine, prednisolone or lymphocyte-spe-
cific monoclonal antibodies) were administered to pre-
vent rejection, 4 of the 7 monkeys that died during the
experiment showed PT-LPDs. Importantly, the STLV pro-
virus was detected in all PT-LPD samples [102]. These
observations emphasize that transplantation into HTLV-I-
infected individuals or from HTLV-I positive donors
require special attention.

Although the mechanism of immunodeficiency remains
unknown, some previous reports have provided impor-
tant clues. One mechanism for immunodeficiency is that
HTLV-I infects CD8-positive T-lymphocytes, which may
impair their functions [48]. Indeed, the immune response
against Tax via HTLV-I-infected CD8-positive T-cells
renders these cells susceptible to fratricide mediated by
autologous HTLV-I-specific CD8-positive T-lymphocytes
[103]. Fratricide among virus-specific CTLs could impair
the immune control of HTLV-I. Another mechanism for
immunodeficiency is based on the observation that the
number of naive T-cells decreases in individuals infected
with HTLV-I via decreased thymopoiesis [48]. In addition,
CD4+ and CD25+ T-lymphocytes are classified as immu-
noregulatory T-cells that control the host immune system.
Regulatory T-cells suppress the immune reaction via the
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expression of immunoregulatory molecules on their sur-
faces. The FOXP3 gene has been identified as a master
gene that controls gene expressions specific to regulatory
T-cells. FOXP3 gene transcription can be detected in some
ATL cases (10/17; 59%) [104]. Such ATL cells are thought
to suppress the immune response via expression of immu-
noregulatory molecules on their surfaces, and production
of immunosuppressive cytokines.

6. Pathogenesis of HTLV-I infection

ATL cells are derived from activated helper T-lymphocytes,
which play central roles in the immune system by elabo-
rating cytokines and expressing immunoregulatory mole-
cules. ATL cells are known to retain such features, and this
cytokine production or surface molecule expression may
modify the pathogenesis.

ATL is well known to infiltrate various organs and tissues,
such as the skin, lungs, liver, gastrointestinal tract, central
nervous system and bone [95]. This infiltrative tendency
of leukemic cells is possibly attributable to the expressions
of various surface molecules, such as chemokine receptors
and adhesion molecules. Skin-homing memory T-cells
uniformly express CCR4, and its ligands are thymus and
activation-regulated chemokine (TARC) and macrophage-
derived chemokine (MDC). CCR4 is expressed on most
ATL cells. In addition, TARC and MDC are expressed in
skin lesions in ATL patients. Thus, CCR4 expression
should be implicated in the skin infiltration [105]. On the
other hand, CCR7 expression is associated with lymph
node involvement [106]. OX40 is a member of the tumor
necrosis factor family, and was reported to be expressed
on ATL cells [107]. It was also identified as a gene associ-
ated with the adhesion of ATL cells to endothelial cells by
a functional cloning system using a monoclonal antibody
that inhibited the attachment of ATL cells [108]. Thus,
0OX40 is also implicated in the cell adhesion and infiltra-
tion of ATL cells.

Hypercalcemia is frequently complicated in patients with
acute ATL (more than 70% during the whole clinical
course) [109]. In hypercalcemic patients, the number of
osteoclasts increases in the bone (Figure 3). RANK ligand,
which is expressed on osteoblasts, and M-CSF act synergis-
tically on hematopoietic precursor cells, and induce the
differentiation into osteoclasts [110]. ATL cells from
hypercalcemic ATL patients express RANK ligand, and
induced the differentiation of hematopoietic stem cells
into osteoclasts when ATL cells were co-cultured with
hematopoietic stem cells [111]. In addition, the serum
level of parathyroid hormone-related peptide (PTH-1P) is
also elevated in most of hypercalcemic ATL patients. PTH-
P indirectly increases the number of osteoclasts, as well as
activating them [112,113], which is also implicated in
mechanisms of hypercalcemia.

http://www.retrovirology.com/content/2/1/27

7. Treatment of ATL — the remaining mission and
challenges

Regardless of intensive chemotherapies, the prognosis of
ATL patients has not so improved. The median survival
time of acute or lymphoma-type ATL was reported to be
13 months with the most intensive chemotherapy [114].
Such a poor prognosis might be due to: 1) the resistance
of ATL cells to anti-cancer drugs; and 2) the immunodefi-
cient state and complicated opportunistic infections as
described above. Regarding the resistance to anti-cancer
drugs, one mechanism is the activated NF-kB pathway in
ATL cells [115], which increases the transcription of anti-
apoptotic genes such as bcl-xL and survivin. A proteasome
inhibitor, bortezomib, is currently used for the treatment
of multiple myeloma. One of its mechanisms is suppres-
sion of the NF-xB pathway by inhibiting the proteasomal
degradation of IxB protein. Several groups have shown
that bortezomib is effective against ATL cells both in vitro
and in vivo [116-119]. Since the sensitivity to bortezomib
is well correlated with the extent of NF-xB activation, the
major mechanism of the anti-ATL effect is speculated to
be inhibition of NF-xB. In addition, an NF-kB inhibitor
has also been demonstrated to be effective against ATL
cells [120].

During chemotherapy for ATL, chemotherapeutic agents
worsen the immunodeficient state of ATL patients. In this
regard, antibody therapy against ATL cells has advantages
due to its decreased adverse effects. A humanized mono-
clonal antibody to CD25 has been clinically administered
to patients with ATL [121,122]. In addition, a monoclonal
antibody to CD2 is at the preclinical stage [123]. As
described above, most ATL cells express CCR4 antigen on
their surfaces, and a humanized antibody against CCR4 is
being developed as an anti-ATL agent [124].

Advances in the treatment of ATL were brought about by
allogeneic bone marrow or stem cell transplantation
[125,126]. Absence of graft-versus-host disease (GVHD)
was linked with relapse of ATL, suggesting that GVHD or
graft-versus-ATL may be implicated in the clinical effects
of allogeneic stem cell transplantation [125]. Further-
more, 16 patients with ATL, who were over 50 years of age,
were treated with allogeneic stem cell transplantation
with reduced conditioning intensity (RIST) from HLA-
matched sibling donors [127]. Among 9 patients in whom
ATL relapsed after transplantation, 3 achieved a second
complete remission after rapid discontinuation of
cyclosporine A. This finding strongly suggests the presence
of a graft-versus-ATL effect in these patients. In addition,
Tax peptide-recognizing cells were detected by a tetramer
assay (HLA-A2/Tax 11-19 or HLA-A24/Tax 301-309) in
patients after allogeneic stem cell transplantation [128].
In 8 patients, the provirus became undetectable by real-
time PCR. Among these, 2 patients who received grafts
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Figure 3
Increased number of osteoclasts in the bone of a hypercalcemic ATL patient. In a hypercalcemic patient, the number of osteo-
clast (arrows) increased in the bone, which accelerated bone resorption.

from HTLV-I-positive donors also became provirus-nega-
tive by real-time PCR after RIST. Since the provirus load is
relatively constant in HTLV-I-infected individuals [53],
this finding indicates an enhanced immune response
against HTLV-I after RIST, which suppresses the provirus
load. This may account for the effectiveness of allogeneic
stem cell transplantation to ATL. However, Tax expression
is frequently lost in ATL cells as described above. Many
questions arise, such as whether the tax gene status is cor-
related with the effect of allogeneic stem cell transplanta-
tion, and whether the effectiveness of the anti-HTLV-I
immune response is against leukemic cells or non-leuke-
mic HTLV-I-infected cells. Nevertheless, these data suggest
that potentiation of the immune response against viral
proteins such as Tax may be an attractive way to treat ATL

patients [94]. Such strategies may enable preventive treat-
ment of high-risk HTLV-I carriers, such as those with
familial ATL history, predisposing genetic factors to ATL,
a higher provirus load, etc.

8. Two human retroviruses — HTLV-I and HIV-1

As described in the first section, HTLV-I has resided in
humans for a long time. On the other hand, HIV-1 has
only been recently transmitted to humans, probably from
chimpanzees. Due to the comparatively small genomic
differences between humans and chimpanzees, this virus
can quickly adapt to human cells. These two human retro-
viruses are opposite in many aspects. HIV-1 vigorously
replicates in vivo, and the maximum production of HIV-1
virions in the body can reach 1010 per day. Since reverse

Page 9 of 13

(page number not for citation purposes)



Retrovirology 2005, 2:27

transcriptase is an error-prone enzyme due to its lack of
proof-reading activity, it produces about one mistake per
replication, resulting in tremendous errors in the proviral
sequence during replication. Although most of these vari-
ations ruin the virus replication due to nonsense muta-
tions or impairment of viral gene functions, some become
capable of replicating under different circumstances such
as the presence of anti-HIV drugs and activation of the
host immune system. This can account for why HIV-1
acquires resistance against anti-HIV drugs, and escape
from CTLs. On the other hand, HTLV-I increases its copy
number in two ways, namely replication of HTLV-I itself
and the proliferation of HTLV-I-infected cells in wvivo.
Although immune responses (antibodies, CTLs) against
viral proteins suggest the presence of active viral replica-
tion in vivo, most of increased HTLV-I provirus load (the
number of infected cells) is considered to be due to prolif-
eration of infected cells since CTLs efficiently eliminate
virus-expressing cells. Therefore, there is much less
variation in the HTLV-I provirus sequence compared with
HIV-1 [129]. However, this strategy by which HTLV-I
increases the number of infected cells due to clonal expan-
sion generates unfortunate side effects for both the host
and the virus, namely oncogenesis of CD4-positive T-lym-
phocytes and the development of ATL.
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