

POSTER PRESENTATION

Open Access

Placement of p6pol between tandem repeat HIV-1 protease domains reduces Gag cleavage efficiency

Tin-An Chou¹, Kuo-Jung Huang², Chin-Tien Wang^{1,2*}

From Frontiers of Retrovirology: Complex retroviruses, retroelements and their hosts Cambridge, UK. 16-18 September 2013

Background

HIV-1 protease (PR) is encoded by pol, which is initially translated as a Pr160^{gag-pol} polyprotein by a ribosomal frameshift event [1]. Pr160^{gag-pol} is incorporated into virions via interactions with assembling Pr55gag. The PRmediated proteolytic cleavage of Pr55 gag and Pr160 gag-pol, known as virus maturation, is essential for the acquisition of viral infectivity. Within the Gag-Pol, the p6gag is truncated and is replaced by a transframe domain referred to as p6* or p6pol. Removal of p6pol improves Gag-Pol autoprocessing, suggesting that p6pol is involved in regulation of PR activation [2]. However, overlapping of p6gag/p6pol reading frame hampers generic approach to studying p6pol biological function. To assess the p6pol contribution to PR-mediated virus maturation without affecting p6gag reading frame, we introduced an extra copy of p6pol-PR or PR coding sequence at the PR C-terminus.

Materials and methods

PCR-amplified p6pol-PR or PR fragments were inserted at the PR C-terminus of an *env*-deleted HIV-1 proviral vector. Each of the constructs was transiently expressed in 293T cells, and virus assembly and processing were analyzed by Western blot. Virus infectivity was determined by a single-cycle infection assay.

Results

HIV-1 mutants containing tandem repeat PR domains were severely defective in virus particle production due to enhanced Gag cleavage. Inactivation of the proximal PR affects Gag cleavage efficiency at a greater extent

than inactivation of the distal PR. Placement of p6pol between the tandem repeat PR domains resulted in diminished Gag cleavage efficiency.

Conclusions

Our study indicates that the Gag cleavage enhancement effect incurred by over-expressed HIV-1 PR is reduced following the placement of p6pol between the tandem repeat PR domains. This supports the proposal that p6pol plays a negative role in the process of PR activation.

Authors' details

¹Institute of Clinical Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan. ²Department of Medical Research and Education, Taipei Veterans General Hospital, Taipei, Taiwan.

Published: 19 September 2013

References

- Jacks T, Power MD, Masiarz FR, Luciw PA, Barr PJ, Varmus HE: Characterization of ribosomal frameshifting in HIV-1 gag-pol expression. Nature 1988. 331:280-283.
- Partin K, Zybarth G, Ehrlich L, DeCrombrugghe M, Wimmer E, Carter C: Deletion of sequences upstream of the proteinase improves the proteolytic processing of human immunodeficiency virus type 1. Proc Natl Acad Sci USA 1991, 88:4776-4780.

doi:10.1186/1742-4690-10-S1-P98

Cite this article as: Chou *et al.*: Placement of p6pol between tandem repeat HIV-1 protease domains reduces Gag cleavage efficiency. *Retrovirology* 2013 **10**(Suppl 1):P98.

¹Institute of Clinical Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan

Full list of author information is available at the end of the article

