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SIV infection of rhesus macaques of Chinese origin:
a suitable model for HIV infection in humans
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Abstract

Simian immunodeficiency virus (SIV) infection of Indian-origin rhesus macaques (RM) has been widely used as a
well-established nonhuman primate (NHP) model for HIV/AIDS research. However, there have been a growing
number of studies using Chinese RM to evaluate immunopathogenesis of SIV infection. In this paper, we have for
the first time reviewed and discussed the major publications related to SIV or SHIV infection of Chinese RM in the
past decades. We have compared the differences in the pathogenesis of SIV infection between Chinese RM and
Indian RM with regard to viral infection, immunological response, and host genetic background. Given AIDS is a
disease that affects humans of diverse origins, it is of importance to study animals with different geographical
background. Therefore, to examine and compare results obtained from RM models of Indian and Chinese origins
should lead to further validation and improvement of these animal models for HIV/AIDS research.
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Introduction
Nonhuman primate (NHP) models have been widely used
to study the pathogenesis, vaccine and therapeutic inter-
vention of HIV/AIDS since the isolation of HIV and sim-
ian immunodeficiency virus (SIV) strains [1-3]. The first
use of SIV infection of rhesus macaques (RM) for testing
a candidate HIV vaccine was reported in 1989 [4], after
which there has been a dramatic increase in the utilization
of rhesus and other macaque models in the HIV field.
Multiple factors contribute to the high demand for ma-
caques. First, there are still a multitude of preclinical HIV
drugs and vaccine approaches and modalities being tested,
which requires a large number of animals [5]. Second, it
has been recognized that repeated mucosal exposure to
low dose of SIV in rhesus macaques resembles HIV infec-
tion in humans [6]. Once the set-point phase is reached
following mucosal SIV challenge, the level of viral load
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reproduction in any medium, provided the or
predicts the rate of progression to AIDS [7-10]. As a
result, attempts to detect subtle differences in virological
and immunological outcomes in vaccinated animals
challenged by low dose mucosal routes of infection have
greatly increased the number of animals required for
each vaccine study [11]. Third, NHP models, particularly
RM, have been widely used to investigate the events of
SIV infection with respect to viral dynamics, immune
responses, and changes in the pool of CD4+ cells, which
further enhances the need for suitable macaque hosts
for studies of HIV pathogenesis [12].
There are three available macaque species [rhesus

(Macaca mulatta), cynomolgus (Macaca fascicularis),
and pigtail (Macaca nemestrina)] that are susceptible to
SIV infection and develop AIDS-like disease [1]. Rhesus
macaques of Indian origin have often been used for SIV
infection as they are the primary species provided by
the breeding facilities in the USA [1]. SIV infection in
Indian-origin RM has become the most established model
of HIV infection and AIDS-related research due to devel-
opment of tools to study immune responses in depth [13]
and the concomitant wealth of experimental data avail-
able. Additional research has utilized the chimeric virus,
SHIV, for experiments that require HIV proteins, such
as HIV envelope-based SHIVs for testing of human
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neutralizing antibodies on Indian RM, summarized in a
recent review [14]. As a mainstay of nonhuman primate
models in HIV/SIV research, the availability of Indian
RM model has contributed greatly to our understanding
of HIV transmission, pathogenesis, prevention and ther-
apy. However, like any existing animal models for studying
human diseases, the Indian RM model has its limitations.
The biological discrepancies between human and simian
AIDS reveal certain drawbacks of Indian RM in HIV re-
search. For example, the progress to disease is more
aggressive in Indian RM when infected with most if
not all SIV strains, and the plasma viral loads are higher
than HIV infection of humans [15-17]. Also, with regard
to the dynamics of the CD4+CCR5+ memory T cells, an
important marker for HIV/SIV disease progression [12,18],
there are some differences between SIV infection in Indian
macaques and HIV infection in humans.
Belonging to the same species as Indian RM, Chinese

RM have also been used in HIV/SIV research. Over the
past decades, an increasing body of evidence shows that
similar to RM of Indian origin, Chinese RM can be read-
ily infected by SIV through different inoculation routes,
and were proved to be useful in evaluating pathogenesis,
vaccine, and therapeutic strategies for HIV/AIDS studies
[15-18]. However, because of different course of SIV infec-
tion in Chinese RM compared with that in Indian RM, the
use of Chinese RM in AIDS research has been limited. In
this review, we describe and discuss the major publica-
tions related to SIV infection of Chinese RM over the
past decades and compare the differences in SIV and
SHIV infection between Chinese RM and its Indian-
origin counterpart.

Experimental evidence for SIV/SHIV infection of Chinese RM
Early experimental evidence for successful infection of
Chinese RM by SIV came from a study by Joag et al. [19],
in which all six Chinese RM enrolled in the study devel-
oped acute plasma viremia after SIVmac239 inoculation
[19]. Subsequent research demonstrated that the course
of SIV infection in Chinese RM is somewhat different from
that seen in Indian RM. Ling et al. utilized SIVmac239 to
intravenously infect ten Chinese RM and found that all
Chinese RM quickly developed viremia with magnitudes
and kinetics of viral load similar to HIV infection of
humans [20]. Infection of Chinese RM by SIVmac239
was further demonstrated by several other groups
(Table 1). In addition to SIVmac239, infection of Chinese
RM by SIVmac251, SHIV and primary virulent isolate SIV/
DeltaB670 [21], has been documented (Tables 1 and 2).
Marthas and colleagues [22] found that there was no sig-
nificant difference between Indian RM and Chinese RM
with regard to the number of animals that were infected
with intravaginal inoculation of SIV251. They observed
that, although there was considerable overlap in the range
of viral loads between both Indian and Chinese RM, the
variation in viral loads among Indian RM was greater than
that among Chinese RM [22]. In addition, SIV-infected
Chinese RM tended to have the lower end of the range
of viral loads compared with infected Indian RM [22].
Chen et al. compared infection of Chinese RM with two
different SIV strains, SIVmac251 and SIVmac239, and
observed that SIVmac239 infection was more pathogenic,
as it caused more aggressive disease than SIVmac251 [9],
suggesting the potential variability of bio-clinical parame-
ters in Chinese RM when infected by different strains
of SIV. Wang et al. [23] showed that a CCR5-tropic
chimeric SHIV (SHIVB’WHU) could replicate in Chinese
RM peripheral blood and cause acute infection of these
animals with no significant changes in viral tropism
and sequences after infection. Miyake et al. [24] infected
Chinese RM with pathogenic SHIV (SHIV-C2/1-KS661c)
by intrarectal inoculation and observed rapid dissemin-
ation of SIV to multiple organs, including rectum, thymus
and axillary lymph node (LN) as early as three days post
infection. Further analysis of viral kinetics showed that
infectious virus was first detected at day six post infec-
tion (p.i.) and high levels of proviral DNA and infectious
virus were both detected by 13 days p.i.. However, by
27 days p.i., SIV loads decreased dramatically. Pal et al.
[25] demonstrated that replication competent SHIV
encoded HIV reverse transcriptase gene (RT SHIV) could
be transmitted efficiently via the vaginal route in Chinese
RM. Some of these infected animals had persisting viremia
for one year. In a co-infection model, Chenine et al.
showed that Chinese RM were able to be infected by clade
C SHIV (SHIV-C) and the infection was significantly
facilitated by the parasite co-infection [26].
In addition to the successful establishment of SIV in-

fection in Chinese RM as described above, investigators
have also utilized SIV infection of Chinese RM to re-
capitulate the host immune activation of HIV infection,
including immune cell proliferation, activation, and apop-
tosis. Several studies have found occurrences of marked
immune activation and lymphocyte apoptosis in Chinese
RM following SIV infection, which are the key pathogenic
factors during SIV infection of RM [10,40,55,56]. A study
by Monceaux et al. documented that extensive apoptosis
in lymphoid organs indicates rapid AIDS progression
during primary SIVmac251 infection in Chinese RM
[10]. Cumont et al. [40] also showed that there was an
increase in lymphocyte apoptosis in LNs during primary
SIVmac251 infection of Chinese RM, the levels of which
were associated with the degree of viral replication and
the rate of AIDS progression. They further demon-
strated that the level of lymphocyte apoptosis in RM of
Chinese origin was lower than in those of Indian RM.
This study was supported by Viollet et al. [55] who
reported that death of CD4+ T cells from lymph nodes



Table 1 Clinical parameters in SIV-infected Chinese RM

Animal no. Age (Year)* Gender Inoculation** SIV strains Dose AID50/TCID50
*** Peak viral load Survival time**** Refs

10 3–10 7F/3M I.V. mac239 102 TCID50 3.5 × 106–6.0 × 107 >34W [20]

50 3–6 78M/72F I.R. mac239 5 × 105 TCID50 107 >99W (25/50) [9]

50 I.V. mac239 2 × 102 TCID50 107 >117W (25/50)

8 5–11 M I.V. mac239 5 × 103 TCID50 106–108 >69W (4/8) [27]

4 Adult M I.V. mac239 5 × 103 TCID50 5 × 106–1 × 108 NP [28]

3 3–6 2M/1F I.V. mac239 103 TCID50 3.2 × 106–3.2 × 107 >25W [29]

3 3–8 Mixed I.R. mac239 2.5 × 103 TCID50 106–107 >44W [30]

9 NP NP I.V. mac239 102 TCID50 ~106–108 104–354W [31]

7 mac239 2 × 106 copies 31–172W

1 Adult F IVAG × 3 mac239 ~105 TCID50 ~7.9 × 106 >46W [32]

4 NP NP I.V. mac251 5 × 102 TCID50 106–2 × 108 >18M [33]

8 mac239 NP >36M

24 5 M I.R. mac239 103 TCID50 105–5 × 107 >24W [34]

2 5–6 F IVAG mac239 105 TCID50 2.5 × 106–3.2 × 106 >25W [35]

50 3–6 NP I.V. mac251 2 × 102 TCID50 5 × 106 >118W (27/50) [9]

14 4–5 F I.V. mac251 105 TCID50 1.1 × 105–1.2 × 108 NP [22]

10 4–6 F I.V. mac251 50 TCID50 2.4 × 104–1.4 × 106 51-72W [36]

6 NP NP I.V. mac251 10 AID50 7.0 × 105–3.2 × 107 NP [37]

10 7.5–9.5 NP I.V. mac251 10 AID50 2.6 × 105–3.6 × 107 NP [12]

12 NP NP I.V. mac251 10 AID50 105–108 5–108W (killed) [38]

4 2–4 mixed I.V. mac251 5 AID100 2.7 × 107–7.6 × 107 >42W [39]

8 NP NP I.V mac251 10 AID50 6.7 × 105–3.2 × 107 >154W (4/8) [40]
*NP: The information is not provided in the paper;
**I.R.: intrarectally; I.V.: intravenously; IVAG: intravaginally;
***TCID50: 50% tissue culture infective dose; AID50 : 50% animal infectious doses; Viral titer was quantified in different cells;
****W: Weeks; M: Months.

Zhou et al. Retrovirology 2013, 10:89 Page 3 of 10
http://www.retrovirology.com/content/10/1/89
during primary SIVmac251 infection indicates the rate
of disease progression to AIDS in Chinese RM. In study
of the CD4+ and CD8+ T cell dynamics during the
asymptomatic phase of SIVmac251 infection of Chinese
RM, Monceaux et al. revealed that during the asymp-
tomatic phase, the CD4+ T cells were sustained in the
axillary LNs, while progressively depleted in the periph-
eral blood [57]. They also found that during primary
SIV infection, the intense CD8+ T cell activation and an
elevation of optimal effector CD8+ T cell function cor-
relate with a poor prognosis for AIDS progression [56].
Similarly, Ho et al. utilized the nef-deleted SIVmac251
to infect the Chinese RM and demonstrated that the
attenuated SIVmac251 induced pathological CD4+ T cell
depletion in at least half of the animals, which was asso-
ciated with a thymic defect [58]. Our recent studies also
revealed that LPS administration induced CD4+ T cell
activation during SIVmac239 infection of Chinese RM
(unpublished data). Apart from lymphocytes, other
immune cells such as neutrophils, monocytes and den-
dritic cells, are also prone to apoptosis in pathogenic SIV
infection of Chinese RM [59,60]. Polymorphonuclear
neutrophils (PMN) in chronically HIV-infected patients
were revealed to be more prone to die [60]. Similarly,
neutrophils were also depleted during primary SIV in-
fection in Chinese RM, leading to an early and sustained
neutropenia in these animals [37]. Therefore, it was pro-
posed that increased PMN death can be used as a marker
to predict destruction of host defense against HIV/SIV
infection [37,59].
Collectively, there have been more than 70 peer-reviewed

publications to date that clearly demonstrate that Chinese
RM are susceptible to infection by various non-adapted
SIV strains (mac182, mac251, mac239, delta B670, nef-
deleted mac251) as well as by engineered SHIV (89.6,
89.6P, SF162P3, SF162P4, RT). Major clinical parameters
for SIV or SHIV infection of Chinese RM in these publica-
tions are summarized in Tables 1 and 2, respectively.

Differences in SIV infection between Chinese RM and
Indian RM
Overview
Although Chinese RM and Indian RM belong to the same
species, they demonstrate differences in physiological and
immunologic responses [61-63], as well as genetic back-
ground [63-66]. Therefore, it is not surprising to observe
differences in infection-induced clinical and immunologic
parameters and disease progression rates between Chinese



Table 2 Clinical parameters in SHIV-infected Chinese RM

Animal no. Age (Year)* Gender Inoculation** SHIV
strains

Dose AID50/TCID50
*** Peak viral load in plasma Survival time (weeks)**** Ref

2 3.5–4.5 mixed I.R. 89.6P 40 AID50 8 × 105–7 × 106 >24W [41]

10 6.1–7.1 NP I.V. 89.6P 103AID50 1 × 107 >36W [42]

6 4–5 NP I.V. 89.6P 20 AID50 ~2 × 105–3 × 106 >40W (5/6) [43]

6 4–8 NP I.V. 89.6P 103 AID50 NP NP [44]

6 NP F IVAG (13 times) SF162P3 20, 30 TCID50 6.3 × 105–1.6 × 107 >29W [45]

8 3–5 F I.V. SF162P4 18 AID50 1.6 × 105–2.5 × 106 >10W [46]

8 5–6 F I.V. SF162P4 22 TCID50 1.6 × 105–3.2 × 106 >10W [47]

12 3.5–7 F IVAG (6 times) SF162P3 3 × 102 TCID50 1.1 × 106–3.5 × 106 N/P [48]

4 Adult M I.R. SF162P3 10 TCID50 ~106–107 >32W [49]

10 5–15 F IVAG SF162P3 3 × 102 TCID50 3.2 × 105–1 × 108 ≥10W [50]

8 NP 7M/1F I.R. (M) IVAG (F) SF162p3 10 TCID50 NP NP [51]

4 8.09 (mean) NP I.R. RT 103 TCID50 1 × 104–2 × 106 >20W [52]

2 104 TCID50 5 × 105–2 × 107 >16W

5 Adult F IVAG RT 103 TCID50 2 × 106–2 × 107 >20W [53]

2 2 × 102 TCID50 1 × 106 (1/2) >20W

16 4–12 F IVAG RT 103 TCID50 105–107 (9/16) >16W [54]

30 ~4 × 104–6 × 107 (22/30)
*NP: The information is not provided in the paper;
**I.R.: intrarectally; I.V.: intravenously; IVAG: intravaginally;
***TCID50: 50% tissue culture infective dose; AID50 : 50% animal infectious doses; Viral titer was quantified in different cells;
****W: Weeks; M: Months.
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RM and Indian RM following SIV infection. Table 3 sum-
marizes the published observations on the differences in
SIV infection between Chinese RM and Indian RM.

Differences in virological impact
Ling et al. demonstrated that although there was little
difference in peak viral load between Chinese RM and
Indian RM, the former had a significantly lower set point
viral load than the latter (~2.8-6.7 vs. 6–7 at lg10 scale)
[20]. Such a difference in viral load between Chinese and
Indian-origin RM was also observed for SIVmac251 in-
fection at various inoculation doses [8,22,40]. Using
SIVmac182, the steady-state plasma viral loads achieved
in Indian monkeys were significantly higher than those
found in Chinese macaques [67]. A difference in survival
between the two origins of RM after SIV infection was
also observed. For example, four out of eight Chinese
RM survived for longer than 154 weeks after viral infec-
tion, whereas in the same study all Indian RM died 54
weeks after infection [40]. There has been strong sup-
port in the HIV vaccine field for using Indian RM
infected with SIVmac239 due to the high, persistent and
reproducible plasma viremia. This property of Indian
RM made them the model of preference for vaccines
that blunt viremia but do not prevent infection, such as
the rhesus cytomegalovirus (CMV) vaccines [68,69]. In
these types of challenge studies, very large numbers of
RM are needed to determine differences between groups
since all animals become infected. A concern over SHIV
models has arisen due to their lack of predictability for
human trials [70]. However, in examining of HIV vaccines,
or testing of passively transferred neutralizing antibodies
that can block HIV/SIV infection or enhance immunity
[71], the relatively low SHIV load in set point viremia
observed in individual Chinese RM is not a disadvantage
because significantly different outcomes can be mea-
sured with smaller numbers of macaques [72,73].

Differences in immunologic response
Chinese RM infected with SIVmac239 demonstrated strong
antibody responses; ten out of ten infected Chinese RM
had positive antibody responses [20]. In contrast, only
one out of four infected Indian RM showed the produc-
tion of antibodies [20]. A similar pattern was observed
for CD4 perseverance, as seven out of ten Chinese
RM had >50% CD4/CD8 ratio, while two out of four
Indian RM had <50% CD4/CD8 ratio [20]. The study
by Monceaux et al. [12] showed that the dynamics of
CCR5-expressing CD4+ T cells in the acute phase of
SIV-infection in Chinese RM are very similar to those
in HIV-infected humans, which is characterized as a
transient increase in the proportion of CD4 + CCR5+
T cells in the peripheral blood. In contrast, in SIV-
infected Indian RM, the number of CD4 + CCR5+ T cells
declined in a more immediate and sustained fashion. The
authors further demonstrated that such relative expansion



Table 3 Comparison of key parameters in Chinese RM and Indian RM following SIV infection

Innoculation
route

SIV strains
(Titer)

Rhesus macaque Peak viral
load (lg10)

Set point
viral load
(lg10)*

CD4 + T cells
(%)

Antibody titer** Survival time*** Ref

I.V. mac239 Chinese RM (n = 10) 6.5–7.8 ~2.8–6.7 >50% (7 out of 10) 10 out of 10 positive NP [20]

(102 TCID50) Indian RM (n = 4) 7–8 ~6–7 <50% (2 out of 4) 1 out of 4 >17W (2/4)

mac251 Chinese RM (n = 8) 5.8–7.5 2.5–5.8 NP NP >154W (4/8) [40]

(10 TCID50) Indian RM (n = 6) 6.9–7.8 4.5–7.3 NP NP <52W

mac251 Chinese RM (n = 8) 6.47–7.88 3.62–5.70 51% ~103 >43W (8/8) [8]

(102 TCID50) Indian RM (n = 15) 6.64–8.30 4.37–7.30 49% ~103 >43W(10/15)

IVAG mac251 Chinese RM (n = 10) 7.2 5.0 NP 1.6 × 104–8 × 105 NP [22]

(105 TCID50) Indian RM (n = 16) 7.7 6.3 NP 2 × 102–8 × 105 NP
*: Measured at day 35–77;
**: Measured at wk15-16;
****W: Weeks.
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of the CD4+ CCR5+ T cells in SIVmac251-infected
Chinese RM was associated with most markers of active
disease progression, including high virus replication,
overall loss of CD4+ T cell function, time to develop-
ment of AIDS, and overall survival rate [12]. In addition,
Cumont et al. [40] found that Indian RM demonstrated
a profound decline in the percentage of CD4+ DR+ T
cells during SIVmac251 infection, while only a transient
decrease of CD4+DR+ T cells was observed in Chinese
RM at the peak of virus replication. Moreover, they
found that in SIVmac251-infected RM, the frequency of
TiA-1-expressing T cells expanded earlier in Indian RM
than those in Chinese RM. However, at day 60 p.i., the
level of TiA-1 reactivity in Chinese RM became greater
than that in Indian RM infected with SIVmac251 [40].
The gastrointestinal (GI) tract is a major site of HIV

replication. It has been shown that both acute HIV and
SIV infections could result in a dramatic and selective
loss of memory CD4+ T cells predominantly from the
mucosal surfaces in GI tract [74,75]. The drastic but
transient depletion of CD4+ T cells in the intestine was
also found in SIV infection of Chinese RM [76]. Th17
cells are a subset of recently identified CD4+ T helper
cells that are critical for mucosal immunity. A loss of
Th17 cells in the GI tracts has been shown to be associ-
ated with disease progression in pathogenic HIV-infected
humans, and SIV-infected RM [77-79]. However, in
Chinese RM such low frequency of Th17 CD4 cells
could be compensated by the emergence of NK T cells
that express IL-17 early after infection [76]. In addition
to the T cell decline, neutrophils were also found to
be depleted early in pathogenic SIV infection in both
Indian and Chinese RM [37]. This SIV-infection mediated
neutropenia coincided with the peak of viral replication.
To compare with Chinese RM, the neutropenia was more
severe and more sustained in Indian RM, which is consist-
ent with the overall higher pathogenicity of SIV infection
in Indian RM than that in Chinese RM [37].
With respect to the innate antiviral cytokine response
to SIV infection, it was found that both pathogenic
SIVmac251 and non-pathogenic nef-deleted SIVmac251
infection induced more remarkable type I IFN expres-
sion in the lymphoid tissues of Indian RM than Chinese
RM [80]. The authors also showed that pathogenic
SIVmac251 infection induced a stronger type I IFN re-
sponse in lymphoid tissues than nef-deleted SIVmac251,
with more aggressive disease progression. They specu-
lated that the increased type I IFN response in patho-
genic SIV infection might be due to the increased
recruitment of plasmacytoid dendritic cells (pDC) in the
peripheral LNs and elevated inflammatory environment.
On the other hand, decreased type I IFN expression corre-
lates with reduced pDC recruitment in non-pathogenic
SIV infection [80]. In SIV infection of natural hosts,
such as African green monkeys (AGMs), the absence of
sustained IFN production is related to the absence of
viral persistence in LNs at the chronic phase [80].

The mechanisms for the differences between SIV infected
Indian RM and Chinese RM models
The mechanisms for the differences in SIV-induced dis-
ease pathogenesis between Chinese RM and Indian RM
remain largely unclear. It is likely that multiple factors
including viral fitness, immunological responses, and gen-
etic background could all contribute to the divergence
between Indian RM and Chinese RM as an NHP model
for HIV/AIDS research.

Viral fitness
The natural adaption of the SIV strains from Indian to
Chinese RM is believed to be critical in determining
viral infectivity. It has been shown that compared to
Indian RM, SIVmac strains are less well adapted in
Chinese RM with limited replication capacity [8,20,22],
leading to slower depletion of memory CCR5+CD4+ T
cells in the intestinal mucosa in Chinese RM compared
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to Indian RM [81]. This assumption is further sup-
ported by the observation that in vivo serial passage of
SIV in Chinese RM led to enhanced viral infectivity
[67]. In addition, increased viral fitness from Indian
RM cells may explain the higher replicative ability and
faster rate of disease progression in these animals, as
some of the earlier studies were performed using virus
preparations acquired from repeated serial passage in
cells from Indian RM. However, Cumont et al. used an
SIVmac251 strain that had been in vitro passaged in
peripheral blood mononuclear cells derived from Chinese
RM, but still observed an accelerated course of disease
in Indian RM, with higher apoptosis in Indian RM than
in Chinese RM. This finding suggests that rather than
intrinsic properties of SIV, host factors are pivotal deter-
minants of the divergent outcomes of SIV infection in
rhesus macaques [40].

Host immunological factors
Quantification of the copy numbers of CCL3L, a CCR5
ligand that blocks viral entry, identified that Indian RM
usually harbor much lower copy number of CCL3L com-
pared to Chinese RM, suggesting that slower progression
of SIV infection in Chinese RM may be a result of a block
in entry by increased CCL3L in these animals [82]. In
terms of adaptive immune response, it was shown that
Chinese RM demonstrated stronger and longer lasting
antiviral antibody response as well as SIV-specific CD8
CTL response [81] than Indian RM after SIV infection
[20]. To explain the differences between Indian and
Chinese RM with respect to how SIV infection affects
the dynamics of CD4 + CCR5+ T cells, Monceaux et al.
proposed that since the drastic decline of the pool of
CD4 + CCR5+ T cells in Indian RM is a key factor for
the rapid disease progression during both acute and
chronic infection, the direct effect of virus replication
[12] might be the major determinant of the immune
dysfunction that implicates the disease progression to
AIDS and death. In contrast, SIV-infected Chinese RM
undergo a relative expansion of the CD4 + CCR5+ T cell
pool, the degree of which is correlated with all markers
of disease progression. Thus, the effect of immune acti-
vation, instead of infection-mediated cell lysis [12], may
be a pivotal determinant in the immunological changes
related to AIDS progression in Chinese RM.

Genetic divergence
In addition to viral and host immunological factors, host
genetic factors should also be taken into consideration
in understanding of biological differences in SIV infection
between the Indian and Chinese RM. Despite belonging to
the same species, Chinese RM and Indian RM have di-
verged into two separate subtypes with marked genetic
difference, which could greatly impact viral fitness and
host immune responses to the viruses that in turn mark-
edly regulate disease progression in monkeys [9]. The
genomic sequencing of Chinese RM and Indian RM has
identified numerous distinguished subtype-specific sin-
gle nucleotide polymorphisms (SNPs) between these
monkeys [83]. Further comparisons of Indian RM and
Chinese RM mitochondrial DNA (mtDNA) sequences
have shown 90% mtDNA genetic heterogeneity [84].
Furthermore, considerable differences in MHC class I
and II profiles between Indian RM and Chinese RM
greatly shape their adaptive immune responses to viruses
and subsequently affect disease pathogenesis. Specific
MHC profiles of Chinese RM have been identified to be
associated with SIV inhibition [85-88]. The potential
differences in MHC profile [63-66] may invoke differ-
ences in cellular restriction factors and T cell immune
responses. Wambua et al. sequenced a cohort of 12 SIV-
infected Chinese RM for the expression of MHC class I al-
leles and identified that one set of alleles, Mamu-B*1001,
and -B*8701, appeared only in some elite controllers and
not in normal progressors, whereas several alleles, like
Mamu-B*3901, only appeared in animals that progressed
to AIDS but not in elite controllers [89]. A recent study
[90] suggests that Chinese RM are valuable as represen-
tative models of HLA gene diversity and function, and
therefore an attractive alternative model for investigat-
ing human immune response. However, future studies
on direct comparison of MHC profiles between Chinese
RM and Indian RM are necessary in order to identify
the MHC alleles that are associated with lentivirus-
induced disease outcome in these two subspecies of RM.

Chinese RM as a model for testing new HIV vaccine
approaches and therapy
Several studies [41,43,49] have utilized Chinese RM to
evaluate novel HIV vaccine approaches and therapies.
Stolte-Leeb et al. investigated the protective efficacy of
the multigenic DNA prime/MVA boost vaccine approach
against mucosal SHIV89.6P infection in Chinese RM by
either systemic or combined systemic/mucosal application
of vaccines, showing that both immunization strategies
induced immune control of virus replication and protected
Chinese RM from disease progression with combined
systemic/mucosal vaccination [41]. In another pre-clinical
study [43], immune-response profiles and protective
efficacy of different HIV vaccine modalities, including
DNA, protein or both, were evaluated in SHIV89.6P-
challenged Chinese RM. All vaccine modalities elicited
significant immune responses. Importantly, these re-
sponses efficiently suppressed the viral replication that
was otherwise sustained at high levels in non-vaccinated
Chinese RM [43].
Chinese RM have also been examined for immune-

based therapeutic approaches for HIV/AIDS. The current
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concept of AIDS immune therapy has been focused on
cytokine-mediated retrieval of T cell expansion. Studies
from different groups examined the impact of recom-
binant IL-2 (rIL-2) on T cell homeostasis in Chinese
RM in the context of SIV infection, and found that ad-
ministering rIL-2 caused a dose dependent expansion of
CD4+ and CD8+ T cells without affecting viral load, in
which both CD4+ and CD8+ regulatory T cells were
upregulated [91]. In addition to IL-2, IL-7, a critical
cytokine participating in both thymopoiesis and periph-
eral T cell homeostasis, has also been tested for its
therapeutic effect on HIV infection [92]. An interesting
study [93] evaluated the effect of IL-7 as a therapeutic
approach on immune reconstitution in SIV-infected
Chinese RM. The results showed that IL-7 treatment ele-
vated the number of circulating CD4+ and CD8+ memory
T cells that express proliferation (Ki-67) and activation
(HLA-DR, CD25) markers, as well as the naïve T cell pool
(CD45RAbright CD62L). This study [92,93] also demon-
strated that IL-7 therapy did not counteract the reduced
plasma viral load achieved under antiretroviral therapy
(ART). However, the prognostic effect of treatments with
these cytokines on SIV disease outcome needs further
investigation using RM, and could well utilize Chinese RM.
In addition to vaccine- and cytokine-based therapies,

other novel therapeutic concepts have also been success-
fully tested in SIV-infected Chinese RM. It was shown
that immune manipulation of delta-gamma T cells by a
well-defined HMBPP [(E)-4-Hydroxy-3-methyl-but-2-enyl
pyrophosphate)]/IL-2 therapeutic regimen could over-
come virus-induced immune suppression and confer
immunological benefits during the chronic phase of SIV
infection of Chinese RM [42]. The antiretroviral drug,
tenofovir disoproxil fumarate (TDF), was effective in
blocking SHIV infection of Chinese RM [49]. These ob-
servations support the feasibility to utilize Chinese RM
as a suitable NHP model for testing novel HIV thera-
peutic concepts.

Conclusions
Although the published data have demonstrated that
Chinese RM is a suitable macaque host for studies of HIV
disease, more extensive investigations on testing of current
HIV vaccine approaches in Chinese RM are needed in
order to determine if efficacy of these approaches in
humans can be predicted in Chinese RM. These future
studies should provide further support for the use of
Chinese RM for the investigation of HIV disease.
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